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Abstract

ICD coding is designed to assign the disease
codes to electronic health records (EHRs) upon
discharge, which is crucial for billing and clin-
ical statistics. In an attempt to improve the
effectiveness and efficiency of manual coding,
many methods have been proposed to automat-
ically predict ICD codes from clinical notes.
However, most previous works ignore the deci-
sive information contained in structured med-
ical data in EHRs, which is hard to be cap-
tured from the noisy clinical notes. In this pa-
per, we propose a Tree-enhanced Multimodal
Attention Network (TreeMAN) to fuse tab-
ular features and textual features into multi-
modal representations by enhancing the text
representations with tree-based features via
the attention mechanism. Tree-based features
are constructed according to decision trees
learned from structured multimodal medical
data, which capture the decisive information
about ICD coding. We can apply the same
multi-label classifier from previous text mod-
els to the multimodal representations to pre-
dict ICD codes. Experiments on two MIMIC
datasets show that our method outperforms
prior state-of-the-art ICD coding approaches.
The code is available at https://github.
com/liu-zichen/TreeMAN.

1 Introduction

The International Classification of Diseases (ICD),
maintained by the World Health Organization, is
a hierarchical classification of codes representing
diseases, injuries, and so on. ICD codes have
been used in diverse areas, including insurance re-
imbursement, epidemiology, and clinical research
(Park et al., 2000).

In the hospital, when patients discharge, their
electronic health records (EHRs) and all associated
data are transferred to the information management
department, where clinical coders manually assign
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Figure 1: An example of automatic multimodal ICD
coding. Model inputs include physiological data and
medical records in addition to clinical text.

the appropriate ICD codes using rigid ICD coding
guidelines after reviewing records (O’malley et al.,
2005). The manual code assignment is expensive,
labor-intensive, and error-prone due to the large
volume of medical record information and high
professional requirements (Nguyen et al., 2018).

Since deep learning has achieved great success
in lots of healthcare applications (Cai et al., 2019),
many neural methods have been proposed to auto-
mate the ICD coding process by researchers (Teng
et al., 2022). Recent works formulate automated
ICD coding as a multi-label document classifica-
tion task, using clinical notes as model input, pre-
dicting coding with a multi-label classifier, and
learning text features through word embedding
techniques and neural networks such as RNNs and
CNNs (Mullenbach et al., 2018; Vu et al., 2020;
Zhou et al., 2021). To improve the code representa-
tion learning, researchers further leverage features
of ICD codes such as hierarchical structures (Cao
et al., 2020) and descriptions (Mullenbach et al.,
2018; Zhou et al., 2021). However, most previous
methods ignore structured medical data, including
physiological data collected by medical sensors
and medical record information such as prescrip-
tions and microbiology test results in EHRs. The
few methods that leverage structured data are ei-
ther ensemble-based approaches (Xu et al., 2019)
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or data-mining methods that discard semantic in-
formation (Ferrão et al., 2021).

In this work, we argue that structured medical
data can improve coding accuracy by enhancing
semantic representations and providing more in-
formation because clinical notes are noisy and am-
biguous. For example, there are many different
types of insulin, like “Insulin Aspart” and “In-
sulin Glargine”, which are often written the same
in notes but clearly distinguished by Generic Se-
quence Numbers (GSNs) in medical records. Con-
sidering different writing styles and polysemous
abbreviations, predicting ICD codes from clinical
notes is more complicated. However, automatic
multimodal ICD coding (as Figure 1 shown) is
challenging for the following reasons: 1) medical
data is naturally heterogeneous, with data types
including numerical quantities, categorical values,
and derived time series such as perioperative vi-
tal sign signals (Zhou et al., 2021); 2) the feature
selection method needs to be designed especially
for multi-ICD codes as it’s a multi-label classifica-
tion task; 3) decisive information for a code in the
long clinical note may be contained in short seg-
ments that are likely different for different codes
(Mullenbach et al., 2018).

In this paper, we propose a novel Tree-enhanced
Multimodal Attention Network named TreeMAN
to address the aforementioned problems. Since it’s
hard to do feature engineering for structured medi-
cal data, we construct tree-based features from the
structured medical data through decision trees that
require little data preparation (Safavian and Land-
grebe, 1991) instead of manually crafting features
based on medical knowledge. Inspired by previous
works (Wang et al., 2018; He et al., 2014), we repre-
sent the tree-based features by embedding vectors.
Taking the tree-based embeddings and text repre-
sentations as input, TreeMAN applies an attention
mechanism to select relevant tree-based features for
text representations and output fused multimodal
representations that contain richer information to
benefit the downstream classifier. However, our
method has limitations in handling long-tailed la-
bels as it is difficult to build a decision tree from
less than 10 positive samples.

