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Abstract

Learning from multimodal data has become a
popular research topic in recent years. Mul-
timodal coreference resolution (MCR) is an
important task in this area. MCR involves re-
solving the references across different modal-
ities, e.g., text and images, which is a cru-
cial capability for building next-generation con-
versational agents. MCR is challenging as
it requires encoding information from differ-
ent modalities and modeling associations be-
tween them. Although significant progress has
been made for visual-linguistic tasks such as
visual grounding, most of the current works
involve single turn utterances and focus on sim-
ple coreference resolutions. In this work, we
propose an MCR model that resolves corefer-
ences made in multi-turn dialogues with scene
images. We present GRAVL-BERT, a unified
MCR framework which combines visual rela-
tionships between objects, background scenes,
dialogue, and metadata by integrating Graph
Neural Networks with VL-BERT. We present
results on the SIMMC 2.0 multimodal conver-
sational dataset, achieving the rank-1 on the
DSTC-10 SIMMC 2.0 MCR challenge with F1
score 0.783. Our code is available at https:
//github.com/alexa/gravl-bert.

1 Introduction

Powered by advances in machine learning, intelli-
gent agent systems have seen their capacity expand
in recent years. Devices with intelligent assistants
have become ubiquitous in everyday life. These
systems can handle short task-oriented dialogues,
but are limited to speech or text inputs and out-
puts. Motivated by the widespread adoption of
such agents and multimodal devices with screens
that house them, multimodal (visual-linguistic) un-
derstanding has become a promising discipline for
researchers. The next-generation of intelligent as-
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Figure 1: An example of Multimodal coreference reso-
lution (MCR). Based on the image and dialogue context,
there can be multiple ways to refer to the highlighted
red coat. Each of them require different information to
locate the target.

sistants are expected to jointly understand multi-
modal data, i.e., text, image, video, and audio to-
gether and their associations.

Within multimodal understanding, an important
area of research is Multimodal Coreference Res-
olution (MCR). It is a crucial capability as user
references can span across modalities in a multi-
modal environment. Moreover, MCR is a challeng-
ing problem even when compared to text coref-
erence resolution and visual question answering
tasks because, in MCR, two participants can simul-
taneously refer to objects while looking at a scene
from a shared perspective. In this dynamic frame
of reference, the notion of left/right, first/second is
constantly shifting and the model cannot rely on
the fixed position of objects in the scene. Different
from both VQA and textual anaphora resolution
tasks, there are distinct ways to refer to an object
in the MCR task. As the scene may contain a large
number of similar objects, it is natural to refer to
them by relative position with respect to other ob-
jects, front and back w.r.t the camera, and w.r.t.
accessory objects like shelves and tables, so as to
easily indicate the target object(s). Such references
are unusual in other related tasks.

Furthermore, as our focus is on the MCR task
within task-oriented dialogues, the objects being

https://github.com/alexa/gravl-bert
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referenced are typically associated with a back-end
database that also provides metadata information
such as price, brand, and size for these objects. This
adds an additional dimension to the coreferencing
task as the users can also refer to objects based on
these non-visual metadata attributes. Finally, as
conversations involve multi-turn dialogue, MCR
also requires reasoning over dialogue context to
resolve references like “show coat next to the shirt
you suggested previously". An example is shown
in Figure 1. Resolving these coreference cases
requires various multimodal information extraction
and reasoning capabilities. For example, to identify
“the red coat next to the black one", the model must
infer the target’s visual features (red), as well as its
neighborhood information (a black coat). The user
might also say “I’ll take the first one", if they are
choosing from one of the coats offered previously.

Notable progress has been made on multimodal
frameworks. Recent models have shown excellent
performance on various multimodal tasks including
Visual Question Answering (VQA) (Huang et al.,
2019b; Su et al., 2020), Visual Commonsense Rea-
soning (Zheng et al., 2020b; Su et al., 2020), Visual
Grounding (Zheng et al., 2020a; Deng et al., 2018)
and Image Captioning (Huang et al., 2019a). All
these models take both images and text as inputs.
Both visual and linguistic tokens are sent to an
autoencoder to learn shared representation and per-
form downstream tasks. However, such methods
are still not developed in a way to be able to solve
complex MCR scenarios. For example, they may
fail when a query has dialogue context instead of a
single short sentence, or when there are anaphoric
references in the query. Finally, most of these mod-
els are not designed to handle external knowledge
sources or to scale to hundreds of objects in a single
scene.

