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Abstract

Few-shot named entity recognition (NER) aims
at identifying named entities based on only few
labeled instances. Current few-shot NER meth-
ods focus on leveraging existing datasets in the
rich-resource domains which might fail in a
training-from-scratch setting where no source-
domain data is used. To tackle training-from-
scratch setting, it is crucial to make full use
of the annotation information (the boundaries
and entity types). Therefore, in this paper, we
propose a novel multi-task (Seed, Expand and
Entail) learning framework, SEE-Few, for Few-
shot NER without using source domain data.
The seeding and expanding modules are respon-
sible for providing as accurate candidate spans
as possible for the entailing module. The entail-
ing module reformulates span classification as a
textual entailment task, leveraging both the con-
textual clues and entity type information. All
the three modules share the same text encoder
and are jointly learned. Experimental results
on four benchmark datasets under the training-
from-scratch setting show that the proposed
method outperformed state-of-the-art few-shot
NER methods with a large margin. Our code
is available at https://github.com/
unveiled-the-red-hat/SEE-Few.

1 Introduction

Named entity recognition (NER), focusing on iden-
tifying mention spans in text inputs and classifying
them into the pre-defined entity categories, is a
fundamental task in natural language processing
and widely used in downstream tasks (Wang et al.,
2019; Zhou et al., 2021; Peng et al., 2022). Super-
vised NER has been intensively studied and yielded
significant progress, especially with the aid of pre-
trained language models (Devlin et al., 2019; Li
et al., 2020; Mengge et al., 2020; Yu et al., 2020;
Shen et al., 2021; Li et al., 2021a; Chen and Kong,
2021). However, supervised NER relies on plenty
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of training data, which is not suitable for some
specific situations with few training data.

Few-shot NER, aiming at recognizing entities
based on few labeled instances, has attracted much
attention in the research filed. Approaches for few-
shot NER can be roughly divided into two cate-
gories, span-based and sequence-labeling-based
methods. Span-based approaches enumerate text
spans in input texts and classify each span based
on its corresponding template score (Cui et al.,
2021). Sequence-labeling-based approaches treat
NER as a sequence labeling problem which as-
signs a tag for each token using the BIO or IO tag-
ging scheme (Yang and Katiyar, 2020; Hou et al.,
2020; Huang et al., 2021). Most of these span-
based and sequence-labeling-based methods focus
on leveraging existing datasets in the rich-resource
domains to improve their performance in the low-
resource domains. Unfortunately, the gap between
the source domains and the target domains may
hinder the performance of these methods (Pan and
Yang, 2009; Cui et al., 2021). Moreover, these ap-
proaches might fail under the training-from-scratch
setting where no source domain data is available.

Therefore, it is crucial to make full use of the in-
domain annotations, which consist of two types of
information: boundary information and entity type
information. However, most the approaches men-
tioned above fail to fully utilize these information.
(1) Most span-based methods simply enumerate all
possible spans, ignoring the boundary information
of named entities. As a large number of negative
spans are generated, these approaches suffer from
the bias, the tendency to classify named entities
as non-entities. (2) Most sequence-labeling-based
methods simply employ one-hot vectors to repre-
sent entity types while ignoring the prior knowl-
edge of entity types.

To overcome the disadvantages mentioned
above, firstly, inspired by three principles for
weakly-supervised image segmentation, i.e. seed,
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expand and constrain (Kolesnikov and Lampert,
2016), we seed with relatively high-quality uni-
grams and bigrams in the texts, then expand them
to extract the candidate spans as accurately as possi-
ble. Secondly, we cast span classification as textual
entailment to naturally incorporate the entity type
information. For example, to determine whether “J.
K. Rowling” in “J. K. Rowling is a British author.”
is a PERSON entity or a non-entity, we treat “J. K.
Rowling is a British author.” as a premise, then
construct “J. K. Rowling is a person.” and “J. K.
Rowling is not an entity.” as hypotheses. In such
way, span classification is converted into determin-
ing which hypothesis is true. Moreover, the size of
training data is increased by such converting which
is beneficial for few-shot settings.

