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Abstract

Framing is a communication strategy to
bias discussion by selecting and emphasizing.
Frame detection aims to automatically analyze
framing strategy. Previous works on frame de-
tection mainly focus on a single scenario or
issue, ignoring the special characteristics of
frame detection that new events emerge con-
tinuously and policy agenda changes dynam-
ically. To better deal with various context
and frame typologies across different issues,
we propose a two-stage adaptation framework.
In the framing domain adaptation from pre-
training stage, we design two tasks based on
pivots and prompts to learn a transferable en-
coder, verbalizer, and prompts. In the down-
stream scenario generalization stage, the trans-
ferable components are applied to new issues
and label sets. Experiment results demonstrate
the effectiveness of our framework in different
scenarios. Also, it shows superiority both in
full-resource and low-resource conditions.

1 Introduction

Framing is a communication strategy, used to bias
the discussion toward a specific stance, by select-
ing particular aspects of reality and making them
more salient (Entman, 1993; Liu et al., 2019a). It
is widely adopted by politicians, the media, and
the voting public to seek support, express opin-
ions, and advance political agendas (Levendusky,
2013), thus having important implications for pub-
lic opinion understanding and policy decision-
making (Mendelsohn et al., 2021). Boydstun et al.
propose 15 generic frame dimensions based on pol-
icy agenda, including economic, morality, and so
on, paving the way for frame analysis. In order
to analyze the framing strategy automatically, re-
searchers explore the task of frame detection.
Given a piece of statement related to a topic,
frame detection aims to recognize which dimen-
sions of frames are employed. Formally, it’s a
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Issue | Source # Example Frame
label
Women have the freedom to -
. . Fairness &
y make their own choices about Equality
abortion 14  |their reproductive health care.
tweets #AbortionLaw protects the safety | Health & Safety
of women.
. Mental Health
Florida shooter a troubled loner entaried
gun 9 3 . e
with white supremacist ties. -
Race/Ethnicity
news
Legality,
un @ 5 The 2nd amend does not say Constitutionality
9 people need guns for self defense ! and
debates Jurisprudence

Figure 1: A brief landscape of frame detection. These
three samples are taken from twitter (Johnson et al.,
2017), gvfe (Liu et al., 2019a), fora (Hartmann et al.,
2019) respectively.

multi-label classification task with a pre-defined
label set. Existing researches for automatic frame
detection explore different supervised methods
including feature-based machine learning, deep
neural networks, and fine-tuning pre-trained mod-
els (Card et al., 2016; Naderi and Hirst, 2017; Liu
et al., 2019b). Despite the success and contribution
made by previous studies, these methods ignore
the special characteristics of frame detection that
events develop quickly and political focus of agen-
das changes frequently.

We demonstrate the landscape of frame detec-
tion in Figure 1 with examples picked from three
existing datasets and three challenges stand out.
(1) Dynamic nature of languages: framing is used
in complex scenarios of quite different styles of
language expressions, i.e., coming from different
sources and discussing various issues. Previous
methods didn’t consider learning from existing is-
sues, thus once new issues emerge, data annotation
and model training must be repeated. (2) Diverse
categories of frame dimensions: frames are defined
from different perspectives that can be general like
fairness & equality or issue-specific like mental
health. (3) Variance of frames across issues: la-
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bel set of frames changes for different issues. The
complex label system means frame detection can
not be easily transferred, unlike traditional tasks
including sentiment analysis and stance detection
that shares a common label set. In order to ad-
dress these three challenges and mitigate the limi-
tations of existing research, we propose to develop
a generalized framework for frame detection that
obtains robust language modeling capability, pos-
sesses background knowledge of framing strategy,
and can be adapted to new issues easily. Recently,
progress in prompt learning provides a mechanism
to exploit pre-trained models by task-specific cloze
or prefix prompts. Previous research shows its
effectiveness in few-shot and zero-shot learning
(Schick and Schiitze, 2020b; Liu et al., 2021a).
Motivated by the success of prompt learning on
low-resource sentence classification, we aim to de-
sign a prompting framework for frame detection.

