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Abstract

Document-level Event Factuality Identification
(DEFI) predicts the factuality of a specific event
based on a document from which the event can
be derived, which is a fundamental and crucial
task in Natural Language Processing (NLP).
However, most previous studies only consid-
ered sentence-level task and did not adopt
document-level knowledge. Moreover, they
modelled DEFI as a typical text classification
task depending on annotated information heav-
ily, and limited to the task-specific corpus only,
which resulted in data scarcity. To tackle these
issues, we propose a new framework formulat-
ing DEFI as Machine Reading Comprehension
(MRC) tasks considering both Span-Extraction
(Ext) and Multiple-Choice (Mch). Our model
does not employ any other explicit annotated in-
formation, and utilizes Transfer Learning (TL)
to extract knowledge from universal large-scale
MRC corpora for cross-domain data augmenta-
tion. The empirical results on DLEFM corpus
demonstrate that the proposed model outper-
forms several state-of-the-arts.

1 Introduction

This paper focuses on Document-level Event Factu-
ality Identification (DEFI) task, which is defined as
identifying the factuality of a specific event based
on a document from which the event is derived.
As a sub-task in Event Factuality Identification
(EFI), different from Sentence-level Event Factu-
ality Identification (SEFI) focusing on just a sin-
gle sentence, DEFI requires comprehensive under-
standing documents with regard to events.

Figure 1 illustrates an example of document-
level event factuality. The current event is EI,
i.e., “Barack Obama joins Joe Biden’s cabinet”,
and the sentences S2-S6 contain the event men-
tions referring to E1. From Figure 1 we can know
that: 1) Factuality of event mentions vary among
sentences. S4, S5 and S6 negate E1 by the nega-
tive cues “not” and “denied”, and commit to E1 as
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Event (E1): Barack Obama joins Joe Biden’s cabinet.

Document: (S1) “I will help him in any ways that I
can," Obama, said of his former vice president, in a
new interview with CBS Sunday Morning’s Gayle King.
(S2) With the victory of former US Vice President Biden
in the presidential election, there are speculations about
whether Obama will return to the White House and
serve in Biden’s cabinet. (S3) King also asked if he
would join Biden’s cabinet. (S4) “I’m not planning
to suddenly work on the White House staff or some-
thing,” said Obama. (S5) He also jokingly responded,
"There are probably some things I would not be doing,
because Michelle would leave me. ... ...”(S6) Although
Obama denied that he would take a position in Biden’s
cabinet, Susan Rice and Michele Flournoy were among
Obama administration veterans reportedly being prob-
ably considered for key posts under Biden. ... ... (S7)
When Barack Obama was elected president in 2008, he
became the first African American to hold the office.

Document-level Factuality: certain negative / CT-

Figure 1: An example of document-level event factuality.
Speculative cues are blue, and negative cues are red.

“certain negative/CT-". But some other sentences
express different factuality with regard to E1. S2
evaluates E1 as “possible positive/PS+" according
to the speculative cue “speculation”, and S3 com-
mits to E1 as “Underspecified/Uu” since the event
mention is in the clause led by “if”’. However, the
document-level factuality of E1 is unique, i.e., CT-.
2) In addition to E1, there are irrelevant mentions
of other events in the document as well, e.g., the
PS+ event “Susan Rice and Michele Flournoy were
considering for key posts under Biden”in S6, and
the CT+ event “Barack Obama was elected pres-
ident in 2008 in S7 , which may cause E1 to be
identified as PS+ or CT+ falsely.

Currently, most EFI studies limited to SEFI
(Sauri and Pustejovsky, 2012; Rudinger et al., 2018;
Qian et al., 2018a; Veyseh et al., 2019). While
DEFlI is still in its early stage, and previous work
(Qian et al., 2019; Huang et al., 2019; Cao et al.,
2021) usually regarded DEFI as a typical text clas-
sification task. Currently, DEFI is mainly faced
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Table 1: Event factuality values in English and Chinese.

with these limitations, i.e., 1) Most previous work
on EFI only considered sentence-level task, i.e.,
SEFI, which means DEFI catches much less at-
tention and has been in the preliminary phase; 2)
Related models on DEFI required various anno-
tated information, e.g., event triggers, speculative
and negative cues, and cannot be applied to real
world directly; 3) The performance of DEFI is lim-
ited by the scale of dataset, i.e., DLEF (Qian et al.,
2019), the only available DEFI corpus, and related
work did not adopt any form of data augmentation.