Contributions. In summary, the main contribu-
tions of our work include:

• We propose a multimodal ICD coding frame-
work that exploits structured medical data in

EHRs to construct tree-based features to en-
hance text representations.

• We propose TreeMAN, a tree-enhanced mul-
timodal attention network, which fuses text
representations and tree-based features into
unified multimodal representations by the at-
tention mechanism. To the best of our knowl-
edge, it’s the first model to jointly learn multi-
modal features for the ICD coding task.

• Experiments demonstrate the effectiveness of
our proposed method. Results on two datasets
show that TreeMAN outperforms previous
state-of-the-art ICD coding methods.

2 Related Work

2.1 ICD Coding

Research on Automatic ICD coding can be traced
back to nearly 30 years ago when Larkey and Croft
(1996) proposed an ensemble algorithm to inte-
grate different types of classifiers to assign ICD
codes to inpatient discharge summaries. A series
of methods based on Deep Neural Networks has
been implemented on this task since this paradigm
achieved colossal success in Clinical NLP. Perotte
et al. (2014) built “hierarchical” Support Vector
Machines (SVMs) outperforming the "flat" classi-
fier. Mullenbach et al. (2018) built a convolutional
attention model which combined the single filter
CNN module and the per-label attention module. A
series of network modules based on attention mech-
anism have been utilized after the early attempts,
including multi-scale attention module (Xie et al.,
2019), residual convolution module (Li and Yu,
2020). We also notice that the hierarchical struc-
ture of ICD-9 could be effectively described by a
joint-classification module on different levels (Vu
et al., 2020) or in the form of specific hyperbolic
representation (Cao et al., 2020).

Multimodal learning methods help to integrate
multiple information like test reports, nursing notes,
etc., in the MIMIC-III datasets. An early at-
tempt was made by (Xu et al., 2019), in which
an ensemble-based approach was developed to in-
tegrate the structured and unstructured text of dif-
ferent modalities. Rajendran et al. (2021) made
full use of unstructured information by effectively
exploiting the geometric properties of pre-trained
word embeddings.
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Figure 2: An overview of our proposed multimodal ICD coding framework.

2.2 Tree-based Method

Decision trees are a supervised learning algorithm
broadly applied in regression and classification
tasks (Quinlan, 1986). They are trained on labeled
data while requiring little data preparation and do-
main knowledge while the preprocessed features
are able to be fused with text representations easily.
Multiple skills have been implemented to ensem-
ble relatively simple decision trees to get better
performance (Banfield et al., 2007; Gashler et al.,
2008). Among all of these ideas, Gradient boost-
ing decision tree (GBDT) is an important instance
which introduces iterative functional gradient de-
scent algorithms to boosting models firstly (Fried-
man, 2001). Significant improvement made by
XGBoost (Chen and Guestrin, 2016) and Light-
GBM (Ke et al., 2017) which use different gra-
dient information to improve accuracy and train-
ing efficiency respectively. Many attempts (Trofi-
mov et al., 2012; Ling et al., 2017) have been
made based on decision-tree boosting algorithm
since people found it could generate interpretable
and effective cross-feature and is easy to fix with
other models. A combination of GBDT with lin-
ear model like Logistic Regression(LR) effectively
helps the models to make explainable predictions
by selecting top cross features (He et al., 2014).
Wang et al. (2018) argued that the tree-enhanced
embedding method would benefit from the explain-
ability of tree-based models, thus improving gen-
eralization ability compared with other pure em-
bedding ways. Incorporating decision tree learning
with matrix factorization would help to extract the
latent factors and get Fine-Grained embedding with
rich semantic information (Kim et al., 2020), which
could contribute to solve cold-start problems even

further (Tao et al., 2019; Zhou et al., 2011).

3 Method

In this section, we first give an overview of our
framework (Section 3.1), and then detail the key
module in our framework: the tree-enhanced multi-
modal attention network TreeMAN (Section 3.2).
Finally, we introduce the processing of structured
medical data and decision tree learning (Section
3.3).