In this paper, we propose SEE-Few, a novel
multi-task learning framework (Seed, Expand and
Entail) for Few-shot NER. The seeding and ex-
panding modules are responsible for providing
as accurate candidate spans as possible for the
entailing module. Specifically, the seed selector
chooses some unigrams and bigrams as seeds based
on some metrics, e.g., the Intersection over Fore-
ground. The expanding module takes a seed and
the window around it into account and expands it
to a candidate span. Compared with enumerating
all possible n̂-gram spans, seeding and expanding
can significantly reduce the number of candidate
spans and alleviate the impact of negative spans
in the subsequent span classification stage. The
entailing module reformulates a span classification
task as a textual entailment task, leveraging contex-
tual clues and entity type information to determine
whether a candidate span is an entity and what
type of entity it is. All the three modules share
the same text encoder and are jointly learned. Ex-
periments were conducted on four NER datasets
under training-from-scratch few-shot setting. Ex-
perimental results show that the proposed approach
outperforms several state-of-the-art baselines.

The main contributions can be summarized as
follows:

• A novel multi-task learning framework (Seed,
Expand and Entail), SEE-Few, is proposed for
few-shot NER without using source domain
data. In specific, the seeding and expanding
modules provide as accurate candidate spans
as possible for the entailing module. The en-
tailing module reformulates span classifica-
tion as a textual entailment task, leveraging

contextual clues and entity type information.

• Experiments were conducted on four NER
datasets in training-from-scratch few-shot set-
ting. Experimental results show that the pro-
posed approach outperforms the state-of-the-
art baselines by significant margins.

2 Related Work

2.1 Few-shot NER

Few-shot NER aims at recognizing entities based
on only few labeled instances from each category.
A few approaches have been proposed for few-
shot NER. Methods based on prototypical network
(Snell et al., 2017) require complex episode train-
ing (Fritzler et al., 2019; Hou et al., 2020). Yang
and Katiyar (2020) abandon the complex meta-
training and propose NNShot, a distance-based
method with a simple nearest neighbor classifier.
Huang et al. (2021) investigate three orthogonal
schemes to improve the model generalization abil-
ity for few-shot NER. TemplateNER (Cui et al.,
2021) enumerates all possible text spans in input
text as candidate spans and classifies each span
based on its corresponding template score. Ma
et al. (2021) propose a template-free method to re-
formulate NER tasks as language modeling (LM)
problems without any templates. Tong et al. (2021)
propose to mine the undefined classes from miscel-
laneous other-class words, which also benefits few-
shot NER. Ding et al. (2021) present Few-NERD, a
large-scale human-annotated few-shot NER dataset
to facilitate the research.

However, most of these studies follow the man-
ner of episode training (Fritzler et al., 2019; Hou
et al., 2020; Tong et al., 2021; Ding et al., 2021)
or assume an available rich-resource source do-
main (Yang and Katiyar, 2020; Cui et al., 2021),
which is in contrast to the real word application
scenarios that only very limited labeled data is
available for training and validation (Ma et al.,
2021). EntLM (Ma et al., 2021) is implemented
on training-from-scratch few-shot setting, but still
needs distant supervision datasets for label word
searching. The construction of distant supervi-
sion datasets requires additional expert knowledge.
Some works study generating NER datasets au-
tomatically to reduce labeling costs (Kim et al.,
2021; Li et al., 2021b). In this paper, we focus on
the few-shot setting without source domain data
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Label Annotations

PER: person entities
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NONE: non-entities
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Figure 1: The architecture of the proposed approach, SEE-Few, which consists of three main modules: seeding,
expanding, and entailing.

which makes minimal assumptions about available
resources.

2.2 Three Principles for Weakly-Supervised
Image Segmentation

Semantic image segmentation is a computer vision
technique which aims at assigning a semantic class
label to each pixel of an image. Kolesnikov and
Lampert (2016) introduce three guiding principles
for weakly-supervised semantic image segmenta-
tion: to seed with weak localization cues, to expand
objects based on the information of possible classes
in the image, and to constrain the segmentation
with object boundaries.

3 Methodologies

3.1 Problem Setting
We decompose NER to two subtasks: span ex-
traction and span classification. Given an input
text X = {x1, . . . , xn} as a sequence of tokens,
a span starting from xl and ending with xr (i.e.,
{xl, . . . , xr}) can be denote as s = (l, r), where
1 ≤ l ≤ r ≤ n. The span extraction task is to
obtain a candidate span set C = {c1, . . . , cm}
from the input text. Given an entity type set
T+ = {t1, . . . , tv−1} and the candidate span set
C produced by span extraction, the target of span
classification is assign an entity category t ∈ T+ or
the non-entity category to each candidate span. For
convenience, we denote an entity type set including

the non-entity type as T = {t1, . . . , tv−1, tnone},
where tnone represents the non-entity type and v is
the size of T.

