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Abstract

Many recent sentence-level event detection ef-
forts focus on enriching sentence semantics,
e.g., via multi-task or prompt-based learning.
Despite the promising performance, these meth-
ods commonly depend on label-extensive man-
ual annotations or require domain expertise
to design sophisticated templates and rules.
This paper proposes a new paradigm, named
dialogue-based explanation, to enhance sen-
tence semantics for event detection. By say-
ing dialogue-based explanation of an event,
we mean explaining it through a consistent
information-intensive dialogue, with the origi-
nal event description as the start utterance. We
propose three simple dialogue generation meth-
ods, whose outputs are then fed into a hybrid
attention mechanism to characterize the com-
plementary event semantics. Extensive experi-
mental results on two event detection datasets
verify the effectiveness of our method and sug-
gest promising research opportunities in the
dialogue-based explanation paradigm.

1 Introduction

Event detection (ED) is a crucial task in informa-
tion extraction, which aims to identify event trig-
gers (words or phrases that indicate events) and
classify triggers into predefined event types. For
example, we can identify the trigger weddings and
classify it into Marry event type from the text “Giu-
liani regularly officiated at weddings while in of-
fice”. Sentence-level event detection plays a dom-
inant role in event detection and is significant for
various downstream NLP tasks.

However, it is usually challenging to accurately
detect events in a single sentence due to the lim-
ited information. Therefore, most prior methods
on sentence-level event detection make improve-
ments by enhancing sentence semantics, being
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- [[got fired today. Could i get arrested for protesting? ]
User_1

(1 you do it from the strcet, no. But shouldn't you be trying to find a new job first man? | -
ser_

[ 3
@ [ Well that'l be for tomorrow, today im pissed and hurt |
User_1

°
[ Don't bother protesting. Update your resume, look for a new job. There's no win herev] -
ser_

TR R mg':] ®
-
nnow? Agemt

Figure 1: Two examples of dialogues from Reddit and
FOSAED, respectively.

divided into two categories. The first category
mainly involves leveraging other information ex-
traction tasks (e.g., named entity recognition and
relation extraction) via multi-task learning (Wad-
den et al., 2019; Lin et al., 2020; Van Nguyen et al.,
2021). However, these efforts highly depend on
task-specific annotation, costing a vast amount of
human effort. The other popular line of research ex-
ploits pretrained language models (PLMs), e.g., via
prompt-based learning(Gao et al., 2021; Lee et al.,
2021; Liet al., 2022; Hsu et al., 2022). MRC-based
methods, which treat a task as a Machine Reading
Comprehension task (Liu et al., 2020; Li et al.,
2020; Du and Cardie, 2020), can also be regarded
as a weaker version of prompt-based learning. One
common bottleneck among these methods lies in
their reliance on domain expertise and human ef-
forts to devise sophisticated templates and rules.

To enhance sentence semantics more effectively
and efficiently, this work proposes to use generative
models to generate contextual information for a
sentence in the form of a dialogue, which consists
of multiple utterances between different roles on a
particular topic.

As two motivation examples, Figure 1 shows two
real-world dialogues. In the utterance from User_1
in the first example, models are easily induced by
arrested and protesting thus identifying fired as an
attack event, but the subsequent utterances serve as
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() Original Sentence: Giuliani regularly officiated at weddings while in office.

Trigger: weddings Event: Marry
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@  Giuliani regularly officiated at weddings while in office.

User
He was a wedding planner.
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T think he's a funcral architect. He's a very good
architect. I'm not sure if he's an architect or a
funeral planner. I think he was a funeral designer.
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Giuliani regularly officiated at weddings while in office.
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I think he means the wedding where he was the one

‘What event does the previous sentence describe ?
who officiated J

Ah, that makes sense. I was thinking more of
the fact that he was a priest and not a priest.

)
)

feie- Shge- Zhge-

T was thinking the same thing. I think he was just
a priest, but he was also a priest at the wedding.

[
[
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He's a wedding architect.
(b) Original Sentence: 'z I|—4:17 1 Mk# @
Trigger: £:4 (metal barbed wire) ~ Event: 54 (Impurities )

( Find a metal barbed wire halfway through the meal)
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User =>Find a metal barbed wire halfway through the meal &

&

BREATT R B AT E

=> There are bones in the metal barbed wire? So powerful Bt
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== Hahahaha ha. | found it 00!! ot
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=Youto Bot

User —Find a metal barbed wire halfivay through the meal &
‘What event does the previous sentence describe ?