In this paper, we propose a two-stage adaptation
framework for frame detection based on prompt
learning that optimizes prompts and a pre-trained
language model for the general domain of framing
and applies it to new scenarios. In the framing do-
main adaptation from pre-training stage, we train
a pivot-based encoder on top of the pre-trained
language model based on a generic corpus with a
general framing label set. Then, we design a shared
prompt and several issue-specific prompts and learn
their parameters by prompt learning and adversar-
ial training to acquire transferable prompts and a
verbalizer. In the downstream scenario generaliza-
tion stage, we adopt the transferable components
to new issues and scenarios. Our contributions are
mainly three-fold:

* We propose a generalized prompting frame-
work for frame detection that can deal with dif-
ferent scenarios, issues, and typologies, bridg-
ing the gap of cross-issue generalization miss-
ing in previous work.

* Different from previous transfer learning, our
framework does not train the target data with
the source data together, but only reuses the
parameters, ensuring data security in the real
environment. It is more flexible since data
related to politics can be confidential and sen-
sitive in some countries.

* We present the largest study of frame detec-
tion, covering 5 datasets from 3 different sce-
narios. Experiment results show the effective-

ness of our framework in both full-source and
low-resource situations.

2 Framing Domain Adaptation from
Pre-training

Given a sentence x and a set of frame labels F, we
aim to detect which frames are used. It is a multi-
label classification problem. Since we hope the
model can deal with various issues and label sets,
it’s necessary to urge the model to learn general and
transferable knowledge related to frames. In this
stage, namely framing domain adaptation from pre-
training, we design two tasks to achieve this goal.
A generic corpus C is used as an anchor corpus for
the training in this stage.

2.1 Transferable Pivot-based Encoder

Primarily, we design a masked-pivot prediction task
(Task1 in Figure 2) to learn a transferable encoder,
to capture issue-unrelated features of frames. The
process is divided into two steps.

Frame Pivots Generation According to Field
et al., some indicators are informative for frame
detection, e.g., cost, wage, economy for economic
frame. We believe these indicators are similar to
transferable sentiment words in sentiment classi-
fication, which can serve as pivots. We generate
frame pivots by mutual information (Church and
Hanks, 1990). For a given frame F'in C, we calcu-
late point-wise mutual information (PMI) for each
word by:

P(F, Plw|F
I(F,w) = log P(é) “’I)U) - log(;}(l))) 1)
Count(w)

where P(w | F') is estimated as Count(allwords) by

taking all texts annotated with F’, while P(w) is
similarly computed using the entire corpus. Words
that occur in fewer than 0.5% or more than 98% of
documents will be discarded. Finally, we reserve
top K words with highest PMI score for each frame,
where K is a hyper-parameter.

MLM Training We optimize an encoder on top
of a pre-trained language model based on model-
ing the relationship between pivots and non-pivots
following (Li et al., 2020; Ben-David et al., 2020).
Concretely, we employ a pre-trained BERT (De-
vlin et al., 2019), optimized by an MLM objective.
As shown in Task1 in Figure 2, given a document,
we randomly mask pivots with probability p,, and
mask non-pivots with probability p,, instead of
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Figure 2: The framework architecture in framing domain adaptation from pre-training stage. In masked-pivot
prediction task(left), we train a transferable encoder. In prompt learning-based frame detection task(right), we

further optimize the prompts, encoder and verbalizer.

masking each token with the same probability. Like
what is done in BERT, for the chosen (non-)pivot
words, most of the time they are changed to the
mask token, with a small probability of being un-
changed. Besides, we don’t predict the token on the
entire vocabulary size, but only focus on whether
the masked token is a pivot or not and which pivot
it is. Therefore, it’s a classification task with p + 1
classes, where p is the number of unique pivots.
Then, masked cross-entropy is used to calculate the
loss for masked token prediction.

1 O .
Lyiv = WZW%JL(yf,yf) )

=1

where m; € {0, 1} indicates whether the token is
masked, and L (37, y”) denotes the cross entropy
loss for pivot prediction.