3.1 Overview

Figure 2 shows the overview of our method. Upon
discharge, there are two types of data available
for our model: clinical notes written by doctors
and structured medical data, including physiologi-
cal data collected by sensors and medical records,
such as lab measurements and prescriptions. Given
a clinical note and the associated structured data,
two modules in the model process them separately
to obtain text representations and tree-based fea-
tures. Considering in the poor performance of Bert-
like models on ICD coding (Zhang et al., 2020;
Chalkidis et al., 2020), we train the text model from
scratch instead of fine-tuning a pretrained language
model. Structured medical data is first processed
as tabular data and then fed into a trained decision
tree to obtain tree-based features that we project
into embedding vectors: the tree embeddings T
and the leaf embeddings L (detailed in Section 3.3).
The other module is the text encoder designed to
capture the semantic information in the document
and provide textual representations.

Text encoder Given an input document with N
words {wi}Ni=1, the encoder first maps each word



3057

Wq

...

Softmax

L: Leaf
Embeddings

T: Tree
Embeddings

H: Text
Representations...

...

Decision
Trees

Wo

M: Multimodal Representations

Concatenate

Matrix product

Linear Projection 
with ParameterW

Figure 3: An illustration of our Tree-enhanced Multimodal Attention Network (TreeMAN). Green nodes and orange
nodes on the decision trees respectively represent root nodes and activated leaf nodes.

wi to a de-dimensional pre-trained word embed-
ding ei, then concatenates embeddings into the ma-
trix E = [e1, e2, ..., eN ]. To capture contextual
information, the word embedding matrix E is fed
into a bidirectional LSTM layer to compute the text
representations H, which is a concatenation of the
forward output and the backward output:

−→
hi =

−−−−→
LSTM(e1:i),

←−
hi =

←−−−−
LSTM(ei:N ),

H = [
−→
h1 ⊕

←−
h1,
−→
h2 ⊕

←−
h2, ...,

−→
hn ⊕

←−
hn].

(1)

Then, text representations H together with the
tree embeddings T and the leaf embeddings L gen-
erated from tree-based features are fed to Tree-
MAN to obtain the multimodal representation M
(detailed in Section 3.2):

M = TreeMAN(H,L,T). (2)

In the output layer, following Mullenbach et al.
(2018), we apply the per-label attention network to
compute representations for each label.

Label attention The label attention network
takes multimodal representations M ∈ Rdm×N

as input and compute the per-label representa-
tions V ∈ Rdm×|L| with a matrix parameter U ∈
Rdm×|L|, where |L| represents the number of la-
bels:

A = softmax(MU),

V = ATM.
(3)

Finally, to compute the probability ŷi of the ith

label, the label representation vi of V is fed into a

corresponding linear layer followed by a sigmoid
transformation. For training, the model is opti-
mized to minimize the binary cross-entropy loss
between the prediction ŷ and the target y:

Loss =

|L|∑
i=1

−yilog(ŷi)−(1−yi)log(1−ŷi). (4)

3.2 TreeMAN
TreeMAN, a tree-enhanced multimodal attention
network, is designed to fuse tree-based features and
text representations and provides enhanced multi-
modal representations for multi-label classification.
We argue that the critical information in text rep-
resentations is respective and fragmented because
decisive information for different labels in the docu-
ment is likely contained in different short segments
(Mullenbach et al., 2018). Therefore, we use the
attention mechanism to learn the relevant features
for each text vector and then fuse tree-based fea-
tures and text information into a unified multimodal
representation.

An illustration of TreeMAN is shown in Figure
3. Specifically, for each text vector hi ∈ Rdh in H,
we first project it to a query vector qi by a learnable
parameter Wq ∈ Rdt×dh :

qi = Wqhi. (5)

The vector qi ∈ Rdt is used to generate the
attention weight αi by computing with the tree
embeddings T ∈ Rdt×|T |, where |T | represents
the number of decision trees:

αi = softmax(TTqi). (6)
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The attention vector αi is then multiplied with the
leaf embeddings L ∈ Rdl×|T | to produce the spe-
cial representation si for the text vector:

si = Lαi. (7)

To fuse the text information and tree-based fea-
tures, we concatenate the special representation
with text vector and then apply a linear projection:

mi = Wo[hi||si], (8)

where Wo ∈ Rdm×(dl+ds) is a learnable parameter.
All the multimodal vectors are concatenated to for-
mulate the output matrix M = [m1,m2, ...,mN ] ∈
Rdm×N .