User —Find a metal barbed wire halfway through the meal &

AU B 1R T,
g

=>Tm really sorry to bring a bad dining experience o A.gm
my sweeite and why do you want a refund, my honey

® (g, i
-

User = There are nails in the dish

ok, ARk ?

-
=> My sweetie honey, is it a metal barbed wire ball? Agent

Figure 2: Examples of dialogue generation for a specific sentence with three methods: (1) Direct generation; (2)
Generation with a prompt; (3) Further training and generation. Figure (a) shows the dialogue generation using
method (1)(2) on ACE05-E™. Figure (b) shows the dialogue generation using method (1)(2)(3) on FOSAED-R.

an explanation that fired is an End-Position event.
In the second example, the dialogue provides clues
about a natural association among multiple events,
including physical feelings of user, food quality and
complaints about the restaurant. Based on these
two examples, we conjecture two main merits of
dialogues over plain narrative texts in terms of en-
riching event context. On the one hand, a dialogue
is more consistent with the original sentence (see
Section 4.5 and 4.6). On the other hand, each utter-
ance is an independent semantic unit requiring no
additional segmentation, which is non-trivial for a
plain text generated, e.g., by GPT-2. And more im-
portantly, the interaction between these utterances
provides room for refining the dialogue-based con-
text. In this paper, we refer the generated dialogue
for an event description to dialogue-based explana-
tion and call our method DESED: Dialogue-base
Explanation for Sentence-level Event Detection.

In order to generate semantically rich dialogue-
based explanation, we propose three methods based
on pretrained dialogue GPTs (Radford et al., 2018,
2019): (1) direct generation on the original sen-
tence; (2) generation with a prompt on the original
sentence; (3) generation after further training on
dialogue data in the same domain. The three meth-
ods are illustrated in Figure 2. Note that prompts
we use are quite simple, and identical prompts can
be used in our dialogue generation for different
events and datasets. In contrast, the aforemen-
tioned prompt-based methods require redesigning
templates and prompts, demanding expertise across
different domains.

To exploit the information of generated dia-

logues, we then propose three methods: (1) token-
level attention with the self-attention mechanism
of PLMs; (2) utterance-level attention with an utter-
ance gate; (3) hybrid attention combining the both.
We conduct experiments on ACE2005 and another
event detection dataset based on real-world data
curated by ourselves. Experimentally, our method
achieves competitive performance than previous
multi-task and prompt-based works.
Our main contributions include:

* We propose dialogue-based explanation, a
novel paradigm to enrich sentence semantics
for event detection by generating a consistent
dialogue on specific events.

We propose three conceptually simple meth-
ods to generate dialogue-based explanation
and design hybrid (token-level and utterance-
level) attention mechanisms that demonstrate
competitive results on two datasets.

Our experiments reveal that compared with
plain narrative contexts, dialogues are more
consistent with original sentences and contain
richer contextual knowledge for event detec-
tion, and appropriate prompts or dialogue data
in a specific domain can guide pretrained mod-
els to generate better event-centric dialogues.

2 Related Work

2.1 Sentence-level Event Detection

To identify a trigger and classify the trigger into
an event type from a sentence, traditional feature-
based methods rely heavily on manually designing
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features (Ahn, 2006; McClosky et al., 2011). With
the development of deep learning, neural networks
have been widely used in event detection. The
most common usage for neural networks is token
classification, which encodes and classifies each
token with various neural methods (Chen et al.,
2015; Nguyen et al., 2016; Sha et al., 2018). Fur-
thermore, graph based (Liu et al., 2018; Yan et al.,
2019), multi-task (Wadden et al., 2019; Lin et al.,
2020; Van Nguyen et al., 2021; Lu et al., 2022),
MRC-based (Liu et al., 2020; Li et al., 2020; Du
and Cardie, 2020), Seq2Seq-based(Sequence-to-
Sequence-based) (Lu et al., 2021; Hsu et al., 2022;
Paolini et al., 2021) methods have also been intro-
duced to sentence-level event detection.