Motivated by these challenges, we propose a
new framework, GRAVL-BERT(Graphical Visual-
Linguistic BERT), that can simultaneously rea-
son over dialogues, objects and their relationships,
scene information, and object metadata. Our major
contributions are as follows:

1. We present GRAVL-BERT, a unified BERT-
based framework for encoding and reasoning
over dialogues grounded in scenes.

2. GRAVL-BERT
(a) Incorporates additional knowledge sources

in the form of object metadata to also sup-
port coreferencing based on non-visual fea-

tures like brand and price.
(b) Represents scene objects as a graph and en-

codes them using Graphical Convolutional
Network (GCN) to enable reasoning and
coreferencing involving complex spatial re-
lationships.

(c) Adds information about object’s surround-
ing by explicitly sampling from its neigh-
borhood and generating captions describ-
ing the object. This enables coreferencing
involving surrounding context (e.g., acces-
sory objects like shelves and tables)

3. Finally, we show the importance of pre-training
on dialogue dataset for the task of MCR.

We present results of GRAVL-BERT on the
SIMMC 2.0 dataset (Kottur et al., 2021) which
involves dialogues between a customer and an
agent in the shopping domain. We participate in
the SIMMC 2.0 challenge for the task of MCR,
where the goal is to resolve the references and
identify the target object(s) in the scenes. We
achieve SOTA performance with 0.76 object-level
F1 score on devtest set and 0.78 on test set. We
note that this dataset is available for research and
non-commercial use.

2 Related Works

Visual Grounding. Visual Grounding (VG) is an
area very close to MCR. Given a query, it aims to
find the most relevant target in an image. Some
widely-used datasets for VG are RefCOCO, Ref-
COCO+, and RefCOCOg (Yu et al., 2016). Their
queries are usually short and simple, e.g., the cat
jumping over the fence. JR-Net (Jain and Gandhi,
2021) which achieves SOTA on this task encodes
images and queries separately and then uses a joint-
reasoning and a multi-level fusion module to merge
the features and generate the results. VLT (Ding
et al., 2021) converts image features into the same
format as language token embeddings and uses
BERT followed by a masked decoder to locate the
target. A-ATT (Deng et al., 2018) concatenates
visual and linguistic features together and uses ac-
cumulative attention layers to focus on the key tar-
gets.

Visual-Linguistic Frameworks. Multimodal
frameworks that support visual (i.e., image, video)
and linguistic inputs (i.e., caption, dialogue) can
be fine-tuned for various tasks including MCR.
In early works, most models encoded visual and
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linguistic features separately and combined them
only at a later stage. For example, both MTN (Le
et al., 2019) and LXMERT (Tan and Bansal, 2019)
have two separate encoders for visual and linguistic
inputs and then use a query-aware encoder and
cross-modality encoder respectively to extract
visual features related to query text. In recent
works, increasing number of high-performing
models adopt an early-fusion strategy. They first
extract the regions of interest (ROI) features from
visual inputs, convert them into token embeddings,
and concatenate with text embeddings. Then
they employ BERT (Devlin et al., 2019) to
learn the cross-modal associations and perform
different tasks. For instance, ViL-BERT (Lu et al.,
2019) concatenates text embeddings and image
embeddings together and sends them to BERT.
Oscar (Li et al., 2020b), VinVL (Zhang et al.,
2021), 12-in-1 (Lu et al., 2020), Unicoder-VL
(Li et al., 2020a), and Unified VLP (Zhou et al.,
2020) all improve upon ViL-BERT by adding
better image features, new pretraining strategies,
or multiple datasets for pretraining. VL-BERT (Su
et al., 2020) is currently one of the most popular
benchmark frameworks for visual-linguistic tasks.
It uses Fast R-CNN to extract visual features of
objects and scene images, and concatenates them
with linguistic token embeddings. The combined
features are then fed into a BERT module, which
is fine-tuned for various downstream tasks.

