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Abstract

Multi-modal entity alignment aims to identify
equivalent entities between two different multi-
modal knowledge graphs, which consist of
structural triples and images associated with
entities. Most previous works focus on how to
utilize and encode information from different
modalities, while it is not trivial to leverage
multi-modal knowledge in entity alignment be-
cause of the modality heterogeneity. In this
paper, we propose MCLEA, a Multi-modal
Contrastive Learning based Entity Alignment
model, to obtain effective joint representations
for multi-modal entity alignment. Different
from previous works, MCLEA considers task-
oriented modality and models the inter-modal
relationships for each entity representation. In
particular, MCLEA firstly learns multiple in-
dividual representations from multiple modali-
ties, and then performs contrastive learning to
jointly model intra-modal and inter-modal in-
teractions. Extensive experimental results show
that MCLEA outperforms state-of-the-art base-
lines on public datasets under both supervised
and unsupervised settings.1

1 Introduction

Knowledge graphs (KGs) such as DBpe-
dia (Lehmann et al., 2015) and YAGO (Mahdis-
oltani et al., 2015) employ the graph structure to
represent real-world knowledge, where the con-
cepts are represented as nodes and the relationships
among concepts are represented as edges. KGs
have been widely applied to knowledge-driven
applications to boost their performance, like
recommendation system (Cao et al., 2019b),
information extraction (Han et al., 2018) and
question answering (Lan et al., 2021). In recent
years, an increasing amount of knowledge has
been represented in multi-modal formats, such as
MMKG (Liu et al., 2019) and Richpedia (Wang

1The source code is available at https://github.com/lzxlin/
MCLEA.

et al., 2020). These multi-modal KGs usually
contain images as the visual modality, like profile
photos, thumbnails, or posters. The augmented
visual modality has shown the significant capability
to improve KG-based applications (Chen et al.,
2020a). It was also proven that the incorporation
of visual modality can enhance the contextual
semantics of entities and also achieve improved
KG embeddings (Wang et al., 2021).

Due to the large scope of real-world knowledge,
most KGs are often incomplete, and multiple differ-
ent KGs are usually complementary to one another.
As a result, integrating multiple KGs into a unified
one can enlarge the knowledge coverage and can
also assist in refining KG by discovering the poten-
tial flaws (Chen et al., 2020a). To integrate hetero-
geneous multi-modal knowledge graphs, the task of
multi-modal entity alignment (MMEA) is therefore
proposed, which aims to discover equivalent enti-
ties referring to the same real-world object. Several
previous MMEA works have shown that the inclu-
sion of visual modality in modeling helps to im-
prove the performance of entity alignment. For in-
stance, MMEA (Chen et al., 2020a) and EVA (Liu
et al., 2021) proposed distinct multi-modal fusion
modules to integrate entity representations from
multiple modalities into joint embeddings and they
achieved state-of-the-art performance.2 However,
these methods mainly utilize existing representa-
tions from different modalities, and customized rep-
resentation learning for EA is not fully explored. In
addition, existing methods only explore the use of
diverse multi-modal representations to enhance the
contextual embedding of entities, the inter-modal
interactions are often neglected in modeling.

To address aforementioned problems, we pro-
pose MCLEA, a Multi-modal Contrastive Learning
based Entity Alignment model, which effectively

2To distinguish the model MMEA from the task MMEA,
we use EA to denote multi-modal entity alignment for the rest
of the paper.

https://github.com/lzxlin/MCLEA
https://github.com/lzxlin/MCLEA
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integrates multi-modal information into joint rep-
resentations for EA. MCLEA firstly utilizes multi-
ple individual encoders to obtain modality-specific
representations for each entity. The individually
encoded information includes neighborhood struc-
tures, relations, attributes, surface forms (i.e., en-
tity names), and images. Furthermore, we intro-
duce contrastive learning into EA with intra-modal
contrastive loss and inter-modal alignment loss.
Specifically, intra-modal contrastive loss aims at
distinguishing the embeddings of equivalent enti-
ties from the ones of other entities for each modal-
ity, thus generating more appropriate representa-
tions for EA. Inter-modal alignment loss, on the
other hand, aims at modelling inter-modal interac-
tions and reducing the gaps between modalities for
each entity. With these two losses, MCLEA can
learn discriminative cross-modal latent embeddings
and ensure potentially equivalent entities close in
the joint embedding space, regardless of the modal-
ity. MCLEA is also generic as it can support a
wide variety of modalities. Moreover, it combines
multiple losses and simultaneously learns multiple
objectives using task-dependent uncertainty.

The contributions of this paper are three-fold:
(i) We propose a novel method, called MCLEA, to
embed information from different modalities into
a unified vector space and then obtain discrimi-
native entity representations based on contrastive
learning for entity alignment. (ii) We propose two
novel losses to explore intra-modal relationships
and inter-modal interactions, ensuring that to-be-
aligned entities between different KGs are semanti-
cally close with minimum gaps between modalities.
(iii) We experimentally validate the effectiveness
and superiority of MCLEA as it achieves state-of-
the-art performance on several public datasets in
both supervised and unsupervised settings. The
overall results also suggest that our MCLEA is ca-
pable of learning more discriminative embedding
space for multi-modal entity alignment.