To address the above issues, we propose a new
end-to-end paradigm for DEFI, i.e., Document-
level Event Factuality identification via Machine
Reading Comprehension Frameworks with Trans-
fer Learning (DEFI-MRC-TL), casting DEFI into
MRC tasks, and considering both Span-Extraction
MRC (Ext-MRC) and Multiple-Choice MRC (Mch-
MRC). To address the problem of data insuffi-
ciency, we adopt Transfer Learning (TL) as Cross-
Domain Data Augmentation, which learns informa-
tion from large-scale source datasets and applies
it to the target dataset. Therefore, our model is
comprised of two sub-models that can be denoted
as Ext-TL and Mch-TL, respectively. Our MRC
formulation is mainly inspired by recent studies
formulating NLP tasks into MRC problems (Mc-
Cann et al., 2018; Li et al., 2019; Du and Cardie,
2020; Li et al., 2020b; Liu et al., 2020). To sum
up, the major contributions of our paper can be
summarized as follows:

1) We propose a new framework for DEFI by
formulating it as MRC tasks, and we consider both
span-extraction and multiple-choice MRC.

2) We consider a transfer learning mechanism
that trains our MRC model on large-scale MRC
corpora (e.g., SQuAD2.0, RACE) and fine-tunes on
the target dataset (i.e., DLEFM). To the best of our
knowledge, this is the first DEFI model considering
both MRC framework and transfer learning.

3) We construct the first MRC-style DEFI cor-
pus, i.e., DLEFM, annotating both events and
document-level event factuality. Empirical eval-
uations on DLEFM can prove the generalization

and effectiveness of our MRC framework for end-
to-end DEFI.

2 Approach

This section introduces our DEFI-MRC-TL model,
where Overview (§2.1) gives the definitions of
DEFI task, even factuality values, and transfer
learning used by our model, then §2.2 and §2.3
present the data formalization and detailed struc-
ture of Ext-TL and Mch-TL model, respectively.

2.1 Overview

Document-level Event Factuality Identification
can be defined as to identify a label y € Y for the
event [E (usually a sentence) based on a document
D, where Y is the set of event factuality values
defined in Table 1 (Qian et al., 2019). Therefore,
one sample S can be denoted as S = (y, E, D).

Event Factuality Values are composed of
modality and polarity (Sauri, 2008; Saurf and Puste-
jovsky, 2012). Modality conveys the certainty de-
gree of events, including these values:

e Certain/CT/— Z.(°): It is certain that the
event happens / does not happen.

e Probable/PR/4R 7T &4&(71°): It is probable that
the event happens / does not happen.

e Possible/PS/™ #£(): It is possible that the
event happens / does not happen.

« Underspecified/Uu/& 4% % : The degree of
certainty of the event is unknown or uncom-
mitted.

while polarity expresses whether the event happens
by the following values.

* Positive / + /EE & PE/KX £ . 1t is certain |
probable | possible that the event happens.

* Negative / - / R A M/ K % : It is certain
/ probable | possible that the event does not
happen.

« Underspecified / u /& 45 % : The polarity of
the event is unknown or uncommitted.
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Figure 2: Overall architecture of our DEFI-MRC-TL models.

This paper uses the factuality values in Table 1
(Qian et al., 2019), where PSu and U+/- are not ap-
plicable (NA) semantically (Sauri and Pustejovsky,
2012). Compared with (Sauri and Pustejovsky,
2012), PS and PR are merged into PS due to simi-
lar semantics. Moreover, no event is annotated as
CTu although applicable. Therefore, there are five
applicable factuality values in DLEFM, i.e., Uu,
PS-, CT-, PS+, CT+.

Transfer Learning is adopted as Cross-Domain
Data Augmentation for DEFI, i.e., firstly learning
knowledge from large-scale source datasets, and
then applying it to the target datasets for fine-tuning.
The architecture of DEFI-MRC-TL model is shown
in Figure 2. With BERT (Devlin et al., 2019) as
the backbone, our models consists of 1) Shared
Layer, which is comprised of the first Ny layers of
BERT, and optimized when training on the source
datasets only; and 2) Task-Specific Layers, which
contains the remaining layers of BERT and all the
other networks in DEFI-MRC-TL, and is optimized
when both training on the source datasets and fine-
tuning on the target ones.