3.2 The Architecture

Figure 1 illustrates the architecture of the proposed
approach, SEE-Few, which consists of three main
modules: seeding, expanding, and entailing. The
input text will first be sent to the seeding module
to generate informative seeds, then the seeds will
be expanded to candidate spans in the expanding
module, finally the candidate spans will be classi-
fied with an entailment task in the entailing module.
We will discuss the details of each modules in the
following sections.

3.2.1 Seeding

Given an input text X = {x1, . . . , xn} consisting
of n tokens, a unigram consists of one token and
a bigram consists of two consecutive tokens. We
denote the set of unigrams and bigrams in the input
text as S = {s1, . . . , s2n−1}, where si = (li, ri)
denotes i-th span, and li, ri denote the left and right
boundaries of the span respectively.

Seeding is to find the unigrams and bigrams that
overlap with entities and have the potential to be
expanded to named entities, which is important for
the following seed expansion. It can be accom-
plished by constructing a seeding model and pre-
dicting the seed score for each candidate unigram
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or bigram.
Firstly, we feed the input text into BERT to ob-

tain the representation h ∈ Rn×d, where d is the
dimension of the BERT hidden states. For the span
si = (li, ri), its representation hseedi is the concate-
nation of the mean pooled span representation hpi
and the representation of the [CLS] token h[CLS].
The seed score is calculated as follows:

hpi = MeanPooling(hli , . . . , hri) (1)

hseedi = Concat(hpi , h
[CLS]) (2)

pseedi = Sigmoid(MLPs(h
seed
i )) (3)

where MLP denotes the multilayer perceptron with
a GULE function in the last layer. We set the thresh-
old α and select the span whose seed score is above
α as a seed to expand.

To train the seeding model, we need to construct
a dataset consisting of unigrams (bigrams) and their
seeding scores. We construct the seed score based
on Intersection over Foreground (IoF). Intersection
over Union (IoU) is used to measure the overlap be-
tween objects in object detection which is defined
as IoU(A,B) = A∩B

A∪B in NER, where A and B are
two spans (Chen et al., 2020; Shen et al., 2021).
However, IoU is not suitable for the seeding stage.
Considering an entity consisting of five words, e.g.,
“International Conference on Computational Lin-
guistics”, IoU between the bigram “International
Conference” and the entity is 0.4, not significant.
Intersection over Foreground (IoF) can be a bet-
ter choice which is defined as IoF(A,B) = A∩B

A ,
where A is the foreground (i.e., a unigram or bi-
gram) and B is the background (i.e., a named en-
tity). In the above example, IoF between “Interna-
tional Conference” and the entity is 1.0, indicating
that it is part of the entity and has the potential to
be expanded to the whole entity. We assign each s
the IoF between it and its closed named entity as
the ground-truth seed score ŷseedi which indicates
the potential to be expanded to the whole entity.

3.2.2 Expanding
For named entities consisting of more than two
words, the seeds generated in seeding stage are
only part of them and need to be expanded to the
whole entities. Expanding is a regression task to
learn the boundary offsets ô between a seed and the
named entity closed to the seed.

Expanding is allowed to offset the left and right
boundaries of the seed by up to λ, respectively,
which means that the longest entity we can get is an
entity of length 2 + 2λ. Besides, expanding needs
to consider a window around the seed in addition
to the seed itself. For the seed si = (li, ri), the
maximum expansion is denoted as:

sexp_max
i = (min(1, li−λ),max(n, ri+λ)) (4)

If we use sexp_max
i as the window around si, it

may not provide enough information to distinguish
the boundaries for the maximum expansion. Thus,
the window for si should be larger than sexp_max

i ,
defined as wi:

wli = min(1, li − 2λ) (5)

wri = max(n, ri + 2λ) (6)

wi = (wli, w
r
i ) (7)