2.2 Prompt-based Learning

Prompt-based learning aims to stimulate the knowl-
edge of PLMs to serve downstream tasks (Schick
and Schiitze, 2021). Unidirectional language mod-
els (e.g. GPTs (Radford et al., 2018, 2019)), bidi-
rectional language models (e.g. BERT (Kenton
and Toutanova, 2019)) and hybrid language mod-
els (e.g. BART (Lewis et al., 2020)) can all be
used as backbones. By retrieving similar instances
in the training set or adding manual definitions of
labels (Gao et al., 2021; Lee et al., 2021; Kumar
and Talukdar, 2021), or by converting information
extraction tasks to slot-filling tasks (Lu et al., 2021;
Hsu et al., 2022; Li et al., 2022), prompt-based
learning enables PLMs to have priori knowledge of
a task, thus contributing to the final performance.

2.3 Generation-based Dialogue System

Generation-based dialogue system can generate a
great diversity of responses which are not limited to
the existing corpus (Chen et al., 2017). By making
use of GPTs (Radford et al., 2018, 2019) and large
amount of dialogue data, generation-based models
can achieve excellent results on different languages
(Zhang et al., 2020; Wang et al., 2020).

3 Methodology

In this section, we present our dialogue-based ex-
planation for sentence-level event deteiction.

3.1 Task Description

In this paper, we formulate sentence-level event de-
tection as a sequence labelling task using BIO tag-
ging format. Given a trigger which evokes an event
EventType. Each token is tagged as B-EventType,

(a) s = original sentence
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Figure 3: Illustration of dialogue generation methods
and an example of dialogue generation with further
training on two roles.

I-EventType or O, indicating the token is at the
beginning, inside or outside of the trigger tokens.
Formally, denote S, ), M as instance set, la-
bel set and bidirectional language model. For a
sentence instance s € S, s = (S0, 51, .., SN,—1)-
In the general setting, representation h = M(s),
h € RNs*D where D is the hidden size of M.
When using BIO tagging format, the set of all tags
is &, the total number of £ is |E] = 2 x |Y| + 1.
To conduct sequence labelling, a weight matrix
W e RP*I€l and a bias term b € RI€I are intro-
duced to classify each token representation into a
tag in £. The classification logits p = hW + b,
p € RN-xI€l. The final labelling results e =
argmax(p), e € RV where ¢; is the tag of s;. The
optimization objective is set to a cross entropy loss
between classification logits p and golden tagging.

3.2 Dialogue Generation

A pretrained dialogue generation model G is used
to generate dialogues. The overview of dialogue
generation is shown in Figure 3.

3.2.1 Direct Generation

Given a sentence instance s = (Sg, S1, .-, SN, —1)s
the goal is to generate Ny utterances. s is firstly
fed into G to obtain an utterance u!, u! = G (s).
Then s and u' are concatenated as dialogue history
which is fed into G to get a new response utterance
u?, u? = G(s + u'). Circulating repeatedly, until
uNU is obtained, uNU = G(s+ul 4+ FulNvTl),

3.2.2 Generation with a Prompt

To make the generated dialogue more focused on
a particular topic, we propose to adding a straight-
forward prompt at the end of the original sentence,
(e.g. What event does the previous sentence de-
scribe?), which means s = s + prompt. The
procedure described in 3.2.1 is then repeated until
Ny utterances are obtained.
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(c) Hybrid Attention
O O B-Marry -+ [¢]
Classifier

Utterance
Gate

i

% BERT
I

[CLS] s [SEP] u' [SEP] -
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[SEP] uv
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Figure 4: Different attention mechanisms of exploiting
dialogue information. Figure (a) illustrates the token-
level attention; Figure (b) illustrates the utterance-level
attention; Figure (c) illustrates the hybrid attention.

3.2.3 Further Training and Generation

When dialogue data is provided for a dataset, fur-
ther training can be carried out based on this data.

For the dialogue data with k roles, k different
dialogue models are trained with role-specific re-
sponses in order to model the characteristics of dif-
ferent roles. When inferring, k different dialogue
models are used alternatively to generate utterances
from different roles. An example of dialogue gener-
ation on two roles is shown on the right of Figure 3.