2.2 Ext-MRC Transfer Learning Model

We first give the data formalization of Ext-MRC
model, and then describe the structure of Ext-TL.
Data Formalization for Ext-MRC. A sample S
defined in §2.1 can be reformulated as a triple sam-
ple S = {Q,C, A}, where Q = {qo, .- -, qqg|-1}
is the Question that integrates the information of
both event and candidate factuality values, C =
{co,---,¢icj—1} is the Context that refers to the
document text D from which the event is derived,
and A = {ag, ..., a)5—1} & Qis the Answer that
is a sub-string of Q, and each a; belongs to Q. To

be specific, a Q in Ext-MRC can be denoted as:

* What is the factuality of the
event “E”, underspecified
underspecified, possible
negative, certain negative,
possible positive,
positive?

or certain

While for Chinese samples, Q is denoted as:

e EHVEFELHEZRIEL, THRIL
2, —ZTREE, THREALE TR —TX
A9

where E is the event, and all the applicable factu-
ality values are integrated into Q. Therefore, Ext-
MRC model extracts event factuality values from
questions, rather than contexts.

Ext-TL Model. MRC-style input data is fed
into MRC models defined below. To be in line
with BERT, we concatenate the question Q, the
context C, and the special token [CLS]/[SEP] as
the input sequence I, which is fed into BERT:

I = {[cLs], Q, [SEP], C, [SEP]}
Hj = BERT(I)

ey
(@)

where Hy € R¥™Nz | d is the dimension of hidden
states in BERT, and Ny, is the length of I. During
the phase of training on the source dataset, Hy
is directly fed into softmax layer to compute the
probability distributions of start and end indices.
In terms of fine-tuning on the target dataset, we
have noticed several differences between typical
MRC task (e.g., SQuAD) and our MRC framework
for DEFL, i.e., 1) Instead of extracting answers from
contexts C, we extract answers from questions Q,
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and 2) Answers in typical MRC vary among docu-
ments. While in DEFI, the answer can only be one
of the factuality values defined in Table 1.

Therefore, when fine-tuning the model, we uti-
lize a variant of Residual Network (ResNet) (He
et al., 2016) as the Adapter Network to encode H
in order to bridge the information learned from
source and target datasets. Actually, we use two
ResNets to encode the information for the start and
end indices of the answer separately:

H, = ResNet(H)) 3)
H. = ResNet.(H)j) )
where ResNet is composed of a stack of several

residual layers, i.e., ResNet = {ResLayer}. For
any input U, each ResLayer is computed as:

U, = LN(Gelu(erUo + brl)) ®))

U, = LN(Gelu(WrgUl + bTQ)) (6)

U.=U;+ U (7)

where W, € R"¥4 b,; € R", W5 € R¥*" and

b, € R? are parameters, h is the dimension of

the hidden states in ResLayer, and LN is the Layer

Normalization. Then, the probability of start and
end index can be computed as:

ps = softmax(WsHj + b;) (8)

pe = softmax(W.H, + b.) 9)

Finally, the predicted start and end indices are

obtained as:
(10)
(a1

is = {ilargmax(ps(i))}
ie = {ilargmax(pe(i))}

wheret =0,1,..., Ng.

To ensure the generalization capability of Ext-
MRC model on both source and target datasets,
we do not discard the question (Q or the context C
when computing start and end index. The objective
function £(#) of Ext-MRC is designed as:

1
NZM%%W (12)
—iZMpW (13)
N e(Ye
L(0) = eLs(0 ) (1 —e)Le(0)  (14)

where N is the number of samples, 3 and 3 are
annotated start and end indices of the ¢-th sample,
€ is the trade-off coefficient, and we set € = (.5.

2.3 Mch-MRC Transfer Learning Model

Data Formalization for Mch-MRC. While in
Mch-MRC, a sample S containing the event E
can be represented as a quad sample, i.e., S =
{Q,C,0,a}, where Q = {qo, ..., qq|-1} is the
Question that integrates the information of event,
C = {co,.--,¢c|-1} is Context referring to the
document D from which the event E is derived,
0 ={O0q,...,0(g|-1} is the set of Options, and a
is the Answer that is one of the options, i.e., a € Q.
Specifically, a Q in our Mch-MRC task can be
denoted as:

* What is the factuality of the
event “E”?