We concatenate the mean pooled span represen-
tation hpi of seed si and the mean pooled span repre-
sentation hwi of window wi. Then the offsets oi of
left and right boundaries are calculated as follows:

hwi = MeanPooling(hwl
i
, . . . , hwr

i
) (8)

hexpi = Concat(hpi , h
w
i ) (9)

oi = λ · (2 · Sigmoid(MLPe(h
exp
i ))− 1) (10)

where oi ∈ R2. The first element of oi can be
denoted as oli, indicating the offset of the seed’s
left boundary. Likewise, the second element ori
indicates the offset of the seed’s right boundary,
and oli, o

r
i ∈ [−λ, λ]. We can obtain the result

of expanding, i.e., a candidate span with the new
boundaries l′i and r′i:

l′i = max(1, li +

⌊
oli +

1

2

⌋
) (11)

r′i = min(n, ri +

⌊
ori +

1

2

⌋
) (12)

The duplicate results and invalid results that l′i >
r′i are discarded. At this point, a set of candidate
spans are produced for span classification.
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3.2.3 Entailing
The entailing module reformulates span classifica-
tion as a textual entailment task, leveraging con-
textual clues and entity type information. To cast
span classification as textual entailment, we need
to construct textual entailment pairs. For the i-th
candidate span ci, the entailment pair is constructed
as (X,Eji ), where Eji = {ci, is, a, tj} and tj ∈ T.
Please refer to Appendix A for detailed templates
used to construct entailment pairs. The entailment
label ŷentaili,j for (X,Eji ) can be obtained by:

ŷentaili,j =

{
entail, if ci belongs to tj
not entail, otherwise

(13)
The entailment pair (X,Eji ) is fed into the

shared text encoder to obtain the representation
of the [CLS] token h[CLS]Ei,j

∈ Rd and the binary
textual entailment classification can be performed:

pentaili,j = Softmax(MLPentail(h
[CLS]
Ei,j

)) (14)

To ensure that all ground-truth entities are
learned, we add ground-truth entities to the can-
didate span set C during the training phase.

3.3 Training Objective
Both seeding and expanding are regression tasks,
the seeding loss Lseed and expansion loss Lexp are
defined as follows:

Lseed =
∑
i

SmoothL1
(
ŷseedi , pseedi

)
(15)

Lexp =
∑
i

∑
j∈{l,r}

SmoothL1
(
ôji , o

j
i

)
(16)

For the entailing module, since the number of
instances with the not entail label is bigger
than the number of instances with the entail
label, we use focal loss (Lin et al., 2017) to solve
the label imbalance problem:

FL(p, y) =

{
−(1− pi,j)γ log(pi,j), if y = 1
−(pi,j)γ log(1− pi,j), otherwise

(17)

Lentail =
∑
i

∑
j

FL(pentaili,j , ŷentaili,j ) (18)

where γ denotes the focusing parameter of focal
loss.

The multi-task framework is trained by minimiz-
ing the combined loss defined as follows:

L = β1Lseed + β2Lexp + β3Lentail (19)

where β1, β2 and β3 are hyperparameters control-
ling the relative contribution of the respective loss
term.

3.4 Entity Decoding

The entailing module will output an entailment
score pentaili,j for the entailment pair (X,Eji ), where
Eji = {ci, is, a, tj}, ci ∈ C and tj ∈ T. We collect
all entailment pairs associated with the candidate
span ci, then assign ci the entity type with the high-
est entailment score. If two candidate spans have
overlap, the span with a higher score will be se-
lected as the final result.

4 Experiment Settings

4.1 Training-from-scratch Few-shot Settings

Different from most previous few-shot NER studies
that assume source-domain data is available, we
consider a training-from-scratch setting, which is
more practical and challenging. Specifically, we
assume only K examples for each entity class in the
training set and validation set respectively, where
K ∈ {5, 10, 20}.