2 Related Work

2.1 Multi-modal Knowledge Graph

While many efforts (Mahdisoltani et al., 2015;
Lehmann et al., 2015) have been made to achieve
large-scale KGs, there are just a few attempts to
enrich KGs with multiple modalities. For example,
MMKG (Liu et al., 2019) and Richpedia (Wang
et al., 2020) utilized the rich visual resources
(mainly images) to construct multi-modal knowl-

edge graphs. Their target was to enrich the KG
information via appending sufficient and diverse
images to textual entities but they also brought
challenges to the KG embedding methods. Unlike
traditional KG embedding methods, multi-modal
KG embedding methods model the textual and
visual modalities at the same time (Zhang et al.,
2019; Wang et al., 2021). For example, Zhang et al.
(2019) proposed MKHAN to exploit multi-modal
KGs with hierarchical attention networks on ques-
tion answering, and Wang et al. (2021) proposed
RSME to selectively incorporate visual information
during the KG embedding learning process.

2.2 Multi-modal Entity Alignment

Recent studies for entity alignment mostly focused
on exploring the symbolic similarities based on var-
ious features, including entity names (Wu et al.,
2019; Zhang et al., 2019), attributes (Liu et al.,
2020), descriptions (Zhang et al., 2019; Tang et al.,
2020) and ontologies (Xiang et al., 2021). Most
of them started with transforming entities from
different KGs into a unified low-dimensional vec-
tor space by translation-based models or graph
neural networks and then discovered their coun-
terparts based on the similarity metrics of entity
embeddings. Some surveys summarized that addi-
tional KG information, if appropriately encoded,
could further improve the performance of EA meth-
ods (Sun et al., 2020b; Zhang et al., 2020). Some
previous attempts even proposed to guide these
embedding-based EA models with probabilistic
reasoning (Qi et al., 2021). With such findings and
the increasing popularity of multi-modal knowl-
edge graphs, how to incorporate visual modality in
EA, namely multi-modal entity alignment, has be-
gun to draw research attention but the attempts are
limited. The pioneer method PoE (Liu et al., 2019)
combined the multi-modal features and measured
the credibility of facts by matching the underlying
semantics of entities. Afterward, MMEA (Chen
et al., 2020a) was proposed to integrate knowledge
from different modalities (relational, visual, and
numerical) and obtain the joint entity representa-
tions. Another method termed EVA (Liu et al.,
2021) leveraged visual knowledge and other aux-
iliary information to achieve EA in both super-
vised and unsupervised manner. Alternatively, the
method HMEA (Guo et al., 2021) modeled struc-
tural and visual representations in the hyperbolic
space, while Masked-MMEA (Shi et al., 2022)



2574

Structure Encoder

Hulk (film)

Avi Arad Ang Lee

Jams Schamus

producer director
Hulk

Ang Lee Eria Bana

Avi Arad

directed_by

Eria Bana

actor

Hulk (film)
buget released

1.37e8 2003-06-17

Hulk (en)

Hulk

buget

release_date

137000000

2003.58280.0

runtimewriter

actor

title

Attribute Encoder Visual Encoder

Structure Embedding Attribute Embedding Visual EmbeddingJoint Embedding

IAL ICL IAL ICL IAL ICL

KG1 KG2 KG1 KG2 KG2KG1

produced_by

Hulk (film) Hulk

entity

attribute value

xxx relation
xxx attribute

weighted concat

alignment seed

ICL

...

...

...

Figure 1: The overall architecture of MCLEA, which combines multiple modalities (§ 3.1) and learns through two
proposed losses (§ 3.2), intra-modal contrastive loss (ICL) and inter-modal alignment loss (IAL).

discussed the impacts of visual modality and pro-
posed to incorporate a selectively masking tech-
nique to filter potential visual noises. These meth-
ods mainly utilize multi-modal representations to
enhance the contextual embedding of entities, nev-
ertheless, customized entity representations for EA
and inter-modal interactions are often neglected
in modeling. Different from previous methods,
our proposed MCLEA can learn both intra-modal
and inter-modal dynamics simultaneously by the
proposed contrastive objectives, expecting to learn
more discriminative and abundant entity represen-
tation for EA.

3 Proposed Method

We start with the problem formulation and the no-
tations. A multi-modal KG is denoted as G =
(E,R,A, V, T ), where E,R,A, V, T are the sets
of entities, relations, attributes, images, and triples,
respectively. Given G1 = (E1, R1, A1, V1, T1)
and G2 = (E2, R2, A2, V2, T2) as two KGs to be
aligned, the aim of EA is to find aligned entity pairs
A = {(e1, e2)|e1 ≡ e2, e1 ∈ E1, e2 ∈ E2}, where
we assume a small set of entity pairs S (seeds) are
given as training data. The overall architecture of
the proposed MCLEA is shown in Figure 1, and
its primary components, multi-modal embeddings,
and contrastive representation learning will be de-
tailed in the following sections.