For Chinese samples, a Q is denoted as:
« FAEHF SR A0

where [ is the event, and O is the option set. For
English samples, O={Uu, PS-, CT-, PS+, CT+},
and for Chinese samples, O={ & 4& &/Uu, T it 1<
R E[PS-, — XL AICT-, THRE E£/PS+, —&
& 4 /CT+} (Table 1).

Mch-TL Model. Similarly, our Mch-MRC
model encodes each option O; with the question
and context C as previous work (Jin et al., 2020; Gu
et al., 2021). Formally, given each option O; € O,
where ¢ = 0,...,|0| — 1, we can obtain a set of
input sequence I = {I&Lg‘gl for BERT. Each I;
and its matrix representation are denoted as:

Ii = {[CLS]v Q7 [SEP]7 Oi7 [SEP]7
H, = BERT(I)

C, [sEP]} (15)
(16)

where BERT encodes {I;} as { H;}. For each H;,
the state thLS] of [CLS] is selected as the vector
representation to make up Hj:

H, = { tCLS]}lO)I 1

where H; € R%*No_ and is fed into the softmax
when training on the source datasets.

Similar to Ext-MRC model, during the phase of
fine-tuning on the target dataset, we exploit residual
networks as adapters to encode each H; in Eq. 16
as well, since the text genre of the target dataset is
different from that of the source dataset:

a7

H; = ResNet(H;) (18)

Then, we also use the hidden state of [CLS]
to denote each option O;, and H; is com-

thLs]
|0| — 1 (Eq. 17).

prised of hi where i =0, ...,

[cLs]?
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Finally, we feed H into softmax layer to com-
pute the probability distribution of each option O;.

po = softmax(W,H; + b,) (19)
where W, € R'*% and b, € R! are parameters.
The objective function is defined as:

1 N-1 '
L(0) == > _logpo(ysl0)  (20)
=0

where N is the number of samples, y! is the anno-
tated label of i-th sample.

3 Experimentation

This section first introduces Experiment Settings
(§3.1), including target and source datasets, evalua-
tion metrics, implementation details, and baselines.
Then, experimental analysis focuses on the follow-
ing aspects, i.e., 1) Results and Analysis (§3.2)
discusses the comparisons of our model with base-
lines; 2) Ablation (§3.3) inspects the effectiveness
of source datasets and networks in DEFI-MRC-TL
model; 3) Case Study (§3.4) illustrates what our
Ext-TL model can learn from several samples to
reveal the internal mechanism of Ext-TL.

3.1 Experimental Settings

Target Dataset. DLEFM, whose formalization is
defined in §2, is the target dataset to verify our
DEFI-MRC-TL model, including two sub-corpora,
i.e., English (DLEFM-E) and Chinese (DLEFM-
C), whose statistics are shown in Table 2. The main
differences between DLEFM and previous DLEF
corpus lie in the following aspects:

Size. The sizes of Chinese sub-corpora are nearly
the same in them. But DLEF contains more Chi-
nese documents than English ones (4649 vs. 1727),
which is less suitable to evaluate the performance
on English texts. Hence, DLEFM annotates more
English documents than DLEF.

Annotation. DLEF annotates not only event trig-
gers and their sentence-level & document-level fac-
tuality, but also speculative and negative cues. And
DLEFM further annotates ONE document-level
event [E based on event triggers in each document.
Due to MRC framework, DLEFM corpus anno-
tates questions for Ext-MRC (§2.2), while anno-
tates questions and options for Mch-MRC (§2.3).

Task. Since DLEF can offer various annotated in-
formation, previous work (Qian et al., 2019; Huang
etal., 2019) usually utilize annotated event triggers,

Uu PS- CT- PS+ CT+ Total
English 38 46 671 594 3181 4530
Train 21 31 404 357 1905 2718

Develop 8 7 140 122 629 906
Test 9 8 127 115 647 906
Chinese 20 38 1358 860 2374 4650
Train 14 24 824 513 1415 2790
Develop 4 7 257 164 498 930
Test 2 7 2717 183 461 930

Table 2: Dataset statistics of DLEFM.

