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Abstract

Recognizing the layout of unstructured digital
documents is crucial when parsing the docu-
ments into the structured, machine-readable for-
mat for downstream applications. Recent stud-
ies in Document Layout Analysis usually rely
on visual cues to understand documents while
ignoring other information, such as contextual
information or the relationships between doc-
ument layout components, which are vital to
boost better layout analysis performance. Our
Doc-GCN presents an effective way to harmo-
nize and integrate heterogeneous aspects for
Document Layout Analysis. We construct dif-
ferent graphs to capture the four main features
aspects of document layout components, in-
cluding syntactic, semantic, density, and ap-
pearance features. Then, we apply graph con-
volutional networks to enhance each aspect of
features and apply the node-level pooling for
integration. Finally, we concatenate features
of all aspects and feed them into the 2-layer
MLPs for document layout component classi-
fication. Our Doc-GCN achieves state-of-the-
art results on three widely used DLA datasets:
PubLayNet, FUNSD, and DocBank. The code
will be released at https://github.com/
adlnlp/doc_gcn

1 Introduction

Digital documents (incl. Scanned Document Im-
ages and PDF files) are popular and convenient for
storing written textual information, so almost 2.5
trillion documents worldwide are available in the
digital format (Zhong et al., 2019). However, it is
challenging to automatically recognize the layout
and components of these unstructured digital doc-
uments and extract meaningful information using
this format. For example, the financial office would
require the scanned document image after their
client signed. It is then crucial to recognize and

∗Co-First Authors
†Corresponding Author (caren.han@sydney.edu.au)

extract the form component, such as the form title,
person name, and the date the document is signed.
This task is widely called Document Layout Anal-
ysis (DLA). The DLA task aims at understanding
the documents from either 1) the physical analy-
sis by detecting the document structure and the
boundaries of each layout region or 2) the logical
analysis by categorizing the detected layout compo-
nents (segments) into the predefined document ele-
ment classes, such as Title, Date, Author, and Fig-
ure (Binmakhashen and Mahmoud, 2019). In this
research, we focus on the logical DLA task to clas-
sify the different layout components of PDF docu-
ments by understanding the relationships between
components. Traditional deep learning-based DLA
approaches mainly focus on processing visual fea-
tures of layout components (Soto and Yoo, 2019;
Augusto Borges Oliveira and Palhares Viana, 2017;
Li et al., 2020a) using CNN-based models. Some
recent studies started to use texts to solve the prob-
lem with the support of semantic information for
each layout component (Li et al., 2020b; Xu et al.,
2020). However, applying visual and textual fea-
tures is not enough to analyze the characteristics
and relations of document layout components in
order to classify them. In this paper, we try to
fill this gap by defining and proposing: 1) Layout
Components Characteristic Representation and 2)
Relation Representation between components.

The first question would be ‘What would be the
best aspects to represent the characteristics of dif-
ferent document layout components?’. The text
density/sparsity in each document component is
a valuable feature. For example, a paragraph is
more dense and usually contains more texts than
a table. Moreover, syntactic information can be a
key characteristic. It is obvious that a title mainly
consists of noun phrases only, whereas a paragraph
contains more sentences with the noun and verb
phrases. Hence, in this research, apart from the
common visual features and semantic text features
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used by previous works, we propose the four ma-
jor aspects, including text density, components ap-
pearance, syntactic and semantic information of
textual contents, of each component in order to let
the model conduct more comprehensive learning
of the Documents properties. Another question
would be ‘How to represent the relation among
document layout components?’ Most DLA studies
did not apply multiple aspects of features. Even
if applied (Soto and Yoo, 2019; Xu et al., 2020),
those features are integrated via simple concatena-
tions and do not consider the influences of relation-
ships between layout components on the classifi-
cation performances. The characteristics of each
component/segment are not enough to analyze the
whole document layout and its corresponding com-
ponents. Assume a ‘text’ component is detected
based on its characteristics, but it is more accu-
rate to classify it as the ‘figure caption’ if it is right
above or below a figure. Thus, capturing and encod-
ing the relationships between layout components is
crucial for better layout analysis.