3.3 Construction of Tree-based Features
In this section, we introduce how we construct the
tree-based features from structured medical data.
Based on the characteristics of the data, we divide
the structured medical data into three types: 1)
derived time series data such as perioperative vital
sign signals; 2) multivalued vertical data denotes
data with multiple records for one admission, such
as lab measurements and prescriptions; 3) single
horizontal data indicates data with only a single
record for an admission, such as admission type
and patient age. We process different types of data
into tabular data in different ways: 1) for derived
time series data, we compute mean, maximum,
and minimum values for each class of data; 2) for
multivalued vertical data, we convert it into binary
vector to indicate whether a test is abnormal or a
medication is prescribed; 3) for single horizontal
data, we directly put it into the table as it is.

Then, we use the processed tabular data to con-
struct decision trees by applying decision trees,
which are trained with ICD codes as the target,
using one-versus-all strategy for multi-label clas-
sification. Formally, we get a set of decision trees,
Q = {Q1, ..., Q|T |}, where each tree maps the tab-
ular data x to a leaf node, which can be represented
by a one-hot vector. The representation of tree-
based features is a multi-hot vector q which is a
concatenation of one-hot vectors:

q = [Q1(x), ..., Q|T |(x)]. (9)

Therefore, there are |T | elements of value 1 in q
indicates activated leaf nodes.

Inspired by the success of TEM (Wang et al.,
2018), we project q into an embedding matrix L

MIMIC-III 50 MIMIC-II 50
Vocubulary Size 51,917 30,688
# Samples 11,371 3,726
# *Drugs 2350 52
# *Lab Items 245 217
# *Organism 183 135
# *Specimen 74 63
# *Antibiotic 30 30
# *Chart Items 200 -
Mean # labels per
document

5.7 3.4

Mean # tokens per
document

1530 1014

Table 1: The statistics of the two MIMIC datasets and
the structured medical data used therein, where "#" in-
dicates "the number of" and "*" denotes the number of
classes is counted.

as leaf embeddings. For the attention computation
in Section 3.2, we also generate a tree embedding
matrix T based on the number of decision trees.

4 Experiments

4.1 Datasets

To make a fair and all-round comparison with
former SOTA models, we evaluate our model
on two widely used Medical Information Mart
for Intensive Care (MIMIC) datasets: MIMIC-III
(Johnson et al., 2016) and MIMIC-II (Saeed et al.,
2002). Because it’s hard for our method to be im-
plemented on ICD codes with less than 10 positive
samples, we filter out records not relative to the top
50 most frequent ICD codes (denoted as MIMIC-III
50, MIMIC-II 50) to train and evaluate our method.

MIMIC-III 50. Except for structured medical
data, we use the same experimental setup includ-
ing the same splits as previous works (Mullenbach
et al., 2018; Cao et al., 2020; Vu et al., 2020). For
structured medical data, we use the following tables
in MIMIC-III dataset 1 : 1) Admissions contains
patients’ admission information such as admission
time; 2) Patients contains patients’ basic informa-
tion such as date of birth; 3) Chartevents contains
charted data including patients’ routine vital signs;
4) Labevents contains laboratory measurements
such as pH of blood; 5) Microbiologyevents con-
tains microbiology information such as organism
test information; 6) Prescriptions contains medica-
tions related to order entries including the Generic
Sequence Number (GSN) of drugs.

1A detailed introduction to MIMIC-III tables can be found
at https://mimic.mit.edu/docs/iii/tables.
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MIMIC-II 50. We subset the MIMIC-II full used
in previous works (Mullenbach et al., 2018) based
on the 50 most frequent labels and use a set of 3,726
admission samples in which there are 2980 samples
for training, 373 for validation and 373 for test. For
structured medical data, we use the following tables
in MIMIC-II dataset 2: 1) Admissions; 2) Patients;
3) Medevents is similar to Prescriptions in MIMIC-
III; 4) Labevents; 5) Microbiologyevents.

Basic statistic information of all the datasets
shows on Table 1.

4.2 Implementation Details
Following the preprocessing schema of previous
works (Mullenbach et al., 2018; Li and Yu, 2020;
Xie et al., 2019), we lowercase all tokens and re-
move tokens that contain unrelated alphabetic char-
acters like numbers and punctuations. We imple-
ment the word2vec CBOW (Mikolov et al., 2013)
method to pre-train word embeddings and truncate
all discharge summary documents to the maximum
length of 4,000 tokens. We employ XGBoost 3

to implement the decision trees in our approach.
There is only one decision tree built for each label
where the learning rate and the maximum depth of
the tree are set as 0.99 and 5, respectively, while
the rest of settings follow the default. The sizes
of the tree embedding T and the leaf embedding
L are 128 and 30, respectively. We set the size of
multimodal representations to be the same as that
of text representations.