Corpus Language Task Used Total
SQuAD2.0 English Ext 20,000 130,217
NewsQA English Ext 20,000 103,960
RACE English Mch 20,000 87,866
CMRC2018 Chinese Ext 10,111 10,111
c? Chinese ~ Mch 6,013 11,869

Table 3: MRC corpora used as source datasets, where
Ext/Mch mean Ext-MRC/Mch-MRC, and “Used” &
“Total” means used & total samples in training sets.

sentence-level factuality, speculative and negative
cues directly. While this paper aims to model DEFI
as an end-to-end task, i.e., only considers questions,
contexts, and options without any other explicit an-
notated information. Therefore, our model can
apply to real-world applications directly.

Source Datasets. For cross-domain data aug-
mentation, the following corpora are selected as
source datasets whose statistics are shown in Ta-
ble 3: 1) SQuAD2.0 (Rajpurkar et al., 2018) con-
tains the existing SQuAD (Rajpurkar et al., 2016)
collected from Wikipedia. 2) NewsQA (Trischler
et al., 2017) collects news articles and highlights
from CNN. 3) RACE (Lai et al., 2017) contains
documents collected from the English exams for
students. 4) CMRC2018 (Cui et al., 2019) is com-
posed of human-annotated questions on Chinese
Wikipedia paragraphs. 5) C3 (Sun et al., 2020) is
the first free-form Chinese multiple-choice MRC
dataset sampled from Chinese examinations. Ac-
cording to the types, C? can be divided into C3-
Dialogue (C})) and C3-Mixed (C3)).

Evaluation. We focus on the performance of the
three main categories of factuality values, i.e., CT-,
PS+, CT+, since they occupy 98.15%/98.75% in
DLEFM-E/DLEFM-C, respectively, and we do not
consider the minor values (i.e., Uu and PS-) due
to their small proportions as previous work (Saur{
and Pustejovsky, 2012; Qian et al., 2018a, 2019).
F1-score is used as the main evaluation metrics for
each category of factuality values. To obtain the
performance of all the values, macro- and micro-
averaging F1 is also employed.
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Models CT- PS+ CT+ Macro-Ave Micro-Ave
LSTM-A 42.05/59.08 41.07 / 54.68 78.43/77.04 53.85/63.60 67.23/67.53
ULGN 45.87/61.07 43.05/49.58 81.87/76.49 56.93/62.38 70.55/66.27
BiDAF 50.66 / 67.84 49.75/60.94 81.06/81.21 60.49 / 69.99 72.86/73.23
BiDAF-TL 55.65/72.82 53.59/64.47 83.28 / 83.74 64.17/73.68 75.43/76.66
QANEet 51.62/68.07 51.05/62.32 81.68 /81.46 61.45/70.61 73.33/73.63
QANet-TL 55.81/72.91 53.25/65.05 83.38 /83.39 64.14/73.78 75.61/76.58
BERT-B 54.22/71.11 53.11/63.11 81.30/81.55 62.88/71.92 74.18 /1 74.84
Mch 54.09/71.86 52.39/63.66 82.01/81.48 62.83/72.33 74.42/75.16
Mch-TL 58.16/74.83 56.53/65.78 83.68 / 83.84 66.12/74.81 76.63/77.46
Ext 56.50/73.06 54.87/65.36 83.44/82.71 64.93/73.71 76.34/76.39
Ext-TL 61.85/77.20 58.91/69.92 85.23/84.91 68.66 / 77.34 78.09 /79.43

Table 4: Performance of models on DEFI. Format: Fl-scores for “English / Chinese” sub-corpus.

Models Source Datasets CT- PS+ CT+ Macro-Ave Micro-Ave

Ext-TL SQuAD2.0 61.85 58.91 85.23 68.66 78.09
NewsQA 60.68 59.22 84.85 68.25 77.87

Mch-TL C3-Dialogue 71.74 62.24 81.94 71.98 75.20
C3-Mixed 74.83 65.78 83.84 74.81 77.46
c3 74.04 64.03 83.81 73.96 76.62

Table 5: Performance of Ext-TL and Mch-TL on DEFI with difference source datasets. Format: F1-scores.