In this paper, we propose a novel Heterogeneous
Graph Convolutional Network (GCN)-based DLA
model, Doc-GCN, on a document page level, tak-
ing the document layout component (segment) as
nodes in the graph and encoding the relative posi-
tional and structural relations between layout com-
ponents. We first construct six different graphs,
each encoding one aspect of features among the
layout components’ syntactic, semantic, text den-
sity, and visual features. The syntactic and density
aspects have two graph variants based on the dif-
ferent node embedding initialization methods. We
use the GCN to update the node embedding by
learning from its intimate neighbors, and the node-
level pooling is then applied to integrate the graph
variants. We concatenate the updated features of
each aspect, getting the final layout component
representation for the final classification of layout
component types.

In summary, the contributions of our work are as
follows:

• To the best of our knowledge, this is the first at-
tempt to apply heterogeneous aspects of Doc-
ument Layout Analysis.

• Doc-GCN is the first to propose using multi-
aspect Graph Convolutional Networks for har-
monizing the characteristics and relationships
among document layout components (seg-
ments).

• Doc-GCN achieved the state-of-the-art perfor-
mance on three widely used DLA datasets,
PubLayNet, FUNSD, and DocBank.

2 Related Work

2.1 Document Layout Analysis

In the 1990s, rule-based methods (Klink and
Kieninger, 2001; Fisher et al., 1990; Niyogi and
Srihari, 1986) were widely used for the DLA tasks
until the rise of deep learning. Zhong et al. (2019)
used Faster RCNN (Ren et al., 2015) and Mask
RCNN (He et al., 2017) as the basic deep learning
models for DLA task. Recent works have exten-
sions. Soto and Yoo (2019) added the size of the
proposed Region of Interest (ROI) and normalized
page number as the additional contextual informa-
tion to the pooled feature vectors for both classi-
fication and regression network of Faster RCNN.
Augusto Borges Oliveira and Palhares Viana (2017)
proposed the 1-D CNN with the parallel opera-
tion of horizontal and vertical projection. Li et al.
(2020a) proposed a model based on the Feature
Pyramid Networks (FPN) object detector to solve
the cross-domain document layout classifications.

Some DLA works integrated not only visual fea-
tures but also textual features. Xu et al. (2020)
proposed a pretrained model that integrated each
token’s positional and text embeddings with the
corresponding image embeddings. Xu et al. (2021)
then applied additional pretraining tasks to enhance
the multi-modality interactions further and used a
spatial-aware attention mechanism to capture the
relative positional relationship between different
layout components. Gu et al. (2021) proposed the
pretraining framework with a cross-attention trans-
former to boost the more substantial alignment be-
tween visual and textual features for each document
element region. Li et al. (2020b) proposed a new
dataset on the token-level where each token is anno-
tated into a layout element class and experimented
with this dataset with pretrained language models:
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019) by inputting the sequence of token em-
beddings with the corresponding bounding boxes.
Zhang et al. (2021) used a relation module upon
the multimodal representations integrated from vi-
sion and semantic features to detect the relations
between different components.

However, understanding the vision and semantic
aspects of individual objects/regions is not enough
to analyze the document layout and components.
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It is critical to consider the influences of relation-
ships between document layout components. This
is very similar to the trend that we can see in the
most visual-language tasks (Long et al., 2022a).
For example, the table caption should be around the
table, and each component should be semantically
related. Besides, it is also important to provide the
better interpretation of the DLA prediction seman-
tically, which has been considered as lot of NLP
tasks (Luo et al., 2021).

2.2 Graph Convolutional Networks

Graph Convolutional Networks (GCN) (Kipf and
Welling, 2016) is a type of Graph Neural Net-
work which applies convolution over graph struc-
tures, and it has been applied to many Natural
Language Processing (NLP) tasks. For example,
TextGCN (Yao et al., 2019) and MEGCN (Wang
et al., 2022a) focus on the text classification by
representing words and documents as graph nodes,
and TensorGCN (Liu et al., 2020b) captures their
relations in different aspects, including semantic,
syntactic, and sequential aspects. D-GCN (Chen
et al., 2020) performs sentiment analysis jointly
with aspect extraction for graph-based modeling.
Hier-GCN (Cai et al., 2020) proposes a hierarchi-
cal GCN to model the inner- and inter-relations
among multiple aspect categories and sentiments.
InducT-GCN (Wang et al., 2022b) enables the in-
ductive GCN learning model, which improves the
performance and reduces the time complexicity.