3.1 Multi-Modal Embeddings
Multi-modal KGs often depict various features with
multiple modalities (or views), which are comple-
mentary to each other. We investigate different
embeddings from different modalities for MCLEA,
including neighborhood structures, relations, at-
tributes, names (often termed as surface forms in
previous work (Liu et al., 2021)), and images. Each

modality is processed with an individual encoder
network adapted to the nature of the signal. Fur-
thermore, these uni-modal embeddings are aggre-
gated with a simple weighted mechanism to form a
joint embedding. Theoretically, MCLEA can sup-
port more modalities, e.g., numerical values (Chen
et al., 2020a), which will be left in our future work.

3.1.1 Neighborhood Structure Embedding
The graph attention network (GAT) is a typical
neural network that directly deals with structured
data (Velickovic et al., 2018). Hence, we leverage
GAT to model the structural information of G1 and
G2, shown as “Structure Encoder” in Figure 1.
Specifically, the hidden state hi ∈ Rd (d is the
hidden size) of entity ei by aggregating its one-hop
neighbors Ni with self-loop is formulated as:

hi = σ
(∑

j∈Ni
αijhj

)
, (1)

where hj is the hidden state of entity ej , σ(·) de-
notes the ReLU nonlinearity, and αij denotes the
importance of entity ej to entity ei, which is calcu-
lated with the self-attention:

αij =
exp

(
η
(
aT [Whi ⊕Whj ]

))∑
u∈Ni

exp (η (aT [Whi ⊕Whu]))
, (2)

where W ∈ Rd×d denotes the weight matrix, a ∈
R2d is a learnable parameter, ⊕ is the concatenation
operation and η is the LeakyReLU nonlinearity.
Motivated by (Li et al., 2019), we restrict W to
be a diagonal matrix to reduce computations, thus
increasing the scalability of the model. To stabilize
the learning process of self-attention (Velickovic
et al., 2018), we perform K (K = 2) heads of
independent attention of Eq. (1) in parallel, and
concatenate these features to obtain the structure
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embedding of entity ei:

hg
i =

K⊕
k=1

σ
(∑

j∈Ni
αk
ijhj

)
, (3)

where αk
ij is the normalized attention coefficient

computed by the k-th attention. In practice, we ap-
ply a two-layer GAT model to aggregate the neigh-
borhood information within multiple hops, and use
the output of the last GAT layer as the neighbor-
hood structure embedding.

3.1.2 Relation, Attribute, and Name
Embeddings

Because the vanilla GAT operates on unlabeled
graphs, it is unable to properly model relational
information in multi-relational KGs. To alleviate
this issue, we follow (Yang et al., 2019) and regard
the relations of entity ei as bag-of-words feature
and feed it into a simple feed-forward layer to ob-
tain the relation embedding hr

i . For the simplicity
and consistency of MCLEA, we adopt the same
approach for the attribute embedding ha

i and the
name embedding hn

i for entity ei. Therefore, these
embeddings are calculated as:

hl
i = Wlu

l
i + bl, l ∈ {r, a, n}, (4)

where Wl and bl are learnable parameters, ur
i is

the bag-of-words relation feature, ua
i is the bag-of-

words attribute feature, and un
i is the name feature

obtained by averaging the pre-trained GloVe (Pen-
nington et al., 2014) vectors of name strings. To
avoid the out-of-vocabulary challenges brought by
the extensive proper nouns (e.g., person names) and
the limited vocabulary of word vectors, we further
incorporate the character bigrams (Mao et al., 2021)
of entity names as auxiliary features for name em-
bedding.

3.1.3 Visual Embedding

We adopt the pre-trained visual model (PVM), e.g.,
ResNet-152 (He et al., 2016), to learn visual embed-
ding, shown as “Visual Encoder” in Figure 1. We
feed the image vi of entity ei into the pre-trained
visual model and use the final layer output before
logits as the image feature. The feature is sent
through a feed-forward layer to get the visual em-
bedding:

hv
i = Wv · PVM(vi) + bv. (5)

3.1.4 Joint Embedding
Next, we implement a simple weighted concatena-
tion by integrating the multi-modal features into a
single compact representation ĥi for entity ei:

ĥi =
⊕

m∈M

[
exp(wm)∑

j∈M exp(wj)
hm

i

]
, (6)

where M = {g, r, a, n, v} and wm is a train-
able attention weight for the modality of m. L2-
normalization is performed on the input embed-
dings before the weighted concatenation.

The current joint embeddings are coarse-grained
and there are no interactions between modalities.
Therefore, two training strategies are designed for
learning the dynamics within (intra-) and between
(inter-) modalities.

3.2 Contrastive Representation Learning

As the core of MCLEA, we propose two novel
losses on the uni-modal and joint representations
to sufficiently capture the dynamics within and be-
tween modalities while preserving semantic prox-
imity and minimizing the modality gap.

3.2.1 Intra-modal Contrastive Loss (ICL)
Inspired by recent work on contrastive learning
(CL) (Chen et al., 2020b; Khosla et al., 2020), we
devise an intra-modal contrastive loss (ICL) that
enforces the input embedding to respect the simi-
larity of entities in the original embedding space.
Meanwhile, ICL allows MCLEA to distinguish the
embeddings of the same entities in different KGs
from those of other entities for each modality.