Implementation Details. BERT-Base version is
chosen as the backbone of DEFI-MRC-TL model.
We set 2 residual layers in the residual networks.
The dimension of the hidden states of residual net-
works is set as 768. Adam (Kingma and Ba, 2015)
is applied to optimize our model.

To take full advantage of knowledge learned
from source datasets, we fine-tune as few BERT
layers as possible on the target dataset. We ob-
serve that the performance on CT- and PS+ is very
low (F1-score< 10), or even no results can be ob-
tained if only fine-tuning the last layer of BERT.
Therefore, for those BERT-based transfer learning
models, we fine-tune the last two layers of BERT
(i.e., the shared layers contain N, = 10 BERT lay-
ers) and all the layers of residual networks, and
freeze other layers.

For all the models, we report the average eval-
uation metrics of the five rounds of experiments.
For the training of TL models, each round adopts a
subset that has a fixed size and is sampled from the
source dataset randomly.

Baselines. For fair comparison with our DEFI-
MRC-TL models, we employ the following models
as baselines:

1) LSTM-A (Qian et al., 2019) uses dependency
paths from cues to event triggers as syntactic fea-
tures, and the sentences with event triggers as se-

mantic features;

2) ULGN (Cao et al., 2021) is based on graph
convolutional networks relying on event triggers;

3) BiDAF (Seo et al., 2017) employs bidirec-
tional attention flow to obtain query-aware context
representations;

4) QANet (Yu et al., 2018) adopts encoders
consisting exclusively of convolution and self-
attention;

5) BERT-B (BERT-Base) directly uses the event
E and document D as the input sequence;

6) Ext & Ext-TL are Ext-MRC models, and
Mch & Mch-TL are Mch-MRC models for DEFIL.
TL mean Transfer Learning is considered.

3.2 Results and Analysis

The comparisons of the performance of various
models with our DEFI-MRC-TL model are sum-
marized in Table 4. LSTM-A and ULGN get rela-
tively lower results than other approaches, mainly
due to the cascade errors, since we use raw texts
as input for fair comparison, i.e., first extract-
ing event triggers (F1=83.19%/79.65% for En-
glish/Chinese sub-corpus), speculative and nega-
tive cues (F1=68.80%/75.42%), then identifying
document-level factuality.

BERT-B is a strong baseline compared with light-
weighted models with simple structures, which can
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Figure 3: The test performance (F1-scores) w.r.t. the size of questions sampled from the source datasets for several
transfer learning models on the English sub-corpus of DLEFM (i.e., DLEFM-E). For each sub-figure, the format of

the label is “model/source dataset”.

yield better results than LSTM-A and BiDAF when
only fine-tuning on DLEFM, and achieve similar
results with Mch.

Mch is slightly better than BERT-B. We argue
that Mch can be regarded as a variant of text classi-
fication model integrating context knowledge with
each option, whose input contains more informa-
tion than BERT-B. Ext can get better results than
BERT-B and Mch on both English and Chinese
sub-corpora, which can validate the advantages of
span-extraction MRC formulation for DEFI.

Table 4 demonstrates that all the TL models
can achieve better performance than their corre-
sponding original models that are only fine-tuned
on target dataset, which can manifest the signif-
icance of cross-domain data augmentation using
TL. For transfer learning models, BiDAF-TL and
QANet-TL obtain lower performance than both
Ext-TL and Mch-TL, since BiDAF and QANet
have much fewer parameters than those BERT-
based models. Ext-TL is superior to Mch-TL on
DEFI. The main reason is that Ext-MRC models
can extract meaningful and evidential texts for iden-
tifying document-level event factuality implicitly
on both source and target dataset. Samples and
analysis will be presented in §3.4 below.

Furthermore, Table 4 also shows that the perfor-
mance on the Chinese sub-corpus is better than that
on the English one, especial on CT- and PS+. The
reason is that the factuality value distribution on
the Chinese sub-corpus is more balanced than that
on the English one.

3.3 Ablation

Text Genre of Source Dataset. We investigate
the effects of source datasets with different text
genres on the test performance on DLEFM, and
present the performance of Ext-TL and Mch-TL
w.r.t. difference source datasets in Table 5. Ext-
TL achieves satisfactory performance employing
either SQuAD?2.0 or NewsQA as the source dataset,
proving both of them can offer meaningful knowl-
edge transferred to DEFI task. Moreover, using
SQuAD?2.0 obtains higher results than NewsQA,
mainly owing to the high quality of Wikipedia arti-
cles with correct grammar and semantics.