Such graph-based approach is also widely ap-
plied to multimodal tasks, especially for visual
question answering (Huang et al., 2020; Luo et al.,
2020), text-to-image generation (Johnson et al.,
2018; Han et al., 2020), and text-image match-
ing (Liu et al., 2020a; Long et al., 2022b). It
receives lots of attention in converting multiple
modalities and aspects into structured graphs and
enhancing joint learning. Some document-based
analysis works, such as document dating (Vashishth
et al., 2018), apply the GCN-based document dat-
ing approach by jointly exploiting the document’s
syntactic and temporal graph structures. (Wang
et al., 2022c) also uses two-stage GCN classifiers
for line splitting and clustering for paragraph recog-
nition in documents. In this work, we apply GCN
to the DLA task by joint-learning different aspects
of document layouts and capturing the relationship
between layout components.

3 Doc-GCN

We propose a graph-based network Doc-GCN to
encode and integrate the different aspects of docu-
ment layout components. For each PDF page with
N document layout components, we construct six
different graphs: Gden1, Gden2, Gappr, Gsyn1, Gsyn2

and Gsemc, capturing the features of all the doc-
ument layout components in the page from four
aspects: density, appearance, syntactic and seman-
tic. Each graph Gi = (Vi, Ei,Ai) consists of a set
of nodes Vi (|Vi| = N), a set of edges Ei, and an
adjacency matrix Ai ∈ RN×N . We regard each
layout component of the page as a node υn ∈ Vi in
a graph. We segment each layout component by its
bounding box. Different node embedding initial-
ization and edge connection methods are applied
for different graphs to match the characteristics of
different feature aspects and capture different node
relationships. The Graph Convolution Network
(GCN) is then trained to update the node embed-
dings by learning from the neighbors.

3.1 Preliminaries
GCN (Kipf and Welling, 2016) is a convolutional
neural network that operates directly on a graph
to update the node embeddings by learning from
the neighbors of each node. Given an initial node
embedding matrix H0 ∈ RN×d0 consisting of N
node features of size d0, GCN will conduct the
propagation through layers based on the rule in
Equation 1.

Hl+1 = f
(
Hl,A

)
= σ

(
ÂHlW l

)
(1)

The node embedding matrix will be updated from
Hl ∈ RN×dl to Hl+1 ∈ RN×dl+1 after every GCN
layer, where l = 1, 2, ..., L indicates the layer num-
ber. Â = D̃− 1

2 ÃD̃
1
2 represents the normalized

symmetric adjacency matrix where Ã = A + I
and I is the identity matrix for self-connection
inclusion. D̃ is the diagonal node degree matrix
with D̃(i, i) = ΣjÃ(i, j) and W l ∈ Rdl×dl+1 is
the trainable weight matrix associated with the l-th
layer. σ denotes the activation function that can be
different for different GCN layers.

3.2 Graphs Construction
3.2.1 Density-aspect Graph1

Text density can be a valuable characteristic in dis-
tinguishing different document layout components.

1Details of density and appearance graph construction pro-
cedure can be found in Appendix A.1
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Figure 1: The overall architecture of the proposed Doc-GCN for document layout component classification.

For example, a paragraph usually contains more
compact texts than a table with text in a sparser dis-
tribution. We construct two density-aspect graphs
Gden1 and Gden2 to encode the text density features
of each layout component based on the text density
ratio and the absolute character numbers respec-
tively.

We calculate the text density ratio for each layout
component as the division between the number of
character-level tokens it contains and the area size
of its bounding box as in Equation 2:

Ratiodensity =
#tokens

Area size of bbox
(2)

Given a bounding box bboxn of a layout compo-
nent with the top left coordinates (xn1 , y

n
1 ) and the

bottom right coordinates (xn2 , y
n
2 ), the area size

is calculated as (xn2 − xn1 ) × (yn2 − yn1 ). We use
the positional encoding approach (Vaswani et al.,
2017) to project the density ratio and the absolute
character numbers of each layout component into
a higher dimension d0 = 768 to get the initialized
node embedding for each density graph. The initial
node embeddings of all N layout components in
the document page form the initial node embedding
matrices of Gden1 and Gden2. As per Equation 3, t
denotes the value of density ratio or the absolute
character numbers of each node, and i is the ith
dimension of

−→
fn. The value at ith dimension would

change along with the odevity of i for any offset k.