For the baseline methods we reproduced on the
MIMIC-II 50 dataset, we used the same implemen-
tations used by the authors on MIMIC-III 50. To
reduce randomness, we repeated all experiments 5
times with different random seeds and report the
average performance.

4.3 Metrics
To compare with previous and potential future work
thoroughly, we measured our model mainly on in-
dicators of macro-averaged and micro-averaged
F1, macro-averaged, and micro-averaged AUC
(area under the ROC curve) and Precision@k
(P@k). Among these metrics, the “micro-averaged”
method takes every single decision into considera-
tion by pooling all text-code pairing and then cal-
culating an effectiveness indicator on the pooled

2A detailed introduction to MIMIC-II tables can be found
at https://archive.physionet.org/mimic2/UserGuide/UserGui-
de.pdf .

3https://xgboost.readthedocs.io.

data. And “macro-averaged based" metrics would
provide statistics from the perspective of label in-
stead of pair-relationship. Furthermore, we rank
predictive probabilities to compute the precision
of the top-k predicted labels, denoted as P@k. We
set k to be five on MIMIC-III 50 dataset and three
on MIMIC-II 50 dataset for the average discharge
summary has 5.7 labels in MIMIC-III 50 while 3.4
in MIMIC-II 50. We believe a full comparison of
all the above metrics will provide insight into our
work.

4.4 Baselines
We compare our model TreeMAN with the follow-
ing baseline; all of them were SOTA when they
were proposed initially.

CAML Convolutional Attention network
for Multi- Label classification (CAML) and
description Regularized CAML was proposed
by Mullenbach et al. (2018), which combined a
single-layer CNN with attention layer to generate
ICD coding for given text.

LAAT&Joint-LAAT LAbel ATtention and Joint
LAbel ATtention model was proposed by Vu et al.
(2020). It encodes the input text with BiLSTM
layer and implements self-attention mechanism to
learn label-specific vectors representation. A hi-
erarchical joint learning architecture is utilized to
improve performance in the second model.

HyperCore Hyperbolic and Co-graph Represen-
tation was proposed by Cao et al. (2020). It lever-
aged hierarchical structure of ICD code in hy-
perbolic space and used graph convolutional net-
work(GCN) to capture co-occurrence correlation
of labels.

ISD Interactive Shared Representation Network
with Self-Distillation Mechanism was proposed
by Zhou et al. (2021), they implemented a self-
distillation learning mechanism to alleviate the
noisy text and only focus on noteworthy part of
text.

4.5 Results
Table 2 reports mean ± standard deviation of
TreeMAN’s results on two datasets, the perfor-
mance of baselines on MIMIC-III 50 and the results
of our implementation of baselines on MIMIC-II
50. Compared with previous text methods, our
multimodal approach achieves the best results on
all metrics on both datasets. It indicates that our
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Model
MIMIC-III 50 MIMIC-II 50

AUC F1
P@5

AUC F1
P@3

macro micro macro micro macro micro macro micro
CAML 0.875 0.909 0.532 0.614 0.609 0.871 0.902 0.426 0.553 0.552
HyperCore 0.895 0.929 0.609 0.663 0.632 - - - - -
LAAT 0.925 0.946 0.666 0.715 0.675 0.874 0.908 0.436 0.557 0.556
Joint LAAT 0.925 0.946 0.661 0.716 0.671 0.875 0.908 0.434 0.547 0.560
ISD 0.935 0.949 0.679 0.717 0.682 - - - - -

TreeMAN 0.937 0.953 0.690 0.729 0.682 0.883 0.916 0.479 0.574 0.605
±0.002 ±0.000 ±0.002 ±0.002 ±0.001 ±0.002 ±0.002 ±0.001 ±0.001 ±0.004

Table 2: Results on MIMIC-III 50 dataset, MIMIC-II 50 dataset and mean±standard deviation of each indicator
gained from replicated experiments with random initial states. Baseline scores are from the corresponding papers in
Section 4.4.

Model
AUC F1

P@5
macro micro macro micro

text 92.6 94.5 67.4 71.4 66.6
maxpooling 93.1 94.9 68.4 72.3 67.5
average 93.4 95.1 68.9 72.7 67.6
TreeMAN 93.7 95.3 69.0 72.9 68.2

Table 3: Results of ablation experiments on the MIMIC-
III 50 dataset (in %).

model benefits from the rich information contained
in structured medical data. Furthermore, the small
standard deviations demonstrate that the good re-
sults our model achieved are stable. We also ob-
serve more significant improvements in the f1-
marco and f1-micro metrics compared to other
ranking-based metrics. Since the binary output
is produced by a fixed threshold 0.5, a possible
reason for the disparity is that the sigmoid function
of our model in the final layer outputs more dis-
persed probabilities due to the decisive information
provided by structured medical data.