Graphical Models. Aside from the aforemen-
tioned works, another approach is to represent
all ROIs in the scene as one graph. Graph R-
CNN(Yang et al., 2018) and GCN-LSTM (Yao
et al., 2018) encode images as graphs whose nodes
represent objects and edges represent the relation-
ships between objects. The generated graph repre-
sentations can be used for downstream tasks like
VQA and Image Captioning. (Damodaran et al.,
2021; Yang et al., 2019) show that scene graphs
improve model performance on these tasks.

3 Methodology

Problem Formulation. Given inputs
(D, I,N,M,Q) where D = {D1, D2, ..., Dk}
is the dialogue text split into k turns,
I = {I1, I2, ..., Ik} are the scene images for
the dialogue turns, Nj = {Nj1, Nj2, ...} is
the set of objects inside each scene Ij ∈ I ,
Mij = {M1,M2, ...} are the metadata attributes of
each object Nij and Q is the user query referring

to one or more objects, our task is to predict a
label yn ∈ {0, 1} for each object n ∈ N that
indicates whether the object n is being referenced
by the query. The user query can involve spatial
references, visual references, metadata based
references, or any combination of these.

Model Details. Our model builds upon VL-
BERT. We extend the framework from single ut-
terance input to multi-turn dialogue input, with
each dialogue turn associated with its respective
scene image. In addition, the scene objects can
have external knowledge base (e.g., metadata) as-
sociated with them. The architecture for our model
is shown in Figure 2. The model takes 4 differ-
ent streams of input: linguistic, visual, segment,
and position. Input from different streams are com-
bined via feature-wise addition.

The visual stream consists of the visual features
from the whole scene, the candidate object and its
surroundings. For each of the visual component,
we use Fast-RCNN (Girshick, 2015) to extract the
features and then augment it with bounding box
location to add spatial information. We further
add a GCN layer to explicitly capture the relative
position of each object with respect to others.

The linguistic stream includes the dialogue con-
text, user query and candidate object’s metadata.
We flatten the structure of metadata and convert it
into a string of the form “key1 value1 key2 value2
...”. We also add two special tokens, an integer
feature T which denotes the distance from the turn
when the object was last offered by agent, and a
string S, which indicates that the corresponding
visual features (in the visual stream) are from the
object’s surroundings and not the object itself.

The segment stream is used to distinguish the
dialogue context, user query and object metadata
inputs. It has three different values, corresponding
to these input types. The position stream contains
token positional embeddings, which is same as the
one used in the original BERT model.

Note that, we feed only one object into the
model at a time. This allows our system to
scale well for scenes that may contain large num-
ber of objects. For instance, in the SIMMC 2.0
dataset, many scenes contain more than 100 ob-
jects with metadata sequence length larger than
50 for each object, making it impractical to feed
all 5K object instances into the system. We
supplement our model with GCN based struc-
ture to mitigate strong independence assumptions
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 U1: Can you recommend a popular jacket? 
 S1: How do you like the red one on the     
 wall and the black one on the front rack? 
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 U2: How much is the black one? 
 S2: It's $34.99. 
 
 UQ: Ok. I want the red one on the wall. 

Figure 2: A visualization of our MCR model. It has four streams. The linguistic stream consists of dialogue, query,
metadata text, coreference distance and an object surrounding indicator token S. In this example, the coreference
distance is 2 because the candidate object is mentioned 2 turns earlier in the dialogue history. The visual stream
consists of visual features of the whole scene, the candidate object and its surrounding area. The scene features and
object features are repeated such that the visual stream has the same length as the linguistic stream. Image features
are extracted using Fast-RCNN backbone and processed by a GCN module. The segment stream is to distinguish
the dialogue, query and other tokens. The position stream indicates token positions.

implied by considering only one object at each
inference step. Furthermore, feeding more ob-
jects to GCN is less memory-intensive than VL-
BERT. This is because, for VL-BERT, the sequence
length consists of len(dialogue_history) +
len(metadata)+num(objects), while for GCN it
is just num(objects) and the dialogue history can
be arbitrarily long (e.g., >200 tokens for SIMMC).