2.2 Transferable Prompts and Verbalizer

To pre-train transferable prompts and verbalizer,
we adopt the second task, prompt learning-based
frame detection (Task2 in Figure 2). Each compo-
nent will be described in detail as follows.

Prompt Template To retrieve the knowledge en-
coded in the pre-trained language model, we design
a template to wrap the original input text into a
prompt, by discrete natural language or continuous
parameters (Liu et al., 2021a,c). To avoid trou-
blesome prompt engineering, we use continuous

prompt embeddings. Inspired by Wang et al., for
prompt configuration, we build a private prompt
template for each issue, and a shared prompt tem-
plate for all the issues, constituting the prompt li-
brary in Figure 2. For each input text z of issue ¢,
the issue-specific template and the shared template
will respectively convert the input as:

¢ (x) = wgl), - wﬁ,i), x, w7(:1)+17 . w](\z), Wimask]
(3)

£5(2) = WY, ooy Wiy Ty Wiy 15 -0 WhT > Wiimask]
4)

where w,, is prompt pseudo token (Liu et al.,
2021c), M is the number of prompt pseudo tokens.
A bidirectional LSTM (Hochreiter and Schmidhu-
ber, 1997) with multi-layer perceptrons are applied
as prompt encoders. We can get prompt embedding
by:

PEY(z) = MLP(BiLSTM(t%)(z)))  (5)
and the shared template will get:
PE®(x) = MLP(BiLSTM (t°(x))) (6)

Then, the average of both prompts will result in
the final prompt embedding, which is a sequence
as the input of the encoder for frame detection, as
shown in Figure 2.

Verbalizer Learning for Frames In prompt
learning, a mapping from words to labels, e.g.,
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Figure 3: Downstream Scenario Generalization Stage: reuse the transferable components acquired in the framing

domain adaptation from pre-training stage.

good, great for label positive, which is also called
verbalizer, is needed for final prediction. How-
ever, manual label word selection needs domain-
expert knowledge and is defective in dealing with
answers of different lengths. Moreover, it’s dif-
ficult to express the meaning of a frame label by
single words, e.g., neither word school nor safety
is a proper answer to a cloze problem about school
safety. To overcome this problem, we attempt to
use the average of the token embeddings to get
label embedding. One of the biggest advantages
of doing this is the implicit flexibility and transfer-
ability of label embedding. For example, once we
learned token embedding for label health in the pre-
training stage, it’s beneficial to better understand
label mental health in a new dataset, since they
share the common token health. Specifically, we
tokenize the original label, extract corresponding
token embeddings and take the average as the final
label representation:

Z TE(token;) @)

=1

where n; is the number of tokens of label [,
and T'E(token;) represents token embedding of
token;. Then, we calculate the dot product of
MLM output with each label embedding. Finally, a
binary-cross entropy loss (BCE) is applied for each
label. Thus, loss for frame detection is:

N F
1 ZZ X
Eframe = —N y]f(k) log y]f(k;) (8)
ik

where y}c (k) € {0,1}, N is the number of samples,
and F' is the number of unique frame labels.

Adversarial Training for Prompts In order to
learn a shared prompt that can be easily transferred
to new issues, we hope the shared prompt pays
attention to cross-issue features related to frames,
rather than any specific issue or topic content. To
achieve this goal, we design an issue adversarial
task to make the shared prompt cannot distinguish
issues. Concretely, as shown in Figure 2, we use
the shared template only to wrap each input text,
and we input this issue prompt to the encoder to
predict the corresponding issue. Here, a Gradi-
ent Reversal Layer (GRL) (Ganin and Lempitsky,
2015) is involved, before the input is sent to the
encoder. During the backpropagation, it reverses
the gradient by multiplying a negative scalar. For
this single-label prediction task, the target is to
minimize the cross-entropy loss:

1 N I
zssue = N Z Z ; IOg y] ) (9)
7 k

where where y/ (k) € {0,1}, N is the number of
samples, and I is the number of unique issues in
the generic corpus C.