4.6 Ablation Experiment

To testify the effectiveness of the different mod-
ules in TreeMAN, we perform a series of ablation
experiments on the MIMIC-III 50 dataset, design
following experiments, and report the results in
Table 3.

The Effect of Structured Medical Data To
study the effectiveness of the information captured
from structured medical data, we remove the tree-
based features in TreeMAN and directly feed the
unfused text representations to the multi-label clas-
sifier (text in Table 3). The experimental results
of all metrics decreased significantly compared to

TreeMAN, demonstrating the importance of the
tree-based features constructed based on structured
medical data. It’s also a comparison between the
text representations and the multimodal represen-
tations, which proves that TreeMAN is capable of
learning multimodal features.

The Effect of Attention Mechanism To exam-
ine the effectiveness of the attention mechanism
in TreeMAN, we design two experiments by re-
placing the attention network with the max-pooling
layer (maxpooling in Table 3) and the average layer
(average in Table 3) on leaf embeddings. Formally,
we change the Equation 7 as:{

maxpooling: si = max_pooll∈L(l),
average: si = 1

|T |
∑

l∈L(l),
(10)

where l and T represent a vector in the leaf embed-
dings L and the number of decision trees, respec-
tively. As shown, the experimental results of max-
pooling and average are both better than text and
worse than TreeMAN. Thus, the attention mecha-
nism improves TreeMAN’s ability to learn multi-
modal information and the information captured by
tree-based features is robust to learn.

4.7 Parameter Studies
We have already analyzed the efficacy of our pro-
posed model, and now we want to conduct a se-
ries of experiments to test the effect of two critical
hyper-parameters in the TreeMAN module: the
maximum depth of the decision tree and the size
of leaf embeddings L. The former decides how
tree-based features are constructed from structured
medical data, and the latter is the representation for-
mat of the tree-based features. Various metrics of
different settings would help us to demonstrate how
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Figure 4: Results of different maximum tree depth and leaf embedding size on MIMIC-III 50.

TreeMAN extracts information from multimodal
data:

The Effect of Maximum Depth of the Decision
Trees The maximum depth of the decision tree
would decide the number of feature extracted and
the properties of the leaf embedding layer, for each
of the leaf nodes represents a tree-based feature.
For example, if we set the maximum depth to 3,
we would get 401 leaves and 4752 leaves for a 7-
layer tree. A shallow decision tree cannot extract
enough features to represent the latent information
of initial input. However, a too deep tree would
risk over-fitting as well as colossal costs in the
training process. Based on this assumption, we
make a complete comparison of different pre-set
depths of the decision tree. As the Figure 4 (a)
shows, a tree of depth 5 outperforms other decision
trees, especially on the indicator of f1_marco and
f1_micro because of the improvement in the aspect
of recall ratio. Furthermore, we also notice that
changes in this hyper-parameter don’t seriously
affect the performance of our module, proving the
robustness of our method.

The Effect of Leaf Embeddings As we project
multimodal information gained in the decision tree
to leaf embeddings L, we need the proper capacity
of this layer to collect and store them. Thus we
experiment with the leaf embedding size ranging
from 10 to 50 to study the effect of the setup. Figure
4(b) shows that a vector with 30 dimensions is a
proper choice because short vectors would abandon
helpful information, while long ones would carry
redundant information. Taking note of the limited
size of datasets, relatively simple architecture could
be a practical solution. These results also indicate

that TreeMAN has learned an operative and steady
pattern to learn from various types of multimodal
information.

5 Conclusion

In this paper, we proposed a tree-based multi-
modal method for the ICD coding task, which
constructs tree-based features by decision trees
learned from structured medical data and fuses the
tree-based features and text representation by a
novel tree-enhanced multimodal attention network
(TreeMAN). Experimental results on two MIMIC
datasets show that our method outperforms state-
of-the-art methods. Further ablation studies demon-
strate that structured medical data and the attention
mechanism in TreeMAN have improved the perfor-
mance.

For future work, we plan to investigate the inter-
pretability of our method since tree-based methods
are naturally interpretable. We are also interested in
exploring a generalized and robust way to construct
the tree-based features to capture more generalized
medical information from structured medical data.
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