−→
f i
n =

{
sin( t

100002k/dS
), i = 2k

cos( t
100002k/dS

), i = 2k + 1
(3)

We connect each node with its closest two
neighbors with the smallest gap distance between
their corresponding boxes. The edge weight is
set to be the inverse distance value to empha-
size the positional relationship between closer
nodes. For a node vn with bounding box bboxn

([(xn1 , y
n
1 ) , (x

n
2 , y

n
2 )]), we calculate its vertical dis-

tance values with other bounding box bboxm
([(xm1 , ym1 ) , (xm2 , ym2 )]) that is vertically under it
by DV = |ym1 − yn2 | or DV = |ym2 − yn1 | for
bounding box that is vertically above it. This yields
a set of distance values

{
D1

V , ..., D
m
V

}
, we connect

the node vn with other two nodes that have the
two smallest values DV . For a two-column PDF
page, in addition to the set of DV , we also calculate
the horizontal distance value DH =

∣∣∣xj1 − xn2

∣∣∣ be-
tween bboxn and a horizontally aligned bounding
box bboxj with coordinates

[(
xj1, y

j
1

)
,
(
xj2, y

j
2

)]
that has the smallest vertical gap distance. We then
connect the node vn with the other two nodes with
the smallest distance values among the set of DV

and DH .

3.2.2 Appearance-aspect Graph
To learn and encode the appearance properties,
such as the color and font size, of layout compo-
nents in a PDF page, we use a pretrained Faster-
RCNN model to extract the appearance feature−−→
fappr based on the bounding box of layout com-
ponent as the initial embedding for each node in
Gappr. We apply the same method of the edge
connection and edge value setup as that for the
density-aspect graphs in Section 3.2.1.

3.2.3 Syntactic-aspect Graph2

To comprehensively encode the syntactic features,
we use the constituency parser (Kitaev and Klein,
2018) to extract both the first-level and second-
level syntactic parse of the texts in each layout com-
ponent and construct two variants of the syntactic-
aspect graphs: Gsyn1 and Gsyn2 respectively. The
first-level parse for each layout component contains
only one syntactic symbol, while the second-level
parse could be a sequence of different syntactic

2Details of syntactic and semantic graph generation can be
found in Appendix A.2
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symbols. For example, for an article title ‘Vitrifica-
tion preserves chromatin integrity, bioenergy poten-
tial and oxidative parameters in mouse embryos’,
the first-level parse is (S) and the second-level parse
is a sequence of (NP, VP). We use the same posi-
tional encoding as in Equation 3 to project a 768-
dim vector

−→
Sw for each syntactic symbol based on

their unique indexes, resulting in a sequence of syn-
tactic embeddings

−→
S1,

−→
S2, ...,

−→
Sw for the sequence

of parse for each layout component. We then feed
this syntactic embedding sequence to a single-layer
Bi-LSTM, and extract the last hidden state as the
initialized node embedding for Gsyn2. Since there
is only one syntactic symbol for the texts in each
layout component for the first-level parse, we pad
the single symbol embedding to the sequence of
length T for Bi-LSTM input, and get the initialized
node embeddings for Gsyn1. For both Gsyn1 and
Gsyn2, we connect every two nodes in the graph
and set binary edge value {0, 1} based on the exis-
tence of a parent-child relationship between every
two layout components.

For the training and validation, we use the parent-
child relations extracted from the document source
files provided in the datasets. We apply the OCR
detection to the cropped image of each document
layout component. Based on the detected OCR
tokens and texts in document source files, we use
fuzzy string matching and a reading order assign-
ing method proposed by (Ding et al., 2022) to
map each layout component with the correspond-
ing element in the XML/ LATEX source files for Pub-
LayNet/DocBank and identify the parent-child rela-
tions based on the hierarchical structure embodied
in these source files. We then train a transformer-
based relation prediction model on the training and
validation set utilizing those extracted parent-child
relations and predict the parent-child relations for
the test set 3.

3.2.4 Semantic-aspect Graph
We use the pretrained BERT model (Devlin et al.,
2019) to encode the semantic features of each lay-
out component to construct Gsemc and extract the
hidden state of the special token [CLS],

−−−→
fsemc, as

the initial node embedding of Gsemc. We apply
the same method for the edge connection and edge
value setup as for the syntactic-aspect graphs in
Section 3.2.3.

3Details of the parent-child relation extraction and
transformer-based relation prediction model are provided in
Appendix A.2 and Appendix A.3

3.3 Graph Embedding Learning
After the graph construction, we apply the
GCN learning on each graph to update the
node representations that preserve the four as-
pects of the layout components’ properties by
learning and integrating information from the
neighbor nodes. For each graph Gp

i , i ∈
{den1, den2, appr, syn1, syn2, semc} where p
denotes the individual PDF page of the dataset,
there is an associated initial node embed-
ding matrix H0

i ∈ RN×d0 , where i ∈
{den1, den2, appr, syn1, syn2, semc} as defined
in Section 3.2.