3.3 Exploitation of Dialogue Information

We exploit generated dialogue information through
different attention mechanisms based on sequence
labelling. The overview is illustrated in Figure 4.

3.3.1 Token-level Attention

By encoding the concatenation of the original sen-
tence and generated utterances simultaneously with
a bidirectional language model M, we can take ad-
vantage of the self-attention mechanism and the
ability to capture long-range dependencies in M.
Given a sentence instance s and generated utter-
ances u',...u™"V, we use the separator token of
M (e.g. [SEP] for BERT) to concatenate the origi-
nal sentence and all utterances. Thus the combined
input ¢ = s [SEP] u! [SEP] ... [SEP] u’V. After
obtaining contextual representations by feeding c
into M, the token representations corresponding
to s are classified into specific tags by a classifier.

3.3.2 Utterance-level Attention

Due to the uncertainty of G, generated utterances
may be disorganized and rambling. Directly com-
bining and applying self-attention mechanism may

introduce noise to the representation of the original
sentence. We therefore propose to use an utterance
attention mechanism and an utterance gate to inte-
grate dialogue information into the representation
of the original sentence.

Given a sentence instance s and generated utter-
ance u', ..., u’NV, assuming that the original sen-
tence and all utterances are of length n. As shown
in Figure 4(b), feeding them into M, we can ob-
tain representation h = (hY, h',... h"NU), where
h0 is the representation of s; hi, j > 1, is the
representation of w’. Forall ht,i > 0, ht € R,

An attention mechanism is applied to get a dia-
logue state d with the representation of [CLS] token
thLS] and learned attention weight «;:

Ny ‘
d=> o foLs): d ¢ RP (1)
=0
€ i
0 = o) __ @)
ijo exp(s;)

si = tanh (hfg g - (Wa - (higrg)” +ba)) (3)

where W, and b, are the weight matrix and the
bias term of a feed-forward neural network, s; is
the relevance score between the original sentence
s and an generated utterance u’.

Knowing that d is the semantic abstraction of the
whole dialogue, we further propose an utterance
gate to fuse d into token representations of s.

For the representation of the original sentence

hO = (hY, R, ... hY_,), the fused representation

p = (po,P1,--.,Pn—1) is computed as below:
pi=h! | f; )
fi=0iohi+(1—0;)od (5)

0; = sigmoid((h) || d) - W, +b,)  (6)

where || is the notation for the concatenation of
two vectors, o indicates scalar multiplication, W
and b, are the weight matrix and the bias term
of a feed-forward neural network. 6 can be seen
as a dynamic threshold to determine how much
dialogue information needs to be incorporated into
token representations. A classifier is then applied
on p to get the final tagging result.

3.3.3 Hybrid Attention

To cover different levels of attention, we propose
to use attention mechanisms at both token-level
and utterance-level. To get a representation h°¢
with token-level attention, combined sentence ¢
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Form #Docs #Sents
Labelled
User Reviews 4,226 4,226
Cunlabe“.ed 7,155 309,295
onversations

Table 1: Statistics of FOSAED. We show the number of
documents and sentences for different forms of data.

Dataset Split  #Sents  #Events

Train 19,216 4,419

ACEO5-E™  Dev 901 468
Test 676 424

Train 3,380 3,893

FOSAED-R  Dev 423 494
Test 423 512

Table 2: Dataset statistics. We show the number of
sentences and events for different splits.

is fed into M: h¢ = M(c). Then the utterance
attention mechanism and utterance gate are applied
to compute the dialogue state d and fuse d into
h°. Finally token classification is conducted on the
fused representations corresponding to s.

4 Experiments

4.1 Experimental Setup

4.1.1 Datasets and Evaluation Metrics

We evaluate on two event detection datasets,
ACE2005 (Doddington et al., 2004) and FOSAED.
ACE2005, a collection of documents from a di-
versity of domains, is the most widely used dataset
for event extraction. For data split and preprocess-
ing, we follow Lin et al. (2020), which adds back
pronouns and multi-token triggers. We use the En-
glish version which covers 8 event types and 33
event subtypes and refer to it as ACEO5-E™.
Aiming at evaluating DESED on a specific do-
main, we curate and propose a new dataset named
FOSAED (Food Safety on User Reviews for Event
Detection). FOSAED is a real-world Chinese event
detection dataset, consisting of sentence-level user
reviews (reviews posted by users about orders and
restaurants) in the domain of food safety based on
a leading e-commerce platform for food service.
FOSAED focuses on 4 event types and 21 event
subtypes. Each event type and event subtype cor-
respond to a food safety issue (e.g. Abnormalities,
Uncomfortable and Undercooked). To support fur-
ther training, a number of unlabelled conversations
are collected, which are in the same domain (i.e.,