In this case, we train the model using following
loss:

E = ['frame + )\»Cissue (10)

where ) is a hyper-parameter controlling the weight
of different losses.
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3 Downstream Scenario Generalization

After the pre-training stage, we get a set of issue-
specific prompt encoders, a shared prompt encoder,
and an encoder that can be adapted to downstream
scenarios. In the generalization stage, we reuse
these transferable components for frame detection
in new scenarios. As shown in Figure 3, for issues
that have been “seen” in the generic corpus C, we
initialize the prompt encoder by the corresponding
private prompt encoder in the prompt library, and
for those unseen issues, the shared prompt encoder
is applied for generalization. And encoder along
with its token embeddings (used for verbalizer) in
the previous stage is also adopted here.

4 Datasets

Based on review of previous work on frame detec-
tion, we get datasets available mainly from three
resources: (1) news media (articles), (2) social me-
dia, (3) debates and statements. Five datasets are
listed.

mfc News articles of 15 general frame annotation,
constructed by Card et al.. The last version covers 6
issues-climate change, death penalty, gun control,
immigration, same-sex marriage and tobacco, with
5,199 articles for each issue on average.

gvfc (Liu et al., 2019a) 1,300 headlines of news
articles on gun violence, annotated with 9 issue-
specific frames.

twitter (Johnson et al., 2017) 2,050 tweets posted
by 40 politicians, annotated with 17 general frames
(among which 14 are the same with mfe, and
3 designed specifically for tweets). 5 issues are
included-abortion, aca, immigration, isis and Igbt.
We also treat each as an independent dataset, to
verify effectiveness of our framework on unseen
new issues like abortion.

immi (Mendelsohn et al., 2021) tweets about im-
migration, published by the public, among which
2,325 are annotated with general frames and 1,375
are annotated with issue-specific frames.

fora (Hartmann et al., 2019) 868 arguments on
online discussion fora, annotated with 5 most fre-
quent general frames, covering 4 topics.
Following Johnson et al., we drop other category
in mfc and immi, and the overview of the datasets
is shown in Table 1. Considering that mfc is the
largest existing corpus with the generic setting of

Datasets Typology #Label  Size
mfc general 14 31,960
gvfc issue-specific 9 1,300

twitter general 17 2,050
- general 14 2,325
issue-specific 11 1,375

fora general 5 868

Table 1: Statistics of listed datasets.

frames, it is used in the framing domain adaptation
from pre-training stage. Note that, any other corpus
can also be used as the anchor in our framework.

5 Experiment and Results

5.1 Experiment Setup

Models for Comparison. We compare our
model with some state-of-art methods for frame de-
tection as well as some prompt learning and trans-
fer learning methods.

- Bi-LSTM (Naderi and Hirst, 2017) with ini-
tialization by GloVe word embeddings (Pen-
nington et al., 2014).

- Bi-GRU (Naderi and Hirst, 2017) with initial-
ization by GloVe word embeddings.

- FT, fine-tune a pre-trained language model
(PLM). (Mendelsohn et al., 2021)

- MP, use a manually-designed prompt and
verbalizer to implement prompt learning on
specific datasets. We use manual prompt
T(X) = X. It emphasizes [MASK]., ac-
cording to definition of framing.

- P-tuning, use vanilla ptuning (Liu et al,,
2021c) prompt to implement prompt learning
on specific datasets and use label embedding
in our framework as verbalizer.

- P-tuning v2 (Liu et al., 2021b), adds prefix
into each layer of the PLM and use a fully-
connected layer for classification.

- FT-mtl (Sun et al., 2019), fine-tunes PLM by
multi-task learning, where frame detection on
mfc dataset serves as the auxiliary task.