We next describe the three major contributions
in our model: GCN Structure, Reference Distance,
and Environmental Information Encoding.

3.1 GCN Structure
In a scene with multiple objects, it is natural to
refer to an object using its attributes combined with
spatial information relative to other objects in the
scene. For instance, in the referring expression

“the black cat on the yellow sofa”, object attributes
are “black cat” and “yellow sofa” and the spatial
relationship is “on”. Graphical approaches can ef-
fectively capture such spatial relations by creating
edges between neighboring objects. We, therefore,
introduce a GCN layer in our model to augment
the raw visual features of an object (extracted from
Fast-RCNN) with information of its neighbors by
adding the spatial relationships between them.

Graph Formulation: We represent all the objects
in a scene as one graph. The nodes represent the
visual features of the objects and the edges rep-
resent the positional relationships between them.
An example is shown in Figure 3. There are four
basic edges: top, bottom, left, and right. We add
an additional node that represents the features of
the whole scene. It is connected to all the other
nodes with a fifth edge type - inside, that indicates
an object lies inside the scene. We expect this setup
to capture the global information of the full scene
into the object representations.
GCN Layer: For a node v with feature h0v, let its
neighbors be µ ∈ ε whose features are h0µ. Each
µ− v edge has a type l ∈ L. The purpose of GCN
is to update h0v using all h0µ.

We use the FiLM-GCN (Brockschmidt, 2020)
model. Proposed in 2019, it is a GCN specially de-
signed to support multiple edge types. Its equation
is represented as

βt
l,v, γ

t
l,v = g(htv; θg,l)

ht+1
v = l(

∑
u

l→v∈ε

(σ(γtl,v ⊙Wlh
t
u + βt

l,v); θt)

For a node v, its current representation htv is first
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Figure 3: An example of graph formulation. It consists
of five types of edges which indicate five positional rela-
tions between objects. The center scene node represents
the features of the whole image.

passed to a function g(·) to compute two variables:
the encoded representation βt

l,v and the element-
wise weight factor γtl,v associated with each edge
type l. The message passed from neighbors to v is
represented as the element-wise product of γtl,v and
Wlh

t
µ. It is added to βt

l,v and passed to an activation
function σ(·). The outputs are summed over all
edges of v and finally sent to a linear function l(·)
to become the new representation ht+1

v .

3.2 Reference Distance

During conversation with a multimodal agent, users
can refer to objects mentioned in an earlier turn of
the dialogue. For instance, as shown in Figure 1,
the user can refer to the red coat offered earlier by
the system by saying “the one you recommended
before”. To aid our model to look back in the
dialogue history for resolving such references, we
add a feature that indicates the distance from the
query to the most recent system-mention of the
candidate object in the dialogue history.

3.3 Environment Information Encoding

Scene images can contain visual entities that are
not direct target objects, e.g., wall, table, shelves
etc. As these entities are usually present in a small
region of the image, their features may be attenu-
ated during downsampling and not easily available
to VL-BERT. To address this issue, we employ the
following two approaches.
Object Surrounding: Sometimes the object re-
gion does not have all the information to allow for
reference resolution, e.g., in Fig 4, given only cen-
tral bounding box, it would be difficult to identify
whether the jacket is on a table or cabinet. There-

Figure 4: A sampling of object’s neighborhood. The
center bounding box does not provide enough features
for a model to recognize the ground cabinet. We sup-
plement this input by adding features from its left, right,
top and bottom directions.

fore, we sample regions of fixed size around the
object and feed them as supplementary informa-
tion in the visual stream. Sampling only from the
object’s immediate neighbourhood is based on the
intuition that people typically use items in the target
object’s vicinity to refer to it. The sampled region
size is a tunable hyperparameter. Specifically, in
this work, we consider eight surroundings regions
from 8 directions as shown in Figure 4.
Image Captioning: Image captioning models gen-
erate descriptions that include the surrounding con-
text in which an object is situated. For our task,
these models generate captions that contain refer-
ences to non-target objects, see Fig5. We use an
off-the-shelf captioning model and generate cap-
tions for each object in the scene. We then augment
our training dataset with captions as additional
metadata. The captioning model that we use, is
composed of an Alexnet (Krizhevsky et al., 2017)
image feature encoder and a LSTM (Hochreiter and
Schmidhuber, 1997) decoder. ROIs are extracted
from scene images, resized and used as model in-
puts. We also perform a cleanup to remove redun-
dancy from the generated captions before adding
them to our training set.