food safety) as the user reviews. These conver-
sations are dialogues between users and agents,
and have two sources: text conversations (users
communicate online with after-sale agents via text
messages) and phone conversations (users commu-
nicate with after-sale agents via telephone). Statis-
tics of FOSAED are shown in Table 1. We treat the
conversations as the further training dialogue data
and conduct event detection on the user reviews.
The version is denoted as FOSAED-R.

Statistics of ACEO5-E+ and FOSAED-R are
shown in Table 2.

For evaluation, we use the same criteria in pre-
vious work (Li et al., 2013; Wadden et al., 2019;
Lin et al., 2020) and report F1-scores in our exper-
iments. Trig-I: A trigger is correctly identified if
its offset match any of the gold triggers. Trig-C:
The span of the trigger is correctly identified and
its event type is also correctly classified.

4.1.2 Baselines

We compare DESED to baselines with multi-task
learning and prompt-based learning. Specifically,
we compare with: (1) BILSTM+CRF(Hochreiter
and Schmidhuber, 1997; Lafferty et al., 2002),
using a bi-directional long short-term memory
network and a conditional random field layer;
(2) DMBERT (Wang et al., 2019), using BERT
and dynamic multi-pooling mechanism to assem-
ble features; (3) BERT(Kenton and Toutanova,
2019), fine-tuning BERT for token classification;
(4) BERT_QA_TRIGGER(Du and Cardie, 2020),
converting event detection to a MRC task; (5)
OnelE(Lin et al., 2020), a span-based model with
multi-task learning; (6) FourIE(Van Nguyen et al.,
2021), a span-based model using Graph Convo-
lutional Networks with multi-task learning; (7)
Text2Event(Lu et al., 2021), using a Seq2Seq
model to generate a manually designed structure
for each event; (8) DEGREE(Hsu et al., 2022), tak-
ing advantage of a Seq2Seq model with manually
designed templates and prompts; (9) PILED(Li
et al., 2022), using a prompt-based method to iden-
tify a event then adding event-specific demonstra-
tion to localize a trigger; (10) TANL(Paolini et al.,
2021), treating multi-task as translation between
augmented natural language and predicting struc-
tures with designed annotations; (11) UIE(Lu et al.,
2022), using a unified text-to-structure generation
with multi-task and prompt-based learning.
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-E* B
Category \ Methods |  ACEO05-E | FOSAED-R
| | Trig-I  Trig-C | Trig-I  Trig-C
BiLSTM+CRF 72.9 69.3 71.5 70.8
Basic DMBERT 73.5 69.5 72.8 714
BERT 73.4 70.5 73.6 71.5
MRC-based | BERT_QA_TRIGGER | 74.6 715 | 729 71.8
. OnelE* 75.6 72.8 - -
Multi-task | gy g 767 733 - -
Text2Event* - 71.8 - -
Prompt-based | DEGREE* 76.7 72.7 - -
PILED* - 73.4 - -
Multi-task and | TANL* 71.5 68.4 - -
Prompt-based UIE* - 73.4 - -
Dialogue-based Direct Generation 76.2 72.3 75.8 74.3
Ex la%lation‘ DESED | Generation with a Prompt | 76.9 73.5 75.8 74.3
P Further Training - - 75.6 744

Table 3: Experimental results of sentence-level event detection on ACE05-E™ and FOSAED-R (F1-score, %). The
best results are in boldface. * indicates results cited from the original paper.