- FT-adv (Hu et al., 2019), on the basis of FT-
mtl, it fine-tunes PLM with an additional ad-
versarial domain loss, where domains are is-
sues in mfc dataset.
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Method | gvfc twitter immi-general immi-specific fora

| MiF MaF MiF MaF MiF MaF MiF MaF MiF MaF
Bi-LSTM 66.52 59.92 49.26 38.00 46.22 39.84 33.13 21.67 69.87 68.17
Bi-GRU 71.49 60.58 46.25 32.82 42.72 35.98 33.65 19.39 75.29 74.00
FT 83.09 77.29 65.37 56.98 74.38 67.51 60.19 45.71 80.94 81.65
MP 82.38 74.80 62.73 50.27 70.58 60.01 58.11 41.36 78.13 77.89
P-tuning 84.17 77.09 63.38 55.45 74.06 67.23 60.32 46.20 78.64 78.94
P-tuning v2 82.87 76.12 62.31 51.55 71.52 63.87 60.21 51.41 78.07 78.63
FT-mtl 84.51 73.02 62.02 52.75 71.54 60.05 62.58 44.84 78.53 79.41
FT-adv 81.50 72.20 59.91 42.36 71.89 63.89 60.94 39.01 75.82 76.22
FT-meta 81.69 75.03 62.25 51.14 68.58 61.22 61.24 46.87 76.43 75.77
Ours | 85.25 80.36 66.39 60.56 75.07 68.15 62.59 50.66 81.26 82.61

Table 2: Results in full-resource experiments across datasets. (Bold: the best performance in the column)

Method | aca abortion isis

‘ MiF MaF MiF MaF MiF MaF
Bi-LSTM 28.33 8.01 41.60 9.52 38.85 17.46
Bi-GRU 3555 1592 3697 17.89 55.01 2541
FT 5529 30.06 4284 1504 5391 26.96
MP 54.88 2474 46.57 13.72 57.16 20.15
P-tuning 54.68 28.18 4736 17.70 60.32 33.55
P-tuning v2 | 5634 2637 4444 1432 68.04 29.21
FT-mtl 3723 14.63 34.28 7.22 67.41 25.11
FT-adv 40.61 13.55 34.89 8.91 64.58 23.66
FT-meta 3992 1357 3571 10.09 6441 24.61
Ours ‘ 56.72 29.18 53.03 19.74 65.19 36.04

Table 3: Results in full-resource training on unseen
issues in twitter dataset. (Bold: the best performance
in the column)

- FT-meta (Wang et al., 2020), where typical in-
stances of each issues in mfc dataset are used
to train a meta learner, and the meta learner is
further fine-tuned by specific new datasets.

- Ours, method proposed in this paper.

Experiment Settings (1) Full-resource setting:
all training data are used. (2) Zero-shot setting:
the training set and validation set are not available.
Models are required to detect frames directly on
the test set. Since recurrent neural networks and
fine-tuning are not applicable, we only compare
the prompting-based methods. (3) Few-shot set-
ting: N-Way K-shot setup is applied where N is
the number of classes in each dataset, and for each
class, we take K samples for training and valida-
tion respectively. K is set to 2, 4, and 8 in our
experiments.

Evaluation Metrics. Since each text can have
more than one frame, this prediction task is a multi-
label classification task. Results are reported in

terms of micro- and macro-F1 score.

5.2 Implementation Details

For pre-trained language model involved
in our framework and baselines, we use
bert-base-uncased (Devlin et al., 2019).
For pivot generation, we reserve top 50 frame
indicators for each frame dimension. For masking
probability, we set p, = 0.5 and p, = 0.1,
following (Ben-David et al., 2020). We set training
batch size = 16, learning rate of encoder=2e-5,
learning rate of prompt encoder = le-2, \ =
1. Early stopping strategy is applied to avoid
over-fitting. Empirically, we find the best threshold
of multi-label classification by validation set for
each model respectively. Our implementation' is
partially based on OpenPrompt (Ding et al., 2022).