4 Experiments and Results

4.1 Dataset
We evaluate our approach on Situated and Inter-
active Multimodal Conversations (SIMMC) 2.0
dataset(Kottur et al., 2021) released as part of
DSTC10 Challenge 2021. It contains 11k task-
oriented dialogues between a user and an agent,
grounded in photo-realistic virtual reality (VR)
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(a) (b)

Figure 5: Examples showing additional metadata ex-
tracted from captions generated for scene objects. We
augment our training set with these generated attributes
to help with resolving coreferences involving surround-
ing context.

scenes from fashion and furniture stores. Each
example contains four elements: dialogue between
user and the agent, scene images associated with
each dialogue turn, object annotations and meta-
data for all objects within the scene, and the re-
ferring query. The dataset also provides spatial
relationship between objects (left, right, top, bot-
tom), which we use to construct graphs. The data
is split into train (65%), dev (10%), dev-test (10%),
and test-std (15%).

4.2 Experimental Setup
We continue to pre-train our model on in-domain
dialogues from the SIMMC Dataset using masked
language modeling (MLM) objective. We mask
30% dialogue tokens and train the model to predict
these tokens. The pre-trained model was then fine-
tuned for the MCR task by progressively building
on techniques described in Section 3. We limit the
dialogue context length to 3. This was done for
two reasons. First, from a practical standpoint, 512
tokens is the maximum sequence length that the
transformer module can consume. Secondly, it is
reasonable to assume that most users will refer to
objects seen recently in the context as opposed to
far back in the conversation. Further, we downsam-
ple negative examples to maintain positive-negative
ratio to 1 : 5 for training. We use object-level bi-
nary cross entropy for loss. All models are trained
on 4 Tesla V100-SXM2 GPUs.

As explained in Sec3.3, we use Alexnet-LSTM
captioning model to capture each object’s surround-
ing context by generating captions describing it.
In order to fine-tune the captioning model, we
mine queries from the SIMMC training set (us-
ing keyword-matching heuristics) that involve ref-
erences based on surrounding objects like tables,

Precision Recall F1

Dev Ours 0.74 0.83 0.78

Devtest Ours 0.74 0.78 0.76

Test
Ours N/A N/A 0.78
BART-based N/A N/A 0.76
Huang et al.
(2021)

N/A N/A 0.73

Table 1: Our model GRAVL-BERT’s performance w.r.t
object-level precision, recall and F1 scores on SIMMC
2.0 evaluation sets. Our model is compared with other
systems on test set. Only the F1 score is provided by
the DSTC challenge officials.

racks, stands etc. The captioning model is then
trained to generate these queries given enlarged
bounding boxes enclosing the corresponding target
objects as inputs. For this task, there are 1190 train-
ing examples. After training, we use the model to
generate captions for all scene objects, and then
perform a basic procedure to extract descriptions
of surrounding context from the captions. Specifi-
cally, we create a pool of non-target objects, search
the generated captions for these objects and con-
struct phrases on them. Finally, these phrases such
as “on the table” and “in the closet” are added to
the dataset as additional metadata text. An example
is presented in Figure 5.

For inference, we make predictions over all ob-
jects inside the scene. Objects with score ≥ 0.5 are
marked as referred objects. We report the model
performance with object-level precision, recall and
F1 score. DSTC10 uses object-level F1 score as
official metric. We report our results on devtest and
test set.

4.3 Primary Results

The results are shown in Table 1. The test pre-
cision and recall are missing as the ground truth
labels have not been released by the challenge of-
ficials and only F1 score is reported. Our model
has the highest performance among 16 participat-
ing teams. It outperforms the second best system1

(model based on BART (Lewis et al., 2020)) by
∼ 2.5% and the third best system (model based on
UNITER (Chen et al., 2020)) by ∼ 5%.