4.2 Datasets Construction

For fair comparison, we manually construct the
few-shot datasets. With K ∈ {5, 10, 20}, we fol-
low the greedy sampling strategy in (Yang and Kati-
yar, 2020) to ensure the sample number K of each
category. To make the experimental results more
convincing and credible, we randomly sample 5
different groups of training sets and validation sets
for each K. We employ these strategies on four
NER datasets from different domains: CoNLL2003
dataset (Sang and De Meulder, 2003) in news do-
main, MIT-Restaurant dataset (Liu et al., 2013) in
review domain, WikiGold dataset (Balasuriya et al.,
2009) in general domain and Weibo dataset (He and
Sun, 2016) in social media domain. Table 2 shows
the statistics on these original datasets. The self-
constructed datasets are public available with the
code for reproducibility.
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Datasets Methods K = 5 K = 10 K = 20
P R F1 P R F1 P R F1

CoNLL03

LC-BERT 42.83 30.72 35.06(6.09) 50.36 52.13 51.20(6.39) 56.33 63.85 59.84(1.43)
Prototype 38.26 43.14 40.37(8.06) 45.08 64.02 52.82(3.22) 43.94 69.72 53.89(1.95)
NNShot 32.11 38.42 34.92(3.30) 34.10 40.98 37.18(5.82) 38.43 47.85 42.61(2.23)

StructShot 30.04 21.33 23.43(4.52) 38.62 19.72 26.09(7.23) 44.96 28.59 34.87(1.30)
TemplateNER 26.90 23.46 23.13(8.40) 44.51 43.99 44.01(4.82) 52.16 56.46 54.01(5.09)

Ours 60.45 51.27 55.21(3.93) 66.19 58.68 61.99(1.73) 69.49 67.07 68.21(2.60)

MIT-Restaurant

LC-BERT 41.21 38.65 39.88(3.79) 43.60 48.93 46.08(3.75) 56.24 60.04 58.07(1.50)
Prototype 27.77 46.79 34.84(1.63) 30.37 50.64 37.97(2.29) 37.91 59.31 46.25(1.62)
NNShot 28.15 34.81 31.11(2.30) 30.28 37.65 33.56(1.48) 36.72 45.55 40.66(1.26)

StructShot 45.13 25.00 31.93(4.32) 43.94 28.19 34.30(2.56) 52.08 36.18 42.69(1.12)
TemplateNER 23.11 20.78 21.53(4.66) 39.45 28.77 32.71(8.14) 46.93 37.00 41.26(6.80)

Ours 53.08 39.47 45.25(3.18) 57.19 46.41 51.20(1.48) 64.79 57.22 60.75(2.07)

WikiGold

LC-BERT 36.02 8.02 12.57(7.81) 43.13 8.95 37.72(7.20) 50.68 50.73 50.68(5.94)
Prototype 20.55 21.46 19.28(8.12) 23.31 45.21 30.59(3.95) 27.31 56.22 36.56(8.65)
NNShot 27.81 34.16 30.63(1.91) 26.36 37.92 30.93(4.89) 28.33 39.07 32.81(5.41)

StructShot 49.00 13.37 20.88(4.61) 43.21 14.19 21.28(2.96) 43.51 15.94 23.16(2.18)
TemplateNER 18.45 19.45 17.26(12.73) 38.33 45.37 41.04(13.19) 57.39 56.00 56.60(3.22)

Ours 61.23 41.01 48.87(8.01) 63.36 48.74 54.98(3.24) 69.06 58.25 63.19(1.28)

Weibo

LC-BERT 36.93 26.32 29.95(13.93) 46.49 53.19 49.54(3.96) 54.27 58.53 56.23(1.48)
Prototype 14.32 37.68 20.64(7.07) 21.27 59.42 31.25(2.64) 21.27 59.42 37.39(2.58)
NNShot 4.64 10.57 06.45(2.65) 6.58 13.73 08.90(1.27) 11.77 26.61 16.32(0.80)

StructShot 16.77 1.53 02.80(1.63) 38.48 3.21 05.91(1.93) 52.05 5.93 10.65(1.73)
TemplateNER 4.12 16.70 04.41(4.67) 5.12 27.27 08.31(3.11) 10.70 29.57 15.24(7.09)

Ours 49.51 48.51 48.67(4.05) 55.12 57.65 56.07(1.62) 57.10 57.70 57.21(1.62)

Table 1: Performance comparison of SEE-Few and baselines on four datasets under different Ks.

Dataset Domain Language # Class # Train # Test

CoNLL03 News English 4 14,987 3,684
MIT-Restaurant Review English 8 7,660 1,521
WikiGold General English 4 1,017 339
Weibo Social Media Chinese 8 1,350 270

Table 2: Statistics on the original datasets used to con-
struct our few-shot datasets.