Given that S can be naturally regarded as pos-
itive samples, whereas any non-aligned pairs can
be regarded as negative samples due to the con-
vention of 1-to-1 alignment constraint (Sun et al.,
2018). Formally, for the i-th entity ei1 ∈ E1

of minibatch B, the positive set is defined as
Pi = {ei2|ei2 ∈ E2}, where (ei1, e

i
2) is an aligned

pair. The negative set includes two types, inner-
graph unaligned pairs from the source KG G1 and
cross-graph unaligned pairs from the target KG
G2, defined as N i

1 = {ej1|∀e
j
1 ∈ E1, j ̸= i} and

N i
2 = {ej2|∀e

j
2 ∈ E2, j ̸= i}, respectively. Both

N i
1 and N i

2 come from minibatch B. These two
types of negative samples are designed to constrain
the joint embedding space, in which the semanti-
cally similar entities from the same KG stay close-
by and the aligned entities from two KGs map to
proximate points. Overall, we define the alignment
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probability distribution qm(ei1, e
i
2) of the modality

of m for each positive pair (ei1, e
i
2) as:

qm(ei1, e
i
2) =

δm(ei1, e
i
2)

δm(ei1, e
i
2) +

∑
e
j
1∈Ni

1

δm(ei1, e
j
1) +

∑
e
j
2∈Ni

2

δm(ei1, e
j
2)
, (7)

where δm(u, v) = exp(fm(u)T fm(v)/τ1), fm(·)
is the encoder of the modality m, and τ1 is a tem-
perature parameter. Especially, L2-normalization
is performed on the input feature embedding before
computing the inner product. Notably, the distri-
bution of Eq. (7) is directional and asymmetric for
each input; the distribution for another direction is
thus defined similarly for qm(ei2, e

i
1). The ICL can

be formulated as:

LICL
m = −Ei∈B log

[
1

2
(qm(ei1, e

i
2) + qm(ei2, e

i
1))

]
. (8)

We apply ICL on each modality separately and
also on the combined multi-modal representation
as specified in Eq. (6). ICL is performed in con-
trastive supervised learning to learn intra-modal
dynamics for more discriminative boundaries for
each modality in the embedding space.

3.2.2 Inter-modal Alignment Loss (IAL)
Since the embeddings of different modalities are
separately trained with ICL, their representations
are not aligned and it is difficult to model the com-
plex interaction between modalities solely with the
fusion module. To alleviate this, we further propose
inter-modal alignment loss (IAL), which targets at
reducing the gap between the output distribution
over different modalities, so that the MCLEA can
model inter-modal interactions and obtain more
meaningful representations.

We consider the joint embedding as the compre-
hensive representation due to its fusion of multi-
modal features; therefore, we attempt to transfer
the knowledge from the joint embedding back to
uni-modal embedding so that the uni-modal em-
bedding could better utilize the complementary in-
formation from others. Concretely, we minimize
the bidirectional KL divergence over the output dis-
tribution between joint embedding and uni-modal
embedding:

LIAL
m = Ei∈B

1

2
[KL(q′o(e

i
1, e

i
2) || q′m(ei1, e

i
2))

+KL(q′o(e
i
2, e

i
1) || q′m(ei2, e

i
1))],

(9)

where q′o(e
i
1, e

i
2), q′o(e

i
2, e

i
1) and q′m(ei1, e

i
2),

q′m(ei2, e
i
1) represent the output predictions with

two directions of joint embedding and the uni-
modal embedding of modality m, respectively.
Their calculation are similar to Eq. (7) but with a
temperature parameter τ2. We only back-propagate
through q′m(ei1, e

i
2), q

′
m(ei2, e

i
1) in Eq. (9) as knowl-

edge distillation (Hinton et al., 2015).
IAL aims at learning interactions between dif-

ferent modalities within each entity, which con-
centrates on aggregating the distribution of differ-
ent modalities and thus reduces the modality gap.
Some approaches (Zhang et al., 2019; Chen et al.,
2020a) attempt to learn a common space by impos-
ing alignment constraints on the features between
different modalities, but they introduce noises due
to semantic heterogeneity. Different from these
approaches, we distill the useful knowledge from
the output prediction of multi-modal representation
to the uni-modal representation, while maintain-
ing relatively modality-specific features of each
modality.

3.3 Optimization Objective

The overall loss of the MCLEA is as follows,

L = LICL
o +

∑
m∈M αmLICL

m +
∑

m∈M βmLIAL
m , (10)

where M = {g, r, a, n, v}, LICL
o denotes the ICL

operated on joint embedding, αm and βm are hyper-
parameters that balance the importance of losses.
However, manually tuning these hyper-parameters
is expensive and intractable. Instead, we treat
MCLEA as a multi-task learning paradigm and
then use homoscedastic uncertainty (Kendall et al.,
2018) to weigh each loss automatically during
model training. We adjust the relative weight of
each task in the loss function by deriving a multi-
task loss function based on maximizing the Gaus-
sian likelihood with task-dependant uncertainty.
Due to space limits, we only show the derived re-
sult and leave the detailed derivation process in the
Appendix. The loss in Eq. (10) can be rewritten as:

L = LICL
o +

∑
m∈M

(
1

α2
m
LICL

m + 1
β2
m
LIAL

m + logαm + log βm

)
,

(11)
where αm and βm are automatically learned during
training.