1https://github.com/KAIST-AILab/
DSTC10-SIMMC

https://github.com/KAIST-AILab/DSTC10-SIMMC
https://github.com/KAIST-AILab/DSTC10-SIMMC
https://github.com/KAIST-AILab/DSTC10-SIMMC
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Experiments Precision Recall F1

Vanilla VL-BERT 0.46 0.49 0.47

Mask-out Metadata 0.26 0.57 0.36

Mask-out Visual Feats 0.37 0.01 0.02

Table 2: Object-level precision, recall and F1 score of
models trained using different kinds of inputs. Measured
on validation set of SIMMC 2.0.

Experiments Precision Recall F1

Vanilla VL-BERT 0.46 0.49 0.47

Dialogue
Pre-trained 0.57 0.83 0.68
VL-BERT

VD-BERT 0.53 0.89 0.66

Table 3: Comparison of VD-BERT and VL-BERT. Both
pretrained on dialogue dataset using mask language
modeling. Measured on validation set of SIMMC 2.0.

4.4 Ablation Study

Contribution of Metadata and Visual Features.
To understand the impact of metadata information
and visual features in the model’s performance, we
start with vanilla VL-BERT and mask-out i.e. zero-
out either of the two features and then train and
evaluate the system with all the other inputs. As
seen in Table. 2, both metadata and visual features
provide complementary information and contribute
to the model’s final performance. When trained
without metadata features, the model cannot re-
solve coreferences based on attributes like brand
and price. At the same time, visual features are
essential for referencing based on visual character-
istics like color and pattern. The F1 score drops
close to zero when visual features are masked out
because, in this dataset, most queries involving ref-
erence by metadata attributes also include visual
characteristics, e.g., the blue Nike one.

Impact of Dialogue-Oriented Pre-training. To
quantify the importance of pre-training on dia-
logue datasets, we train our system with origi-
nal VL-BERT (pre-trained on Conceptual Cap-
tions (Sharma et al., 2018), Book Corpus (Zhu
et al., 2015) and English Wikipedia datasets) and
compare it with VL-BERT further pre-trained on
SIMMC 2.0 dialogue dataset. As shown in Table 3,
dialogue-specific pre-training provides significant
performance gain on the multimodal coreference

Experiments Precision Recall F1

Pretrained
VL-BERT

0.5734 0.8293 0.6780

+GCN 0.6432
(+0.0698)

0.8122
(−0.0175)

0.7179
(+0.0399)

+Reference
Distance

0.7249
(+0.0822)

0.8238
(+0.0118)

0.7712
(+0.0538)

+Neighbour
Features

0.7316
(+0.0067)

0.8248
(+0.0010)

0.7753
(+0.0041)

+Captions 0.7410
(+0.0093)

0.8306
(+0.0058)

0.7833
(+0.0080)

Table 4: Contribution of different modules. The experi-
ments are cumulative. “+” means the current experiment
is based on the above row with the indicated module
added. The change of metrics corresponding to above
row is shown in bracket. Performance is measured on
validation set of SIMMC 2.0.

Spatial Non-tgt Dialogue Meta- Pure
Objects History data Visual

Pretrained
VLBERT

5.0% 4.5% 3.7% 7.4% 4.0%

GRAVL-
BERT

1.8%
(−64%)

1.6%
(−64%)

1.1%
(−70%)

2.0%
(−73%)

1.7%
(−58%)

Table 5: Object-level error rate per coreference type.

task. We also fine-tune a VD-BERT (Wang et al.,
2020) model (pre-trained on VisDial (Das et al.,
2019) visual dialogues dataset). VD-BERT has
similar structure as VL-BERT but is trained on dia-
logues instead of captions. It provides similar gains
as dialogue pre-trained VL-BERT reinforcing our
hypothesis that dialogue pretraining is important
for this task. We use VL-BERT as our base archi-
tecture because it has been pre-trained on much
larger datasets compared to VD-BERT and thus
can provide better generalization.