4.3 Baselines
We compare the proposed model with five compet-
itive baselines.

LC-BERT (Devlin et al., 2019) BERT with a
linear classifier which is applied to project the con-
textualized representation of each token into the
label space.

Prototype (Huang et al., 2021) A method based
on prototypical network (Snell et al., 2017), repre-
sents the entity categories as vectors in the same
representation space of individual tokens and uti-
lizes the nearest neighbor criterion to assign the
entity category.

NNShot and StructShot (Yang and Katiyar,
2020) NNShot is a metric-based few-shot NER
method that leverages a nearest neighbor classi-
fier for few-shot prediction. StructShot is based
on NNShot and use the Viterbi algorithm for de-
coding predictions. These methods pre-train the

model with a dataset from other rich-resource do-
main (source domain) which is unavailable in our
training-from-scratch setting. We re-implement
them and directly apply them on target domains.

TemplateNER (Cui et al., 2021) A template-
based prompt learning method which fine-tunes
BART (Lewis et al., 2020) to generate pre-defined
templates filled by enumerating text spans from
input texts.

4.4 Implementation Details

For the proposed model and all the baselines except
TemplateNER, we implement them based on “bert-
base-uncased” for English datasets and “bert-base-
chinese” for Chinese datasets. TemplateNER uses
BART-large (Lewis et al., 2020) as the backbone
on English datasets and Chinese BART-large (Shao
et al., 2021) as the backbone on Chinese datasets.
For all the baselines, we use the recommended
parameters provided by the original paper or the
official implementation.

For the proposed model, the number of epochs is
35. The batch sizes of seeding and expanding are 1,
and the batch sizes of entailing are 16, 16, 16, 8 on
CoNLL03, MIT-Restaurant, WikiGold and Weibo,
respectively. The threshold αs on CoNLL03, MIT-
Restaurant, WikiGold and Weibo, are set to 0.5, 0.6,
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Model
CoNLL03 MIT-Restaurant WikiGold Weibo

P R F1 P R F1 P R F1 P R F1

Full model 60.45 51.27 55.21 53.08 39.47 45.25 61.23 41.01 48.87 49.51 48.51 48.67
w/o seeding 63.20 45.46 52.36 53.45 38.11 44.15 61.79 36.66 45.68 56.46 40.72 47.23
w/o expanding 61.70 43.41 50.66 52.13 34.30 41.27 61.93 27.48 37.58 48.62 28.13 35.22
w/o entailing 50.93 41.15 45.01 46.60 31.43 37.13 69.39 28.47 40.02 38.32 22.58 27.14
w/o seed & exp 57.29 41.35 47.59 54.73 33.77 41.55 71.87 23.10 34.43 49.06 24.26 31.97
repl IoF with IoU 60.10 44.14 50.44 36.65 31.07 33.58 51.47 27.21 34.50 66.92 13.49 20.97

Table 3: Ablation study on 5-shot setting with the metrics of precision, recall and F1-score.

Model
CoNLL03 MIT-Restaurant WikiGold Weibo

|C| |C| / #Sen |C| |C| / #Sen |C| |C| / #Sen |C| |C| / #Sen

Full model 13464 (×0.15) 3.65 7435 (×0.28) 4.48 1461 (×0.11) 4.31 1030 (×0.04) 3.81
w/o seeding 59053 (×0.66) 16.03 17780 (×0.66) 15.74 9924 (×0.72) 29.27 19772 (×0.67) 73.23
w/o expanding 15055 (×0.17) 4.09 8281 (×0.31) 5.11 1662 (×0.12) 4.90 2093 (×0.07) 7.75
w/o entailing 19350 (×0.22) 5.25 7625 (×0.28) 4.68 1656 (×0.12) 4.88 1272 (×0.04) 4.71
w/o seed & exp 89648 (×1.00) 24.33 26991 (×1.00) 17.75 13833 (×1.00) 40.81 29352 (×1.00) 108.71
repl IoF with IoU 11190 (×0.12) 3.04 4098 (×0.15) 1.76 490 (×0.04) 1.45 276 (×0.01) 1.02

#Entity / #Sent 1.53 2.07 2.15 1.55

Table 4: Ablation study on 5-shot setting with entity-related statistics. |C| denotes the number of candidate spans
during the testing phase. |C| / #Sen denotes the average number of candidate spans per sentence during the testing
phase. #Entity / #Sent denotes the average number of named entities per sentence. (·) indicates the ratio to the
number of candidate spans that produced by w/o seed & exp (e.g., the number of all unigrams and bigrams).