To overcome the lack of training data, we in-
corporate a bi-directional iterative strategy used
in (Liu et al., 2021) to iteratively add new aligned
seeds during training. In the inference, we use the
cosine similarity metric between joint embeddings
of entities to determine the counterparts of entities.
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MCLEA can be extended to the unsupervised
setting, in which the pseudo-alignment seeds are
discovered based on feature similarities of entity
names (Mao et al., 2020a; Ge et al., 2021) or entity
images (Liu et al., 2021), accordingly resulting in
different unsupervised versions of MCLEA.

4 Experiments

4.1 Experimental Setup

Datasets. Five EA datasets are adopted for
evaluation, including three bilingual datasets
ZH/JA/FR-EN versions of DBP15K (Liu et al.,
2021) and two cross-KG datasets FB15K-
DB15K/YAGO15K (Liu et al., 2019). The detailed
dataset statistics are listed in Table 5 in the Ap-
pendix. Note that not all entities have correspond-
ing images and for those without images, MCLEA
would assign random vectors for the visual modal-
ity, as the setting of EVA (Liu et al., 2021). As
for DBP15K, 30% reference entity alignments are
given as S while as for cross-KG datasets, 20%,
50%, and 80% reference entity alignments are
given (Liu et al., 2019).
Baselines. We compare the proposed MCLEA
against 19 state-of-the-art EA methods, which
can be classified into four categories: 1)
structure-based methods that solely rely on struc-
tural information for aligning entities, including
BootEA (Sun et al., 2018), MUGNN (Cao et al.,
2019a), KECG (Li et al., 2019), NAEA (Zhu et al.,
2019), and AliNet (Sun et al., 2020a); 2) auxiliary-
enhanced methods that utilize auxiliary informa-
tion to improve the performance, including Mul-
tiKE (Zhang et al., 2019), HMAN (Yang et al.,
2019), RDGCN (Wu et al., 2019), AttrGNN (Liu
et al., 2020), BERT-INT (Tang et al., 2020) and
ERMC (Yang et al., 2021); 3) multi-modal methods
that combine the multi-modal features to generate
entity representations, including PoE (Liu et al.,
2019), MMEA (Chen et al., 2020a), HMEA (Guo
et al., 2021), and EVA (Liu et al., 2021); 4) un-
supervised methods, including RREA (Mao et al.,
2020b), MRAEA (Mao et al., 2020a), EASY (Ge
et al., 2021), and SEU (Mao et al., 2021).
Implementation Details. The hidden size of each
layer of GAT is 300, while the embedding size of
the other modalities is 100. We use the AdamW
optimizer with a learning rate of 5 × 10−4 to up-
date the parameters. The number of training epochs
is 1000 with early-stopping and the batch size is
512. The hyper-parameters τ1, τ2 are set to 0.1

and 4.0, respectively. To keep in line with previ-
ous works, we use the same entity name transla-
tions and word vectors provided by Xu et al. (2019)
for bilingual datasets. As for cross-KG datasets,
we do not consider surface forms for fair compar-
ison. For visual embedding, we adopt the prepro-
cessed image features provided by Liu et al. (2021)
and Chen et al. (2020a) for bilingual datasets and
cross-KG datasets, where the former uses ResNet-
152 as the pre-trained backbone, while the latter
uses VGG-16. Previous work has revealed that
surface forms are quite helpful for entity align-
ment (Liu et al., 2020). For fair comparison, we
divide the supervised methods on bilingual datasets
into two groups based on whether surface forms
are used, and we implement an MCLEA variant
(MCLEA†) where the name embedding is removed.
For the unsupervised setting, we implement two
variants, MCLEA-V and MCLEA-N, which gener-
ate pseudo-alignment seeds based on the similari-
ties of images and names, respectively.
Evaluation. We rank matching candidates of
each to-be-aligned entity and use the metrics of
Hits@1 (H@1), Hits@10 (H@10), and mean re-
ciprocal rank (MRR). In the following tables, the
best results are in bold with the second best re-
sults underlined, and “Improv. best %” denotes
the relative improvement of MCLEA over the best
baseline.

4.2 Overall Results

Table 1, Table 2, and Table 3 report the perfor-
mance of MCLEA against different baselines on
different datasets with different settings. Overall,
MCLEA and its variants mostly perform the best
across all the datasets on all the metrics.

Table 1 reports the performance of MCLEA
against the supervised baselines on bilingual
datasets in the settings of w/ and w/o surface forms.
Compared with the first group without using sur-
face forms, MCLEA† brings about 5.2% to 7.2%
relative improvement in H@1 over the best base-
line EVA. The superiority of MCLEA confirms that
the proposed contrastive representation learning
substantially promotes the performance. Specifi-
cally, compared with the second group with surface
forms involvement, there are two notable observa-
tions. On one hand, MCLEA shows a clear im-
provement when combined with name embedding,
suggesting that entity names provide useful clues
for entity alignment, which has been revealed in
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Models DBP15KZH−EN DBP15KJA−EN DBP15KFR−EN