We feed these initialized node embedding ma-
trices to GCN and update the weight matrices by
optimizing the category prediction of each com-
ponent node following the propagation rules as in
Equation 1. After the training, we again feed each
graph Gp

i into the trained GCN and extract the hid-
den layer node representations out, resulting in an
updated node embedding matrix Op

i ∈ RN×d for
each graph Gp

i , where N denotes the number of
components in this PDF page and d is the dimen-
sion of each updated node embedding.

3.4 Multi-aspect Classification
To synthesize the six graphs to four graphs with
each representing one aspect of the layout com-
ponents, we apply a node-level max pooling
Pm over the updated node embedding matrix
Op

i ∈ RN×d of the graph variants for each
type of the graphs, yielding the new node em-
bedding matrix Op

a of each aspect a, where a ∈
{density, appearance, syntactic, semantic}.

Op
a =


Pm(Op

syn1, O
p
syn2), a = syntactic

Pm(Op
semc, FC(H0,p

semc′)), a = semantic

Pm(Op
den1, O

p
den2), a = density

Pm(Op
appr, FC(H0,p

appr)), a = appearance
(4)

Specifically, as per Equation 4, for syntactic-
aspect and density-aspect graphs, we conduct the
max pooling over the learned node representations
Op

syn1 (Op
den1) and Op

syn2 (Op
den2). For semantic-

aspect and appearance-aspect graphs that consists
of only one graph variant, we apply the node-level
max pooling over the learned node embedding ma-
trix Op

appr and Op
semc respectively with the initial

node embedding matrix H0,p
appr and H0,p

semc′ that con-
tains the fine-tuned

−−−→
fsemc, where H0,p

appr ∈ RN×d0

and H0,p
semc′ ∈ RN×d0 are projected into a d-

dimensional features via fully connected layer FC
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first. We then concatenate each of the ultimate as-
pects features Op

a and feed it to the 2-layer MLPs
for the final classification of each document lay-
out component in each PDF page. Our classifier is
optimized based on the standard CrossEntropy.

4 Evaluation Setup

4.1 Datasets
We conducted our experiments on three publicly
available document layout analysis datasets: Pub-
LayNet (Zhong et al., 2019), FUNSD (Jaume et al.,
2019) and DocBank (Li et al., 2020b) to evalu-
ate our model applicability. We adopted the same
train/val/test split as the original dataset.4

PubLayNet annotates five different categories
of layout components: Text, Title, List, Table and
Figure, for the 358,353 PDF document images in
total (94%/3%/3%) collected from the PubMed.

FUNSD is a much smaller dataset extracted from
the RVL-CDIP dataset (Harley et al., 2015) and
contains 199 scanned PDF pages (75%/0/25%) of
survey forms with only 4 different types of layout
components: Header, Question, Answer and Other.

DocBank has more sophisticated annotations
for layout components than PubLayNet. It
contains 500K PDF Document pages in total
(80%/10%/10%)5 with 13 different categories: Ab-
stract, Author, Caption, Date, Equation, Figure,
Footer, List, Paragraph, Reference, Section, Table
and Title. The PDF files of DocBank are collected
from arXiv.com with their LATEX source.

Both PubLayNet and FUNSD include docu-
ment page images, so it requires OCR6 in order
to extract the texts for each layout component. We
consider those two datasets as Image-based DLA.
However, DocBank datasets contain PDF files with
text source, which contains the text for each docu-
ment, so we consider this as PDF file-based DLA.
We test our Doc-GCN model with both Image-
based and PDF-based DLA datasets.

4.2 Baselines
We compare our model with four widely-used Doc-
ument Layout Analysis baselines.

Faster-RCNN (Ren et al., 2015) is an object
detection model that unifies the region proposal

4The ratio of official data split can be found in each dataset
description (train/val/test)

5DocBank only provides the data split ratio and the entire
dataset. We split the entire dataset using the same split ratio.

6We applied Google Vision API to PubLayNet dataset, and
directly used OCR result from FUNSD dataset

network and the Fast R-CNN to extract the visual
features from the proposed object regions for image
object classification. For the FUNSD and DocBank,
we fine-tuned the Faster-RCNN pretrained on the
ImageNet with our training set and evaluated the
test results. For the PubLayNet, we directly apply
their Pretrained Faster-RCNN 7.