0.7, 0.7, respectively. λ is set to 5. The focusing pa-
rameter of focal loss γ is set to 2. β1, β2 and β3 are
set to 1, 1 and 1, respectively. The dropouts before
the seeding, expanding and entailing are set with a
rate of 0.5. The loss function is minimized using
AdamW optimizer with a learning rate of 3e-05
and a linear warmup-decay learning rate schedule.

5 Experimental Results

5.1 Overall Results

Table 1 shows the performances of the proposed
method and the baselines under different K-shot
settings. From the table, we can observe that: (1)
The proposed method performs consistently better
than all the baseline methods. Specifically, the F1-
scores of our model advance previous models by
+18.72%, +18.24%, +14.84%, +5.37% on Weibo,
WikiGold, CoNLL03 and MIT-Restaurant respec-
tively on 5-shot setting, which verifies the effective-
ness of our approach in exploiting few-shot data.
(2) Compared to baselines, our method can achieve
comparable performance with less training data.
Specifically, our approach achieves an F1-score
of 55.21% on CoNLL03 dataset on 5-shot setting,
which is better than the result of TemplateNER on
20-shot setting.

5.2 Ablation Study

To validate the effectiveness of different compo-
nents in our approach, we performed ablation ex-
periments on 5-shot setting with a series of variants
of SEE-Few. Table 3 shows the results with the
metrics of precision, recall and F1-score, and Ta-
ble 4 demonstrates how the number of candidate
spans changes in ablations. The variants are as
follows:

w/o seeding: removing the seeding module and
directly enumerating all unigrams and bigrams as
the seeds to expand. With the aid of expanding,
this variant reduces 32.25% unigrams and bigrams
on average. The recalls and F1-scores drop by
4.83% and 2.15% on average, respectively. The
results show that the reduction of candidate span
is mainly contributed by the seeding module and
this variant suffers from the bias, the tendency to
classify named entities as non-entities because of a
large number of negative spans.

w/o expanding: removing the expanding mod-
ule and directly using the seeds as candidate spans
to entail. With the aid of seeding, this variant
reduces 83.25% unigrams and bigrams on aver-
age. The recalls and F1-scores drop by 11.74%
and 8.32% on average, respectively. Without ex-
panding, this variant can not identify the entities
whose lengths are greater than 2, achieving worse
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unigram: Dorothea von Schlegel was born in 1764 in Berlin [1 ] .

score: 0.93 0.98 0.95 0.01 0.02 0.01 0.22 0.03 0.96 0.13 0.02 0.01

bigram: Dorothea von von Schlegel Schlegel was was born born in in 1764 1764 in in Berlin Berlin [1 [1 ] ] .

score: 0.96 0.97 0.25 0.01 0.01 0.05 0.08 0.47 0.67 0.05 0.02

Seed

Expand

𝛼=0.7

input: Dorothea von Schlegel was born in 1764 in Berlin [1 ] .

label: PER LOC

seeds: Dorothea, von, Schlegel, Berlin, Dorothea von, von Schlegel

Dorothea → Dorothea von von → von Schlegel Schlegel → von Schlegel Berlin → Berlin

Dorothea von → Dorothea von Schlegel von Schlegel → Dorothea von Schlegel

candidate spans: Dorothea von, von Schlegel, Berlin, Dorothea von Schlegel

Entail
type

candidate span
NONE PER LOC MISC ORG

Dorothea von 0.9041 0.0284 0.0108 0.0130 0.0109

von Schlegel 0.0993 0.7368 0.0150 0.0146 0.0119

Berlin 0.0820 0.0173 0.8427 0.0180 0.0137

Dorothea von Schlegel 0.0544 0.9387 0.0158 0.0179 0.0127

output:
Dorothea von Schlegel was born in 1764 in Berlin [1 ] .