5.3 Opverall Performance

Results for supervised learning across different
methods are reported in Table 2. We can find: (1)
Our method has shown improvement compared to
all other baselines. Results across different datasets
indicate that our method can handle frames of dif-
ferent topics and typologies in a unified framework.
(2) Previous study (Vu et al., 2021) has shown
that it’s not easy for prompt tuning to surpass fine-
tuning when using a small PLM like BERT. Bene-
fiting from the pre-training stage, we can achieve
comparable results to vanilla fine-tuning. (3) Tra-
ditional transfer methods don’t perform as well as
expected. It demonstrates that it’s not easy to opti-
mize multiple objectives due to the gaps between
datasets. Encoding knowledge of auxiliary data

!Codes are publicly available at https://github.
com/xymou/Frame_Detection
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Method | Avg MiF  Avg MaF
Full Implementation 74.11 68.47
:w/o pivot-based encoder 72.64 66.69
:w/o issue adversarial training 73.18 66.09
:w/o both 72.55 65.59

Table 4: Results for ablation study. (Bold: the best
performance in the column)

into PLM in the pre-training stage is an alternative.

Table 3 presents the results individually learned
on unseen issues in twitter dataset, where training
data is less. The results show that learned prompts
can be well adapted to unseen issues.

5.4 Ablation study

We implement an ablation study to verify the ef-
fectiveness of pivot-based encoder and adversarial
training for prompts. When we test without a pivot-
based encoder, we use an ordinary BERT backbone.
The average MiF and MaF of all datasets in abla-
tion study are in Table 4. It is shown that both
components contribute to the framework. This indi-
cates that motivating both encoder and prompts to
learn shared, transferable information across issues
is crucial for frame detection.

5.5 Zero-shot and Few-shot Analysis

Method \ gvfc  twitter immi-general immi-specific ~ fora
MP 43.03  34.48 59.08 19.92 67.21
P-Tuning | 43.51 35.71 57.58 20.03 67.60
Ours 44.65 37.44 60.30 20.28 68.96

Table 5: P@1 in zero-shot experiments. We only com-
pare prompt-based methods since neural networks and
fine-tuning with random initialization is not applicable.
(Bold: the best performance in the column)

Table 5 shows results in zero-shot setting. We
didn’t report the performance of neural networks,
fine-tuning, and P-tuning v2 because a randomly
initialized classifier may not produce reasonable
results. Since validation data is not available, com-
paring F1 scores of different models using a ran-
dom threshold may be unfair, we only illustrate
P@1(precision at one). It indicates that prompting
methods without fine-tuning can already induce rea-
sonable predictions. Furthermore, with framing do-
main pre-training, our method shows effectiveness
in mining frame-related knowledge in pre-trained
language models.

Table 6 shows results in few-shot setting. Over-
all, prompting methods outperform fine-tuning by

a large margin. Meanwhile, our method shows
superiority in most datasets. Surprisingly, MP per-
forms best in immi-specific. Several factors may
account for this result. (1) With a manual template
and verbalizer, MP has the least additional parame-
ters and thus has the least risk of over-fitting. (2)
Since the labels have some uncommon words like
humanitarian, having less overlap with those in the
pre-training stage, the label embedding verbalizer
for this dataset is not well initialized in the general-
ization stage. Once we replace the verbalizer with
a manual mapping, performance can be improved
by about 3%. (3) Some data in immi is singly an-
notated without consensus-coding, so the potential
noise brings more randomness to few-shot training.

6 Discussion

Inferring Frames not
Explicitly Cued in Text

Special expressions, Slang,
and Abbreviations

Unfamiliar Words

Annotation Difficulty

Missing Necessary
Contextual Knowledge

Overgeneralizing

26% 28%

30%

48% 9
° 5 >
0
9% 12%
13% 18% 10%
(@) (b)
27%
95
18% 90 B toplO N top20 top50
85 N N
80
% 75
0% 70
9% s
41% 60 I:B I:Lj
ovfC e’ m‘-ee“e(a:ﬂ' > pec\i\f— for@
o i
© (d)

Figure 4: (a)error type proportion in gvfc; (b)error type
proportion in twitter and immi; (c)error type propor-
tion in fora; (d)P@1 across three setups with a varying
number of pivots. (Best viewed in color.)