BERT (Devlin et al., 2019) is a language model
which regards the DLA task as a text classification
task by predicting the category of each layout com-
ponent based on their sequence of text contents.

RoBERTa (Liu et al., 2019) has the same struc-
ture as BERT but is pretrained longer on the larger
corpus that contains longer sequences. RoBERTa
also applies a more dynamic masking pattern for
masked language model tasks for pre-training.

LayoutLM (Xu et al., 2020) is a pretrained
model that uses the BERT architecture to jointly
learn visual aspects (position) and textual features
of document layouts.

4.3 Implementation Details

For node features of Semantic graph and Appear-
ance graph, we extract [CLS] encoding (dim =
768) from pre-trained BERTBASE . The Faster-
RCNN with ResNet-101 pre-trained on ImageNet
is used to extract the visual features (dim = 2048)
to initialize the node embedding of the appearance
graph. We set T = 16 for the sequence padding
in syntactic graph construction. All the graphs are
trained on 2-layer GCNs for 10 epochs with Adam
optimizer using a learning rate of 1× 10−4 for Se-
mantic and Syntactic Graph and a learning rate of
0.001 for the other two graphs. We use ReLu as
the activation function for the first GCN layer, from
which we extract our learned node representations.
For final classification, we train the multi-aspect
classifier with Adam optimizer using the learning
rate of 2×10−5, dropout of 0.1 and Tanh as activa-
tion function. We trained the model using Intel(R)
Xeon(R) CPU @ 2.00GHz and NVIDIA Tesla K80
24GB, which took around 15 hours, 72 hours and
8 mins8 for training PubLayNet, DocBank and
FUNSD respectively. The number of trainable pa-
rameters is 126,401,796.

7PubLayNet Faster-RCNN: https://github.com/
ibm-aur-nlp/PubLayNet/

8With more aspects covered, Doc-GCN training is still
slightly smaller than other baselines recorded in each paper

https://github.com/ibm-aur-nlp/PubLayNet/
https://github.com/ibm-aur-nlp/PubLayNet/
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# % Faster-RCNN BERT-base RoBERTa-base LayoutLM-base Ours (Doc-GCN)
Text 91024 72.87 96.82 97.74 97.90 97.94 99.18
Title 19343 15.48 92.57 96.23 96.21 96.44 98.11
List 4913 3.93 49.51 76.73 79.08 76.21 88.11
Table 5018 4.02 95.49 91.61 91.30 91.30 98.16
Figure 4619 3.70 96.87 77.10 76.01 75.17 98.71
Overall 124917 100 96.96 95.96 96.08 96.03 98.63

Table 1: F1 comparison for each component category of PubLayNet test set. The number(#) and percentage (%) of
each component is listed. The best models are bolded, and Doc-GCN always achieved the best for each component.

# % Faster-RCNN BERT-base RoBERTa-base LayoutLM-base Ours (Doc-GCN)
Question 1077 46.18 74.40 87.23 87.02 87.08 89.32
Answer 821 35.21 69.26 82.44 84.11 81.72 88.81
Header 122 5.23 50.57 38.89 45.98 44.90 61.96
Other 312 13.38 65.12 57.33 56.20 56.19 72.76
Overall 2332 100 65.12 79.02 81.69 78.85 85.49

Table 2: F1 comparison for each component of FUNSD test set. The number(#) and percentage (%) of each
component is listed. The best models are bolded, and Doc-GCN always achieved the best for each component.

# % Faster-RCNN BERT-base RoBERTa-base LayoutLM-base Ours (Doc-GCN)
Abstract 420 0.70 0 70.04 60.61 58.27 78.69
Author 484 0.80 0 72.56 82.01 69.07 79.46
Caption 1840 3.05 4.44 77.33 76.48 74.78 87.38
Date 87 0.14 0 67.76 88.74 85.35 91.02
Equation 11846 19.66 81.80 85.92 86.08 86.00 90.06
Figure 1650 2.74 68.74 100 100 100 99.97
Footer 529 0.88 0 69.08 68.67 65.56 84.48
List 958 1.59 0 54.72 55.01 50.43 65.79
Paragraph 35496 58.92 83.69 89.44 89.69 89.05 96.50
Reference 1237 2.05 0 88.51 88.30 89.61 88.83
Section 4891 8.12 78.52 84.04 84.79 83.90 95.93
Table 525 0.87 0 49.29 51.79 49.17 59.06
Title 286 0.47 0 51.49 68.58 55.53 84.85
Overall 60249 100 71.02 86.65 86.97 86.16 91.83

Table 3: F1 comparison for each component of DocBank test set. The number(#) and percentage (%) of each
component is listed. The best models are bolded, and Doc-GCN always achieved the best/the second best.