Size of Source Dataset. Since the size of
SQuAD?2.0, NewsQA and RACE are quite large,
we explore the relationship between the perfor-
mance of DEFI on DLEFM-E and the scale of
source dataset, and give the results in Figure 3. We
can conclude that using too many samples from
the source dataset can not lead to higher perfor-
mance on the target dataset. For Ext-TL and Mch-
TL, results can not be improved using more than
20k samples, or even degrades. It is mainly at-
tributed to overfitting on source datasets when sam-
ples selected from them occupy too large quantities.
Therefore, we adopt suitable amount of training
samples from source datasets as shown in Table
3. For CMRC2018 and C3, we leverage the whole
training sets due to their limitations of the sizes.

In addition, we evaluate Mch-TL on Chinese
sub-corpus. The source dataset C3 consists of two
sub-corpora, i.e, C% and Cﬁ/l. Different from all
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Event (E1): Barack Obama joins Joe Biden's cabinet. [certain negative (CT-)/certain negative (CT-)]
Document: ... ...whether Obama will return to the White House and serve in Biden’s cabinet. King also asked if he would join Biden’s

cabinet. “I'm not_planning_to suddenly work on the White House staff or something,” said Obama. He also jokingly responded, “There are

probably some things I would not be doing, ... ... ”

Event (E2): New York City installs security barriers. [possible positive (PS+)/possible positive (PS+)]
Document: ... ... City Mayor Bill de Blasio announced the plan at a press conference held in Times Square on Tuesday. He said New York
City plans to install 1.500 new security barriers in high-profile locations to guard against vehicle attacks and other terror-related incidents. ... ...

Event (E3): White House imposes new restrictions. [certain positive (CT+)/certain negative (CT-)]
Document: ... ...“Under no_circumstances during a government shutdown will any government owned. rented, leased or_chartered aircraft

Event (E4): Hurricane Michael hits Florida.

support any Congressional delegation, without the express written approval of the White House Chief of Staff,” Russell Vought, ... ...

[possible positive (PS+)/positive, certain positive (non-applicable value, NA)]
Document: ... ... Hurricane Michael is forecast to strike Florida Panhandle in southeastern United States on Wednesday ... ... Hurricane
Michael is currently centered about 360 miles (about 579 km) south of Panama City, Florida, and is moving north. ... ...

Figure 4: Spans extracted by Ext-TL are underlined. Questions are neglected when extracting spans in the documents
to investigate the interpretability of Ext-TL. Speculative cues are blue, and negative cues are red. Format of labels:

[Annotated/Predicted].

the other datasets considered in this paper, C3, is
made up of dialogs. Moreover, the average con-
text length of C3D (76.31) is obviously shorter than
that of CI:’\‘/[ (180.21) and Chinese sub-corpus in
DLEFM (664.80). Hence, Mch-TL is not able to
get higher results when employing the whole C3,,
but can achieve the best performance on Chinese
sub-corpus only using Cf\’/[ as the source dataset.

Light-weighted solutions. Furtherly, in order
to verify that TL models can benefit from ade-
quate samples in the source datasets rather than
only BERT-based models with large-scale and
complicated structures, we also consider the light-
weighted model, i.e., BIDAF and QANet based
TL models, in Figure 3. QANet-TL outperforms
BiDAF-TL, attributed to the more complicated at-
tention in QANet. Compared with Ext-TL and
Mch-TL, both BiDAF-TL and QANet-TL need
more samples when training on the source dataset
(i.e., SQuAD?2.0) to reach the optimal performance,
mainly due to the simpler structure of BiDAF
and QANet than those BERT-based models. Both
BiDAF-TL and QANet-TL are superior to BiDAF,
BERT-B, and Mch, which can manifest the useful-
ness of transfer learning.

3.4 Case Study

As mentioned in §2, Ext-TL model discards neither
questions nor contexts, and extracts answers (i.e.,
event factuality values) from the whole input se-
quence. To explore the interpretability of Ext-TL,
we discard the questions in Equation 8 and 9, and
extract text spans from the contexts.