6.1 Analysis on the Number of Pivots

Here, we explore impact of different number of
pivots. We reserve top 10, 20 and 50 frame indica-
tors for each frame in Sec 2.1. Figure 4d presents
our results. It is observed that the performance is
stable across pivot numbers, especially for datasets
having labels with more overlap to mfc dataset, i.e.,
twitter and immi-general.
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Shot | Method | gvfc twitter immi-general immi-specific fora

| | MiF MaF MiF MaF MiF MaF MiF MaF MiF MaF

FT 28.06 22.44 14.59 11.75 29.92 28.53 19.52 18.85 35.69 34.85

5 MP 35.86 2593 26.32 20.79 26.10 18.62 33.63 25.49 52.55 52.18
P-tuning 42.73 27.06 29.40 26.39 52.44 49.43 21.32 15.36 64.22 64.26

Ours 43.66 29.65 29.45 26.61 52.09 47.60 2291 17.38 65.92 64.85

FT 30.27 25.39 17.12 14.17 33.16 29.13 20.54 18.36 36.54 35.82

4 MP 53.05 40.82 37.06 26.99 36.89 26.55 32.78 23.84 51.09 50.31
P-tuning 48.49 36.27 35.69 27.08 57.34 52.02 24.24 14.76 66.85 67.04

Ours 53.18 41.03 38.90 29.33 58.44 52.86 26.39 19.34 66.99 66.20

FT 47.58 40.53 21.74 16.48 41.45 36.46 23.51 19.87 38.27 37.47

3 MP 57.88 52.80 42.13 31.91 37.11 25.79 36.44 28.19 65.03 64.40
P-tuning 56.83 48.88 39.91 33.03 60.20 54.48 31.33 21.02 68.43 67.66

Ours 58.46 50.14 42.93 35.56 60.35 54.99 31.97 23.55 68.49 67.97

Table 6: Results in few-shot experiments, where we randomly sample 2,4,8 samples of each class for training.

(Bold: the best performance in the column)

6.2 Error Analysis

We identify prediction errors by analyzing 100 ran-
dom samples for each scenario. On the basis of
(Mendelsohn et al., 2021), we add several addi-
tional types, and all error types included are shown
in the table in Appendix A. Using the sampled in-
stances, we also counted the proportion of each
error type to all errors and get Figure 4a, 4b and
4c. We notice that missing necessary contextual
knowledge is a common challenge, where key lex-
icons like names of politicians are cued, but the
model lacks real-world knowledge or meta-data to
make the right induction. External knowledge may
be useful to deal with this issue. Also, overgen-
eralizing is a tricky problem, where informative
words appearing in different contexts may mislead
models. Compared to other models, ours is mainly
trapped by this problem, since we have focused on
the pivots, which sometimes can be misleading in
highly-related frames like legality, constitutionality
and jurisdiction and crime and punishment. Be-
sides, there are scenario-specific challenges. For
social media where expression is informal and di-
verse, slang and abbreviations like hashtags are
useful but models may not make full use of them.

7 Related Work

Framing (Entman, 1993) is a communication strat-
egy widely adopted by news media (Card et al.,
2015) and politicians (Mou et al., 2021). Most
researches on frames focus on news media. Boyd-
stun et al. firstly conclude 15 frames that cross-cut
issues from the policy agenda and use them to ana-
lyze news articles on 3 issues. Based on this, Card
et al. construct Media Frame Corpus (mfc), one of

the first large-scale datasets of frame annotations on
news articles. This corpus is used to detect frames
by dirichlet persona model (Card et al., 2016), deep
recurrent neural networks (Naderi and Hirst, 2017)
and lexicon analysis(Field et al., 2018). (Liu et al.,
2019a) curated Gun Violence Frame Corpus (gvfc),
which contains news headlines. They fine-tune
BERT (Devlin et al., 2019) for prediction. Frames
have also been studied on tweets and statements of
politicians and the public. Johnson et al. annotated
some tweets of politicians and use the Probabilis-
tic Soft Logic model to detect frames. Roy et al.
use a similar method to identify Morality frames
in tweets. Since framing is an important communi-
cation strategy, frame detection in online fora and
debates also aroused researchers’ interest (Hart-
mann et al., 2019; Ajjour et al., 2019; Heinisch and
Cimiano, 2021).