5 Results

5.1 Performance Comparison

We compared the performance of our proposed
Doc-GCN with the baseline models on the test
set of PubLayNet, FUNSD, and DocBank. The
breakdown F1 scores on each layout component of
the three datasets are provided in Table 1, 2 and 3
respectively.

We can see from the overall F1 scores that Doc-
GCN outperforms all the baseline models on all
datasets. It achieves a 98.63% F1 score in Pub-
LayNet, which is 1.67% higher than the pre-trained
Faster-RCNN. The performances of Faster-RCNN
on FUNSD and DocBank are also much less com-

petitive than models utilizing semantic features,
which indicates the critical role of semantic in-
formation in the DLA task. Compared to BERT
and RoBERTa, which only uses the semantic fea-
tures, the F1 scores of our model are 2.55%, 3.8%,
4.86% higher than RoBERTa and 2.67%, 6.47%,
5.18% higher than BERT on PubLayNet, FUNSD
and DocBank respectively. Especially for FUNSD,
where there are only 144 training PDF pages, our
model still achieves around 85%. Such results
also prove the effectiveness of our multiple as-
pects of document layout component features for
low-resource DLA datasets. Though LayoutLM
also utilizes dual-aspect, visual aspect (position),
and textual features, our Doc-GCN produces better
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PubLayNet FUNSD DocBank
Syn Sem Dens Appr Precision Recall F1 Precision Recall F1 Precision Recall F1
O X X X 67.81 72.92 63.45 54.80 49.36 39.68 40.95 46.01 42.40
X O X X 96.70 96.37 96.48 81.68 82.33 81.84 88.68 88.54 88.61
X X O X 50.65 71.17 59.18 45.91 48.93 43.52 34.71 58.90 43.68
X X X O 96.53 95.95 96.15 70.82 70.88 70.63 87.18 85.91 86.27
X O X O 98.42 98.36 98.38 84.45 84.99 84.41 91.80 91.79 91.66
X O O O 98.49 98.45 98.46 84.55 84.31 84.42 91.95 91.94 91.74
O O X O 98.61 98.58 98.59 84.85 84.99 84.85 92.00 91.77 91.68
O O O O 98.64 98.65 98.63 85.54 85.55 85.49 92.07 91.94 91.83

Table 4: F1 comparison of using different aspects of graph features on the validation set of three datasets. Syn,
Sem, Dens and Appr stand for the Syntactic-based, Semantic-based, Density-based and Appearance-based graphs
respectively. "O" and "X" refer to the existence and absence of corresponding graph features for the classification.
The second best is underlined.

overall F1 scores on all datasets. The superior per-
formance of Doc-GCN demonstrates the effective-
ness of the multiple aspects we applied. It indicates
the positive contribution of graph representations
and the joint GCN learning for integrating multiple
features in the DLA task.

Furthermore, Doc-GCN shows significant per-
formance improvement for some important layout
component detection for each domain. It produce
a better result in all components in PubLayNet,
including the Title, Table, Figure, and the List
that contains the structural text information, as is
demonstrated in Table 1. Similar patterns can be
also observed in Table 2 for FUNSD, especially
with those important components of the forms:
Header (section title - e.g. the aim of the form)
and Answer (value - e.g. the content filled by the
form user). For DocBank in Table 3, it shows that
Doc-GCN works well with the essential compo-
nents of scientific academic publication, including
Abstract, Date, Section, Title. Those components
are generally extracted for understanding the con-
tent of documents.

5.2 Comparison of Aspect Variants

To inspect the effectiveness of each aspect fea-
ture captured by Doc-GCN, we further compare
its test performances by applying different combi-
nations of aspect features. As seen in Table 4, using
only semantic or appearance features already re-
sulted in around 96% and 88% in F1 scores on Pub-
LayNet and DocBank, respectively. For FUNSD,
using only appearance features results in 70.63%
in the F1 score, and using only semantic features is
around 10% higher. The combination of semantic
and appearance features improves the F1 scores

PubLayNet FUNSD DocBank
Bert-L 97.06 80.86 86.42
RoBERTa-L 96.15 79.47 86.67
LayoutLM-L 96.94 78.90 83.21
Doc-GCN-L 98.22 85.40 90.07