H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR

w
/o

SF
BootEA (Sun et al., 2018) .629 .847 .703 .622 .854 .701 .653 .874 .731
KECG (Li et al., 2019) .478 .835 .598 .490 .844 .610 .486 .851 .610
MUGNN (Cao et al., 2019a) .494 .844 .611 .501 .857 .621 .495 .870 .621
NAEA (Zhu et al., 2019) .650 .867 .720 .641 .873 .718 .673 .894 .752
AliNet (Sun et al., 2020a) .539 .826 .628 .549 .831 .645 .552 .852 .657
EVA (Liu et al., 2021) .761 .907 .814 .762 .913 .817 .793 .942 .847
MCLEA† (Ours) .816 .948 .865 .812 .952 .865 .834 .975 .885

Improv. best % 7.2 4.5 6.3 6.6 4.3 5.9 5.2 3.5 4.5

w
/S

F

MultiKE (Zhang et al., 2019) .437 .516 .466 .570 .643 .596 .714 .761 .733
HMAN (Yang et al., 2019) .562 .851 – .567 .969 – .540 .871 –
RDGCN (Wu et al., 2019) .708 .846 – .767 .895 – .886 .957 –
AttrGNN (Liu et al., 2020) .777 .920 .829 .763 .909 .816 .942 .987 .959
BERT-INT (Tang et al., 2020) .968 .990 .977 .964 .991 .975 .992 .998 .995
ERMC (Yang et al., 2021) .903 .946 .899 .942 .944 .925 .962 .982 .973
MCLEA (Ours) .972 .996 .981 .986 .999 .991 .997 1.00 .998

Improv. best % 0.4 0.6 0.4 2.3 0.8 1.6 0.5 0.2 0.3

Table 1: Comparative results of MCLEA without (w/o) and with (w/) surface forms (SF) against strong supervised
methods on three bilingual datasets, and † denotes an MCLEA variant without name embedding.

previous work (Zhang et al., 2019; Liu et al., 2020;
Ge et al., 2021). On the other hand, MCLEA still
shows slightly better performance than the best
baseline BERT-INT with 0.4% to 2.3% relative
improvement in H@1 nevertheless with far fewer
parameters (13M vs. 110M). This also reveals that
MCLEA can effectively model robust entity repre-
sentations instead of attaching over-parameterized
encoders. Noteworthily, BERT-INT relies heavily
on entity descriptions to fine-tune BERT, but entity
descriptions may not be available for every entity,
and collecting them is labor-intensive, limiting the
scope of its application.

Table 2 shows the comparison of multi-modal
methods on two cross-KG datasets, which provides
direct evidence of the effectiveness of MCLEA.
When 20% training seeds are given, MCLEA out-
performs the best baseline MMEA with 67.9%
higher in H@1, 30.3% higher in H@10, and 49.6%
higher in MRR. The performance gains are still
significant when 50% and 80% alignment seeds are
given. It is worth noting that the performance gains
reach the highest in the 20% setting and MCLEA
(20%) obtains comparable results to EVA (80%), in-
dicating that MCLEA could better utilize the mini-
mum number of alignment seeds to obtain effective
representations. We also find that MMEA greatly
outperforms EVA, we speculate that the cross-KG
datasets are quite heterogeneous (w.r.t. the num-
ber of relations) compared to bilingual datasets, as
shown in Table 5 in the Appendix, and the structure
encoder of EVA struggles to model heterogeneous

information and EVA cannot utilize the numeri-
cal knowledge in cross-KG datasets, which is well
exploited in MMEA.

Models FB15K-DB15K FB15K-YAGO15K
H@1 H@10 MRR H@1 H@10 MRR

20
%

PoE .126 .251 .170 .113 .229 .154
HMEA .127 .369 – .105 .313 –
MMEA .265 .541 .357 .234 .480 .317
EVA∗ .134 .338 .201 .098 .276 .158
MCLEA (Ours) .445 .705 .534 .388 .641 .474

Improv. best % 67.9 30.3 49.6 65.8 33.5 49.5

50
%

PoE .464 .658 .533 .347 .536 .414
HMEA .262 .581 – .265 .581 –
MMEA .417 .703 .512 .403 .645 .486
EVA∗ .223 .471 .307 .240 .477 .321
MCLEA (Ours) .573 .800 .652 .543 .759 .616

Improv. best % 23.5 13.8 22.3 34.7 17.7 26.7

80
%

PoE .666 .820 .721 .573 .746 .635
HMEA .417 .786 – .433 .801 –
MMEA .590 .869 .685 .598 .839 .682
EVA∗ .370 .585 .444 .394 .613 .471
MCLEA (Ours) .730 .883 .784 .653 .835 .715

Improv. best % 9.6 1.6 8.7 9.2 -0.4 4.8

Table 2: Experimental results on two cross-KG datasets
where X% represents the percentage of reference entity
alignments used for training. The symbol ∗ denotes the
reproduced results.