According to Boydstun et al., there are mainly
two frame schemas, i.e., general and issue-specific.
Although most work focuses on general frame pre-
diction, some studies specialize in frames designed
for a certain issue. Mendelsohn et al. fine-tune
RoBERTza (Liu et al., 2019b) for analysis of differ-
ent typologies of frames in immigration. Liu et al.
conclude 9 issue-specific frames for gun violence
issue.

Prompt learning aims to wrap the original input
text using a template with a cloze or prefix prompt,
and then the language model is used to fill the un-
filled information to obtain a final string, which will
be mapped into labels by a verbalizer (Schick and
Schiitze, 2020a; Liu et al., 2021a). This paradigm
performs well on few-shot and zero-shot settings
(Brown et al., 2020). Prompts can be manually
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designed or learned with differentiable parameters
(Liu et al., 2021c). Despite progress in prompt
learning, few studies explore the transferability of
prompts. Recently, (Vu et al., 2021; Wang et al.,
2021) verify the effectiveness of reusing prompts
of similar tasks to realize task transfer.

Massive work on cross-domain applies domain
adversarial approaches to learn domain-invariant
features (Ganin and Lempitsky, 2015; Ganin et al.,
2016). Some researches on cross-domain senti-
ment classification extract common shared features,
called pivots, which are frequent in both source and
target domains and are prominent (Ziser and Re-
ichart, 2018; Ben-David et al., 2020). Learning
pivots and non-pivots help capture features for the
task, rather than a specific domain.

8 Conclusion and Future Work

In this paper, we propose a general framework for
frame detection that can handle various issues and
frames. With the help of domain adaptation tech-
niques, we enable both the encoder and prompts
to learn transferable knowledge related to frames,
thus yielding improvement on several datasets. Tak-
ing advantage of prompt learning, the framework
can also deal with low-resource scenarios. In the
future, we plan to conduct experiments on other
formulations of framing analysis, e.g., diffusion of
frames.
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A Error Types

Table 7 shows the common error types mentioned
in Error Analysis.
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Code Error Type

Description

Examples

1 Annotation Difficulty

These instances highlight the challenges of
annotation: there are convincing arguments
that model’s predicted frames can be
appropriate labels.

Oh and the death penalty does not deter
crime.
Model predicted Policy Evaluation.

Missing Necessary

Some frames are cued by lexical items but
lack real-word knowledge or meta-data to
induce the frames. E.g., model doesn’t

Joined 210 of my colleagues in
urging supremecourt to ensure equal

2 Contextual . . . ; .
know the author of tweets is politicians so marriage rights.
Knowledge . e " . ..
that it can not recognize “my collegues Model missed Political Factor.
refers to Political Factor.
Some words are highly related. The model | American bombs aren’t yet falling on
3 Overgeneralizing makes erroneous predictions when such syria, but chuck hagel suggested they will.

features are used in different contexts.

Model erroneously predicted Security.

Inferring Frames
4 not Explicitly Cued
in Text

Model predicts frames that may capture
an author’s intention but without sufficient
evidence from the text.

Stop immigration.
Model erroneously predicted Public Order.

Special Expressions,
5 Slang, and
Abbreviations

Some special terms, hashtags,
abbreviations that indicate certain frames
but not captured by the model.

American tax dollars must not be used
to aid and abet any dictatorial regime
that stands with terrorists! #noaid2egypt
Model missed External Reputation.

6 Unfamiliar Words

Some unfamiliar but important clues are
mentioned. Since they appear infrequently
during training, language models may not
understand them well enough .

Dementia complicates us gun ownership.
Model missed Mental Health.

Table 7: Common errors in frame detection.
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