Table 5: Performances comparison (F1 score%) based
on large (L) pretrained models.

to 98.38%, 84.41%, and 91.66% for PubLayNet,
FUNSD, and DocBank, respectively. The seman-
tic and appearance features seem to dominate the
model’s performance in the DLA task, but the syn-
tactic and density features also positively contribute
to the performance. By adding syntactic features to
the semantic and appearance features, the F1 scores
on PubLayNet and FUNSD improve to 98.59%
and 84.85%, respectively. Further, adding den-
sity features results in the best performances of
98.63% and 85.49%, respectively. For DocBank,
adding density features improves the F1 score from
91.66% to 91.74% and finally reaches the best per-
formance of 91.83% after further including the syn-
tactic features. Though the density features and
syntactic features contribute differently in the cases
of different datasets, it is evident that the utilization
of both density features and syntactic features is
effective for performance improvement in the DLA
task. Such results also indicate that our proposed
aspects and their representations are practical for a
more comprehensive representation of the charac-
teristics of document layout components.

5.3 Impact of Pretrained Model Variants

To evaluate the effects of base and large pre-
trained models, we also tested the performances of
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(a) Ground Truth (b) RoBERTa-base (c) Faster-RCNN (d) Doc-GCN

Figure 2: Example output of Top3 models for a PubLayNet page. The color of layout component labels are: Text ,
Title , List , Table , Figure . Our Doc-GCN classified all layout components accurately.

PubLayNet FUNSD DocBank
Min Pooling 98.67 82.77 90.27
Avg Pooling 97.90 82.04 89.04
Max Pooling 98.63 85.49 91.83

Table 6: Performances comparison (F1 score%) of dif-
ferent node-level pooling methods on the test set.

large BERT, RoBERTa and LayoutLM over three
datasets. For a fair comparison, we deployed Doc-
GCN Large, shown as Doc-GCN-L in Table 5,
which uses the same graph construction and repre-
sentations as the original Doc-GCN except that the
large pretrained BERT is used for generating the
semantic-aspect graph features.

The result shows that large models have similar
performances as base models. Nevertheless, our
Doc-GCN-L still outperforms BERT-L, RoBERTa-
L and LayoutLM-L on all three datasets: Pub-
LayNet, FUNSD, and DocBank.

5.4 Impact of Pooling Variants

We applied the node-level pooling to integrate the
node features over the two graph variants as the
final features for each aspect representation. We
compared Minimum, Average, and Max Pooling
and used the method with the best results. From
Table 6, we can see that for FUNSD and DocBank,
Max Pooling resulted in the best performances.
Especially for the FUNSD dataset, Max Pooling
achieved almost 3% higher in F1 score compared to
the results of using Minimum Pooling and Average
Pooling. For PubLayNet, Minimum Pooling results
in the best performance but is only 0.03% higher
than Max Pooling. Hence, we used Max Pooling
as the ultimate pooling method in our Doc-GCN.

5.5 Case Study9

We visualized the sample results for the top 3 mod-
els on a document page of PubLayNet in Figure 2.
We can see that both RoBERTa and Faster-RCNN
have wrongly recognized a Text into List, whereas
our Doc-GCN has accurately recognized all com-
ponents. This case further proves that simply con-
sidering the semantic or visual information is hard
to distinguish the List and Text, indicating the im-
portance of capturing the structural relationships
between layout components for better performance.

6 Conclusion10

We successfully handled the importance of the
DLA task, Document Component/Segment Classi-
fication. It focused on extracting important infor-
mation (i.e., Title, Author, Date, Form Answer)
from the digital documents, including Scanned
Document Images and PDF files. We propose a het-
erogeneous graph-based DLA model, Doc-GCN,
which integrates text density, appearance, and syn-
tactic and semantic properties of the Document
layout components to generate comprehensive rep-
resentations of documents. The graph structure
also enables the model to capture and learn the re-
lationships between the layout components when
making predictions. Our model outperforms all
baselines on three publicly available DLA datasets.
We strongly hope that Doc-GCN will motivate and
provide insights into the future integration of differ-
ent modalities and aspects for the logical document
layout analysis task.

9More qualitative analysis for each of the three datasets can
be found in Appendix B, and the superiority of understanding
multiple aspects will be highlighted there.

10Appendix: https://github.com/adlnlp/doc_
gcn/tree/main/appendix

https://github.com/adlnlp/doc_gcn/tree/main/appendix
https://github.com/adlnlp/doc_gcn/tree/main/appendix
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