When compared to the unsupervised methods
in Table 3, both MCLEA variants perform slightly
better than the best baseline with performance gain
in H@1 varying from 0.7% to 6.7%. Note that us-
ing image (-V) or name (-N) similarities to produce
seeds leads to almost identical results, demonstrat-
ing the effectiveness of such simple rules to enable
MCLEA in the unsupervised setting.
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Models DBP15KZH−EN DBP15KJA−EN DBP15KFR−EN

H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR

MRAEA (Mao et al., 2020a) .778 .832 – .889 .927 – .950 .970 –
RREA (Mao et al., 2020b) .822 .964 – .918 .978 – .963 .992 –
EASY (Ge et al., 2021) .898 .979 .930 .943 .990 .960 .980 .998 .990
SEU (Mao et al., 2021) .900 .965 .924 .956 .991 .969 .988 .999 .992
MCLEA-V (Ours) .959 .995 .974 .977 .999 .987 .990 1.00 .994
MCLEA-N (Ours) .960 .994 .974 .983 .999 .990 .995 1.00 .997

Improv. best % 6.7 1.6 4.7 2.8 0.8 2.2 0.7 0.1 0.5

Table 3: Unsupervised experimental results on three bilingual datasets, where -V and -N denote different methods
to generate pseudo-alignment seeds.

4.3 Model Analysis

Ablation study. The ablation experiments are
performed on two bilingual datasets and the re-
sults are presented in Table 4. We first examine
the individual contribution of different modalities.
The removal of different modalities has varying
degrees of performance drop, and entity names
have shown the primary importance with the most
significant drop, which is in line with the previ-
ous findings (Mao et al., 2020a; Ge et al., 2021).
The structural information also shows its stable
effectiveness across different datasets and other
modalities make a slight contribution to MCLEA.
Especially, visual information can play a more pro-
nounced role in the absence of surface forms (Chen
et al., 2020a; Liu et al., 2021). Furthermore, we
inspect various training strategies in MCLEA. It
dramatically degrades the performance when re-
moving the ICL from MCLEA, which indicates
the importance of ICL in learning the intra-modal
proximity. The IAL learns the interdependence be-
tween different modalities and is also beneficial to
our model. Training MCLEA without the iterative
strategy and replacing the uncertainty mechanism
with uniform weights (i.e., w/o uncertainty) also
cause decreases in performance. Overall, the abla-
tion experiments validate the involvement of these
modalities and training strategies with empirical
evidence.

Impact of hyper-parameters τ1, τ2. We inves-
tigate the effects of hyper-parameters τ1, τ2 on
DBP15KZH−EN . As shown in Figure 2, different
values of τ1 have drastic effects on MCLEA, espe-
cially in terms of H@1 and MRR, which is because
τ1 controls the strength of penalties on hard nega-
tive samples and an appropriate τ1 is conducive to
learning discriminative entity embeddings. On the
other hand, we observe lower variance in the perfor-
mance w.r.t. τ2 and the performance saturates when

Models DBP15KZH−EN DBP15KJA−EN

H@1 H@10 MRR H@1 H@10 MRR

MCLEA .972 .996 .981 .986 .999 .991

M
od

al
iti

es

w/o structure .883 .956 .909 .947 .980 .959
w/o relation .967 .995 .978 .985 .999 .991
w/o attribute .961 .994 .974 .983 .999 .991
w/o name .816 .948 .865 .812 .952 .865
w/o visual .968 .994 .978 .985 .999 .991

Tr
ai

ni
ng

w/o ICL .782 .892 .818 .813 .909 .844
w/o IAL .966 .995 .977 .980 .998 .987
w/o iter. strategy .942 .991 .960 .964 .995 .976
w/o uncertainty .969 .996 .980 .984 .999 .990

Table 4: Ablation study on two bilingual datasets.

τ2 = 4.0. The KL divergence establishes the asso-
ciations between different modalities, within which
τ2 regulates the softness of the alignment distribu-
tion produced by input embedding and transfers the
generalization capability of the joint embedding to
uni-modal embedding.
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Figure 2: Performance comparison with different values
of τ1, τ2.

Similarity Distribution of Representations. To
investigate the effectiveness of entity representa-
tions, we experiment MCLEA with and without
ICL/IAL on DBP15KZH−EN and produce the vi-
sualization in Figure 3 by averaging the similar-
ity distribution of the test entities and their pre-
dicted counterparts for different modalities. It can
be observed that in every modality, especially in
structure and name, it holds a high top-1 similarity
and a large similarity variance. More importantly,
it meets our expectation that contrastive learning



2580

(ICL and IAL) enables more discriminative entity
learning in the joint representations.

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

str.
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rel.
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joint

joint + 0.4
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Figure 3: Similarity visualization of representations of
test entities and their top-10 predicted counterparts. The
vertical axis represents different modalities with (+) and
without (−) ICL/IAL and the horizontal axis represents
the index of ranked predictions.

5 Conclusion

This paper presented a novel method termed
MCLEA to address the multi-modal entity align-
ment. MCLEA utilizes multi-modal information
to obtain the joint entity representations and it is
composed of two losses, intra-modal contrastive
loss, and inter-modal alignment loss, to explore the
intra-modal relationships and cross-modal interac-
tions, respectively. We experimentally validated
the state-of-the-art performance of MCLEA in sev-
eral public datasets and its capability of learning
more discriminative embedding space for entity
alignment. For future work, we plan to explore
more side information such as entity descriptions
to boost alignment performance.
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Appendix

A Derivation for Adaptively Weighted
Multi-task Loss

In this section, we treat Eq. (10) as a multi-task loss
function and combine multiple objectives using
homoscedastic uncertainty (Kendall et al., 2018),
allowing us to automatically learn the relative
weights of each loss.