4.1.3 Implementation Details

For all experiments on sequence labelling, we se-
lect AdamW for optimization with a learning rate
of 3e-5, weight decay of 5e-5, adam € of 1e-8 and
max gradient norm of 1.0. The max sequence
length is set to the max token length in a batch,
and the total max sequence length is set to 256
for ACEO5-E™ and 512 for FOSAED-R. We use
a linear layer with a dropout rate of 0.3 for the
classifier. Each model is trained for 10 epochs
and choose the checkpoint with the best valida-
tion performance on the development set. For
ACEO5-E™, we use a batch size of 4 and gradi-
ent accumulation step of 4, and BERT-large is
applied as backbone. For FOSAED-R, we use
a batch size of 4 and gradient accumulation step
of 2, and BERT-base-Chinese is applied as back-
bone. We do all the experiments on NVIDIA
Tesla V100. Our codes and datasets are released at
https://github.com/Ydongd/DESED.

In order to generate grammatically correct and
semantically rich dialogues, we use DialoGPT-
large for ACEO5-E™ and CDial-GPT1,ccc—large
for FOSAED-R as pretrained dialogue generation
models. Four prompts are used to generate dia-
logues. We generate 1-5 utterances from an origi-
nal sentence and report the best results. For further
training on dialogue data, since there is no suitable
and sufficient dialogue data in ACE05-E™, we only
conduct further training on FOSAED-R.

For unlabelled conversations in FOSAED, we
first eliminate mechanical responses according to

rules and merge consecutive utterances with the
same role, then select the utterances with events
(detected by a BERT model) and the next five
responses from those utterances as the dialogue
dataset which is used to train a user dialogue model
and an agent dialogue model. For the user dialogue
model, there is 36,395 dialogues in the training set
and 4,678 dialogues in the development set; while
for the agent dialogue model, there is 36,236 dia-
logues in the training set and 4,630 dialogues in the
development set. When further training, we use a
learning rate of 3e-5 and a max gradient norm of
1.0. We train the model for 10 epochs with 5000
warmup steps. The batch size is set to 8 and the
gradient accumulation steps is set to 32, which is
equivalent to a batch size of 256.

4.2 Main Results

From Table 3, we can see that DESED outper-
forms basic sequence labeling models (e.g., BiL-
STM+CRF and DMBERT) as expected. Compared
with the robust BERT token classification method,
DESED also achieves improvements of 4.3% Trig-
C F1 on ACEO5-E™ (73.5% v.s. 70.5%) and 4.1%
Trig-C F1 on FOSAED-R (74.4% v.s. 71.5%). The
superiority of DESED can also be easily observed
by comparing it against a series of multi-task and
prompt-based methods. These results prove the
overall feasibility and effectiveness of our dialogue-
based explanation paradigm.

On ACEO5-E*, generation with a prompt yields
better results than direct generation. The possible
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https://github.com/Ydongd/DESED

_Et -

Generation ‘ Att ‘ ACE0S-E ‘ FOSAED-R
| | Trig-I  Trig-C | Trig-I  Trig-C

T 74.6 71.6 75.8 74.3

Direct U 74.9 71.8 75.0 73.4
H 76.2 72.3 75.7 73.8

T 75.2 72.3 75.1 73.7

Prompt U 76.2 73.5 75.8 74.3
H 76.9 73.3 74.3 72.9

T - - 74.3 72.9

Further U - - 74.9 73.5
H - - 75.6 74.4

Table 4: Different attention mechanisms of DESED on
ACEO05-E* and FOSAED-R (F1-score, %). T, U and H
denote token-level, utterance-level and hybrid attention
mechanism respectively.

reason lies in that sentences in ACE05-E™ are cut
from documents, and many are unstructured, mak-
ing it difficult to generate high-quality dialogues
directly. While a clear and clarified prompt bridges
the gap between unstructured sentences and gener-
ated utterances. On FOSAED-R, different methods
produce similar results, as each user review is a
complete and independent sentence.

4.3 Attention Mechanisms in DESED

Results of different attention mechanisms are
shown in Table 4. Intuitively, more complex at-
tention leads to better performance. However, this
is not the case from the experimental results. There
are two main reasons: firstly, generated dialogues
have many noises and cannot simply be treated
as standard contextual texts; secondly, there are
differences in the training data for pretrained dia-
logue generation models. The English and Chinese
datasets are constructed from Reddit comments and
Weibo conversations, respectively. The latter has
shorter utterances and more meaningless content,
making the effects of our attention mechanisms
vary across languages.