As shown in Figure 4, Ext-TL identifies the cor-

rect values for events E1 and E2. In El, the ex-
tracted span contains the mention “I’m not plan-
ning to suddenly work on the White House” that
evaluates E1 as CT- according to the negative cue
“not”. While in E2, the extracted span commits to
the event “New York City installs security barriers”
as PS+ according to the speculative cue “plans”.

However, E3 and E4 get wrong results. In term
of E3, the extracted span contains no mention w.r.t.
“White House imposes new restrictions”, and an-
other CT- event “Government aircraft support Con-
gressional delegation” negated by “no” leads to the
mistaken value of E3. While for E4, to identify it
as PS+ correctly, we need to extract the event men-
tion with speculative semantics, e.g., “Hurricane
Michael is forecast to strike Florida Panhandle”.
But the actual span contains neither speculative
nor negative semantics, extracting a non-applicable
value that does not include “possible”.

Therefore, these cases illustrate that correct iden-
tification of document-level event factuality relies
on event mentions, speculative and negative infor-
mation that governs the event.

4 Related Work

Event Factuality Identification started with SEFI,
whose early work adopted rule-based models (Sauri
and Pustejovsky, 2012), traditional machine learn-
ing models (de Marneffe et al., 2012; Lee et al.,
2015), and hybrid models of them (Qian et al.,
2018b). Recently, with the successful applications
of neural networks in NLP, researchers focused on
SEFI via neural networks, and captured informa-
tion from sentences (He et al., 2017; Sheng et al.,
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2019), sequential (Rudinger et al., 2018; Qian et al.,
2018a) and graph-based (Veyseh et al., 2019) in-
formation from dependency trees, and furthurly
more syntactic knowledge produced by generative
adversarial networks (Qian et al., 2018a).

Compared with SEFI, DEFI remains at an initial
stage, and limits to DLEF corpus (Qian et al., 2019).
Previous studies (Qian et al., 2019; Huang et al.,
2019) utilized multi-layer LSTM networks with
attention to extract knowledge from dependency
paths and sentences. Cao et al. (2021) learned
local and global information of events by graph
convolution networks. They relied on annotated
information, e.g., event triggers, speculative and
negative cues, and ignored data augmentation.

MRC/QA-Style Formulation has been widely
utilized in NLP tasks over the past years, e.g, re-
lation extraction (Li et al., 2019), named entity
recognition (Li et al., 2020b), event extraction (Du
and Cardie, 2020; Liu et al., 2020; Li et al., 2020a).
To be specific, Li et al. (2020b) proposed a uni-
fied framework MRC handling both flat and nested
NER tasks. Li et al. (2020a) designed MQAEE
model casting event extraction into MRC problems
to extract triggers and arguments successively. Mc-
Cann et al. (2018) investigated MRC paradigms for
ten tasks, including machine translation, sentiment
analysis, semantic role labeling, etc.

Transfer Learning, or TL for short, is an ef-
fective technique for domain adaptation, and has
achieved satisfactory results on various NLP ap-
plications, e.g., text classification (Houlsby et al.,
2019; Stickland and Murray, 2019), sentiment clas-
sification (Fei and Li, 2020), neural machine trans-
lation (Aji et al., 2020), dialog system (Lin et al.,
2020). Particularly, researchers also investigated
TL for MRC/QA tasks. Kung et al. (2020) lever-
aged transfer learning to extract rationales through
QA for zero-shot task transfer. Chung et al. (2018)
explored both supervised and unsupervised trans-
ferability of knowledge learned among multiple-
choice QA. Furthermore, some studies considered
other TL paradigms, i.e., continual domain adap-
tation for domain drift in MRC (Su et al., 2020),
and multi-task learning for QA (Wang et al., 2021;
Lin et al., 2021) that is not dependent on specific
domain of data.

5 Conclusion

This paper designs a novel framework formal-
izing Document-level Event Factuality Identifi-

cation as MRC tasks, and considers both span-
extraction and multiple-choice MRC. Furthermore,
our model takes into account transfer learning as
cross-domain data augmentation capturing extra
knowledge from large-scale corpus in typical MRC.
Experiments on DLEFM corpus demonstrate that
our model can achieve state-of-the-art performance.
In the future, we will explore cross-document event
factuality identification and apply more effective
data augmentation method.
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