Firstly, the ICL can actually be regarded as a clas-
sification loss with negative log-likelihood, i.e., pre-
dicting whether two entities are equivalent. Here,
we rewrite the loss function of ICL as follows (for
simplicity, here we omit the modality index and the
inner-graph negative samples, and only consider
the unidirectional version):

LICL = −Ei∈B log q(ei1, e
i
2)

= −Ei∈B logP
(
c = 1|fW(ei1, e

i
2)
)
,

(12)

where c = 1 means that the two input entities are
equivalent, otherwise c = 0; fW(·, ·) is the model
output with parameter W. Following (Kendall
et al., 2018), we adapt the negative log-likelihood
to squash a scaled version of the model output with
an uncertainty scalar σ through a softmax function:

− logP
(
c = 1|fW(ei1, e

i
2), σ

)
= − log Softmax

(
1

σ2
fW(ei1, e

i
2)

)
= − 1

σ2
fW(ei1, e

i
2) + log

∑
j ̸=i

exp

(
1

σ2
fW(ei1, e

j
2)

)
,

(13)

where ej2 with j ̸= i is the cross-graph negative
samples defined in the main paper.

Applying the same assumption in (Kendall et al.,

2018):

1

σ

∑
j ̸=i

exp

(
1

σ2
fW(ei1, e

j
2)

)

≈

(∑
c′

exp
(
fW(ei1, e

j
2)
)) 1

σ2

,

(14)

we can simplify Eq. (13) to:

− logP
(
c = 1|fW(ei1, e

i
2), σ

)
≈ − 1

σ2
fW(ei1, e

i
2) +

1

σ2
log

∑
j ̸=i

exp(fW(ei1, e
j
2)) + log(σ)

= − 1

σ2
logP

(
c = 1|fW(ei1, e

i
2)
)
+ log(σ),

(15)

where σ can be interpreted as the relative weight of
the loss and automatically learned with stochastic
gradient descent.

On the other hand, the IAL defines the KL di-
vergence over the output distribution between joint
embedding and uni-modal embedding (we omit the
modality index and only consider the unidirectional
version for simplicity):

LIAL = Ei∈B KL(q′o(e
i
1, e

i
2) || q′(ei1, ei2))

= Ei∈B q′o(e
i
1, e

i
2) log

q′o(e
i
1, e

i
2)

q′(ei1, e
i
2)

= Ei∈B [q′o(e
i
1, e

i
2) log q

′
o(e

i
1, e

i
2)

− q′o(e
i
1, e

i
2) log q

′(ei1, e
i
2)],

(16)

where q′o(e
i
1, e

i
2) and q′(ei1, e

i
2) represent the out-

put predictions of joint embedding and the uni-
modal embedding, respectively. Since we only
back-propagate through q′(ei1, e

i
2) in Eq. (9), LIAL

is equivalent to calculating the cross-entropy loss
over the two distributions:

LIAL = −q′o(e
i
1, e

i
2) log q

′(ei1, e
i
2). (17)

Dataset KG #Ent. #Rel. #Attr. #Rel tr. #Attr tr. #Image #Ref.

DBP15KZH−EN (Liu et al., 2021)
ZH 19,388 1,701 8,111 70,414 248,035 15,912 15,000EN 19,572 1,323 7,173 95,142 343,218 14,125

DBP15KJA−EN (Liu et al., 2021)
JA 19,814 1,299 5,882 77,214 248,991 12,739 15,000EN 19,780 1,153 6,066 93,484 320,616 13,741

DBP15KFR−EN (Liu et al., 2021)
FR 19,661 903 4,547 105,998 273,825 14,174 15,000EN 19,993 1,208 6,422 115,722 351,094 13,858

FB15K-DB15K (Liu et al., 2019)
FB15K 14,951 1,345 116 592,213 29,395 13,444 12,846DB15K 12,842 279 225 89,197 48,080 12,837

FB15K-YAGO15K (Liu et al., 2019)
FB15K 14,951 1,345 116 592,213 29,395 13,444 11,199YAGO15K 15,404 32 7 122,886 23,532 11,194

Table 5: Dataset Statistics.
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Therefore, similar to ICL, we can automatically
learn the relative weight of IAL for each modality
through task-dependent uncertainty. As mentioned
above, the total loss in Eq. (10) can be rewritten as:

L = LICL
o +

∑
m∈M

(
1

α2
m
LICL
m + logαm

)
+
∑

m∈M

(
1
β2
m
LIAL
m + log βm

)
,

(18)

where αm, βm are learnable parameters. Large αm

(βm) will decrease the contribution of LICL
m (LIAL

m )
for the m-th modality, whereas small αm (βm) will

increase its contribution.

B Dataset Statistics

The detailed dataset statistics are listed in Ta-
ble 5, including the number of entities (#Ent.), rela-
tions (#Rel.), attributes (#Attr.), number of relation
triples (#Rel tr.) and attribute triples (#Attr tr.),
number of images (#Image), and number of refer-
ence entity alignments (#Ref.). It is worth noting
that not all entities have the associated images or
the equivalent counterparts in the other KG.