PER LOC

Figure 2: Case study. The result was predicted by SEE-Few trained on WikiGold, 5-shot setting.

performance.

w/o entailing: replacing the entailing module
with a multi-class classifier. With the aid of seed-
ing and expanding, this variant reduces 83.5% uni-
grams and bigrams on average. The F1-scores drop
significantly by 12.17% on average, while drop-
ping more sharply on datasets with fine-grained
entity types (i.e., MIT-Restaurant and Weibo) than
on datasets with coarse-grained entity types (i.e.,
CoNLL03 and WikiGold). The results demonstrate
that the improvement comes from exploiting of con-
textual clues and label knowledge, and the entailing
module can better distinguish different entity types
than a multi-class classifier.

w/o seed & exp: removing both the seeding
module and the expanding module in the same
way as the w/o seeding and w/o seeding variants.
This variant is equivalent to the entailing module
classifying all the unigrams and bigrams into the
entity categories or the non-entity category. In
addition to a significant drop in performance, this
variant is time consuming. It is on average 28.50
times slower than the full model on Weibo dataset.

repl IoF with IoU: using IoU as the ground-truth
seed score instead of IoF during seeding, and keep-
ing the threshold αs on CoNLL03, MIT-Restaurant,
WikiGold and Weibo as 0.5, 0.6, 0.7, 0.7, respec-

tively. The results demonstrate that IoF is a better
choice to evaluate the qualities of unigrams and
bigrams than IoU.

All the above experiments show the effective-
ness of each component in our approach. Seeding
and expanding can significantly reduce the num-
ber of candidate spans and alleviate the impact of
negative spans in the subsequent span classification
stage. The entailing module leverages contextual
clues and entity type information benefiting span
classification.

5.3 Case Study

Figure 2 shows an example of model predictions.
We visualize the seed scores and observe that the
unigrams and bigrams contained in the ground-
truth entities are assigned with higher scores. The
threshold α is set to 0.7 in the experiment, so
“Dorothea”, “von”, “Schlegel”, “Berlin”, “Dorothea
von” and “von Schlegel”, totally 6 spans, are se-
lected as seeds to expand. Among them, “Berlin”
already hits the entity exactly, “Dorothea von” and
“von Schlegel” are both expanded to a ground-truth
entity “Dorothea von Schlegel”. Other seeds are
not expanded to the ground-truth entities, but do
not lead an error in the final output, attributed
to the success of the entailing module in deter-
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mining “Dorothea von” is not an entity, and as-
signing a higher score to “Dorothea von Schlegel”
with PER type than another candidate span (i.e.,
“von Schlegel”) overlapping with “Dorothea von
Schlegel”. Considering that in a data-scarce sce-
nario where error propagation is inevitable, our
approach can still mitigate the impact of error prop-
agation to a certain extent, which demonstrates the
superiority of the proposed paradigm.

6 Conclusion

In this work, we propose a novel multi-task (Seed,
Expand and Entail) learning framework, SEE-Few,
for Few-shot NER without using source domain
data. The seeding and expanding modules are re-
sponsible for providing as accurate candidate spans
as possible for the entailing module. The entail-
ing module reformulates span classification as a
textual entailment task, leveraging both the con-
textual clues and entity type information. All the
three modules share the same text encoder and are
jointly learned. To investigate the effectiveness
of the proposed method, extensive experiments are
conducted under the training-from-scratch few-shot
setting. The proposed method outperforms other
state-of-the-art few-shot NER methods by a large
margin. For future work, we will combine the
framework with contrastive learning to effectively
make use of limited data and further enhance the
performance of few-shot NER.
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Dataset Entity Type Template

CoNLL03

PER is a person.
LOC is a location.
MISC is a miscellaneous entity.
ORG is an organization.

MIT
Restaurant

Hours is a time.
Rating is the rating.

Amenity is an amenity.
Price is the price.
Dish is a dish.

Location is a location.
Cuisine is is a cuisine.

Restaurant_Name is a restaurant name.

WikiGold

PER is a person.
LOC is a location.
MISC is a miscellaneous entity.
ORG is an organization.

Weibo

GPE.NAM 是城市、国家的特指。
GPE.NOM 是城市、国家的泛指。
LOC.NAM 是地名的特指。
LOC.NOM 是地名的泛指。
ORG.NAM 是组织名的特指。
ORG.NOM 是组织名的泛指。
PER.NAM 是人名的特指。
PER.NOM 是人名的泛指。

Table 5: Entity types and their corresponding natural
language templates.