In particular, by applying generation with a
prompt on ACE05-E™, though the contents of dia-
logues are more focused on a topic, they also have
some meaningless repetitive sentences which can
not be seen as normal contextual texts. Apply-
ing self-attention to such contents would mess up
token representations. For direct generation, the ca-
sualness and uncertainty of the generated contents
make the influence of various attention mechanisms
more consistent with our expectation.

On FOSAED-R, since user reviews are primar-

Prompt T U H

Prompt_1 723 726 73.0
Prompt 2 720 72.1 713
Prompt 3 716 735 718
Prompt 4 71.8 722 733

Table 5: Trig-C results(%) on ACE05-E™ with different
prompts to generate dialogues.

ily informal texts, generated utterances may have
jumbled characters and modal particles. And the
nature of Weibo conversations make generated dia-
logues having some meaningless sentences. With
direct generation, the sentence embeddings from
[CLS] tokens may be useless, potentially making
utterance attention impair performance. Genera-
tion with a prompt would yield consistent and co-
herent utterances, but the use of more attention
mechanisms may confuse the model and make it
more difficult to converge. When further training is
conducted, generated dialogues are more domain-
specific. However, as most of the utterances from
the agent are less informative, it does not show a
significant improvement in event detection.

4.4 Effect of Different Prompts

We design four simple prompts to generate dia-
logues: (1) What happened? (2) What happened
in the previous sentence? (3) What event does the
previous sentence describe? (4) Describe the event
in the previous sentence. The results on ACE05-E™
are shown in Table 5.

Prompt_1 for generation and direct generation
have the same trend under different attention
mechanisms, as Prompt_1 is less topic-specific.
However, it works better than direct generation.
Prompt_2 and Prompt_3 work similarly, with
Prompt_3 being slightly better than Prompt_2.
Both of them add a phrase in the previous sentence
to limit the scope of generated dialogues. Prompt_4
is the declarative form of Prompt_3, which imposes
fewer constraints than the interrogative form.

4.5 Exploration of Generated Dialogues

To reveal the quality of generated dialogues
and how the dialogue-based explanation impacts
event detection, we heuristically design a feature
p(consistent) to quantify the consistency of dia-
logues, which is defined as the percentage of gen-
erated dialogues consistent with the original sen-
tences. This indicator intuitively specifies that if
a sentence contains events, the generated dialogue
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Generation Indicator ACE05-E*  FOSAED-R
Length 54.6 62.1
. p(event) 11.9 19.5
Direct  no-event) 93.2 722
p(consistent) 58.0 30.7
Length 60.9 79.2
p(event) 21.2 24.0
Prompt_3 1 o-event) 80.4 71.1
p(consistent) 54.7 34.0
Length - 134.6
p(event) - 41.1
Further p(no-event) - 26.7
p(consistent) - 38.1

Table 6: Heuristic exploration of different dialogue gen-
eration methods based on BERT and four indicators.
The number of generated utterances is set to five.

Generation Indicator Context  Dialogue
Trig-C 70.6 70.9
. p(event) 22.5 11.9
Direct — o-event)  50.4 93.2
p(consistent) 38.3 58.0
Trig-C 70.6 71.1
p(event) 23.5 21.2
Prompt.3  o-event)  49.1 80.4
p(consistent) 38.0 54.7

Table 7: Experiments of using plain narrative contexts
or dialogues as additional information on ACE05-E™.
Five generated utterances are used for dialogue, and the
number of generated tokens is set to the average token
length of the five utterances for narrative contexts.

should contain all events in this sentence; if a sen-
tence has no events, the generated dialogue would
also has no events. The indicator can be divided
into two sub-indicators p(event) and p(no-event).
p(event) indicates the number of generated dia-
logues containing all events in the original sen-
tences as a percentage to the number of sentences
with events. And p(no-event) indicates the number
of generated dialogues having no events as a per-
centage to the number of sentences without events.
We employ a BERT model to detect events in the
generated dialogues consisting of five utterances.
The average token length of generated dialogues is
also used as a simple feature. It is noteworthy that
these four indicators do not reflect true fluency of
sentences and information intensity due to the in-
accuracy of the BERT model, but they still provide
a uniform quantitative metric for a relatively fair
comparison.