Contribution of Various Model Components.
To study the contribution of each component of
our model architecture (GCN, reference distance,
surrounding features, and captions), we perform
ablation experiments. Starting from the dialogue
pre-trained VL-BERT, we add our modifications
incrementally and measure the gain in F1 score.
The results are in Table 4. Adding GCN and refer-
ence distance provides significant gains. Adding
surrounding features and captions further improves
the performance by 0.41% and 0.80% respectively.

Note that, most queries refer to an object using
multiple attributes. For example, “the red Nike
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shirt to the left of the blue one in the cabinet.”,
which includes references by color (red), brand
(Nike), relative position (left of the blue one) and
absolute position (in the cabinet). Some of these
information may be redundant and not jointly re-
quired to uniquely locate the target. This may ex-
plain only minor improvements in the last two rows
in Table 4.

4.5 Qualitative Analysis

We examine our model’s predictions to get a sense
of its strengths and weaknesses. We provide a
breakdown of the performance on different co-
reference types in Table 5. For this analysis, we
assigned examples to exactly one co-reference cat-
egory based on heuristics. Compared with baseline,
GRAVL-BERT provides significant improvement
on all types of coreferences. We notice that the
model is able to resolve complicated references
such as in Figure 6a. This example involves point-
ing to multiple objects and requires visual under-
standing and spatial reasoning (absolute and rela-
tive). In Figure 6b, the model is able to success-
fully utilize long dialogue context to resolve coref-
erences to two objects. We also looked at several
failure cases. To resolve the coreferences in these
cases, a deeper scene understanding is required.
For example, in Figure 6c, the model needs to infer
the number of cabinets, and then locate the second
one from the left. We show more examples in the
Appendix.

5 Conclusion and Discussion

In this work, we proposed a multimodal frame-
work GRAVL-BERT for MCR task. Our contri-
bution lies in systematically combining relevant
techniques such as utilizing external knowledge
sources (metadata, generated captions), GCN, sam-
pling object’s neighborhood, and dialogue-oriented
pre-training using a simple BERT-based architec-
ture to perform MCR within dialogues grounded in
scenes. We improved over the GPT-2 (Kottur et al.,
2021) based baseline by 33.9% absolute and 2.5%
over other concurrent work.

For future research in the topic we suggest sev-
eral avenues. As mentioned in Section 4.5, to iden-
tify objects with complex references, global infor-
mation is required e.g. number of cabinets in the
scene, price ranking among objects. Currently, our
model is unable to handle this complexity. We
believe adding specific encoders to extract these

(a) An example with correct predictions. There are two target
objects (highlighted with boxes), both of which our model
gets right. Coreferencing requires both visual (“brown one”,

“red and white sweaters”) and spatial understanding (“middle
of the top row”, “besides the bright blue jacket”).

(b) A successful example where the model is able to utilize
full dialogue context for coreferencing. In this case, the model
needs to obtain context from the first turn to point to the two
objects being referred in query.

(c) An example of incorrect case. Our model is not able to
locate “the second cabinet.”

Figure 6: Model predictions on few examples from
SIMMC 2.0 devtest set.

global features will be helpful.
In the pre-training stage, we trained our model

on dialogues using MLM. We expect that applying
prompt in this stage may have a promising perfor-
mance. Instead of training the model to learn to
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predict the randomly masked words, using a care-
fully designed prompt can teach model to focus on
the information that is helpful to our main task.

Lastly, there are cases where the user provides
very general descriptions and the information to
resolve the coreference is insufficient. For example,
the user refers to “the red sweater” while there are
multiple red sweaters in the scene. In this situation,
instead of trying to resolve the coreference, the
system may attempt to disambiguate. (e.g., “Which
sweater do you mean?”) We expect future work to
distinguish these kinds of situations.
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(a) An example of a correct case. The object in query is referred by its color and position.

(b) An example of a correct case. The object in query is referred by its brand.

Figure 7: More prediction results on devtest set.
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(a) An example of a correct case. The object in query is referred by its brand.

(b) An example of a correct case. The query refers to an object mentioned in early turns.

Figure 8: More prediction results on devtest set.
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(a) An example of an incorrect case. Our model is unable to figure out which ones are “affordable” and “good” without comparing
the price and rating of all objects.

Figure 9: More prediction results on devtest set.