Intuitively, a generation method producing more
consistent dialogues should have higher scores on

D

70 70

Trig-C F1 (%)

—— BERT Token C
—=— Token-ley —=— Token-leve
—— Utterance-level Attention —— Utterance
—e— Hybrid Attention —e— Hybrid At

55] 2 3 4 565] 2 3 4 565]

Generation with a prompt on ACE05-E*

—— BERT Token Cl

Generation with a prompt on FOSAED-R  Generation with further training on FOSAED-R

Figure 5: Effect of number of utterance on ACEO0S-
E* with dialogue generation with a prompt and on
FOSAED-R with dialogue generation with a prompt
along with further training and generation.

p(consistent), p(event), and p(no-event). As re-
flected in Table 6, on ACE05-E*, dialogues gener-
ated with Prompt_3 have higher p(event) and lower
p(no-event) compared with dialogues generated di-
rectly. Since generation with a prompt can compen-
sate for deficiencies in the structure and introduce
prior knowledge from the prompt, it can generate
more event-related dialogues, while more noise
would be introduced. Combining the performance
on event detection, we conclude that p(event) is a
more crucial factor on the final results, however, a
smaller p(no-event) may bring more noise, confus-
ing the model and making it harder to converge. On
FOSAED-R, generation with a prompt obtains bet-
ter results on p(consistent) than generated directly,
while generation after further training yields the
best. Nevertheless, generation after further training
significantly increases the average length of dia-
logues due to nonsensical utterances from an agent,
which introduces unnecessary noise, thus giving
limited improvement.

4.6 Comparison Between Dialogues and
Narrative Contexts

To investigate how dialogue-based explanation dif-
fers from narrative contexts, we experiment by
comparing the effects between using narrative
contexts (generated by GPT-2) and dialogues on
ACEO5-E™. Since the structure of contexts gener-
ated by GPT-2 is confusing and difficult to split for
utilization, we only use token-level attention to de-
rive results. For a dialogue, we use five generated
utterances. For a narrative context, the number of
generated tokens is set to the average token length
of the five utterances.

As shown in Table 7, narrative contexts have
slightly higher p(event) compared with dialogues,
both generation directly and with a prompt, how-
ever, p(no-event) and p(consistent) are significantly
lower. This observation suggests that narrative con-
texts are less consistent with original sentences.
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Potential Issues

Generated Dialogues

Imbalanced Data
in ACE05-E™

"User: The Pakistani supreme court last year [aquitted | Justice:Acquit] Ayub Masih, who had
denied uttering any word against Islam or the Prophet Mohammad. What happened?","Bot: He was
sentenced to death.","Bot: He got life."

Multiple Events
in ACEOS-E™

"User: Police [arrested | Justice:Arrest-Jail] her in Abilene, Texas, Saturday where she had
[moved | Movement: Transport] with a friend June 2. What event does the previous sentence de-
scribe?", "Bot: I think it’s a reference to the fact that she was arrested in Abillene, Texas, and then
she was found in Abille, Texas.", "Bot: I thought it was a reference that she had been arrested in
Texas, but was found at a different location."

Multiple Events
in FOSAED-R

"R P B EA AR R RR] —REIRE AR [ECIFRTERT, ERA
FARDEF FFBFTREESBARLERARD", AP LRMEAHTH EERKE"
("User: The fish is [undercooked | Undercooked] and smells [fishy | Abnormalities], 1 feel [sick and
disgusted | Uncomfortable]"," Agent: Is there a peculiar smell, my sweetie honey? Is it convenient
for you to send the pictures of the food to the merchant","User: The fish scales are not even scraped
clean, and the fishy smell is too strong")

Table 8: Case study for some potential issues in ACE05-E* and FOSAED-R, we compare DESED to BERT token
classification based on original sentences as the baseline. The original sentence is the first utterance from User. The
other utterances are generated. The format of the trigger and event is represented as [Trigger | Event_Type], where
color in red means that DESED can recognize but the baseline cannot, while color in black means that both the

baseline and DESED can recognize.

The better performance using the generated dia-
logues also illustrates the superiority of dialogue-
based explanation. Another advantage of dialogues
over narrative contexts is that each utterance in a di-
alogue is an independent semantic unit that requires
no additional segmentation, which is essential for
various attention mechanisms.

4.7 Effect of Number of Utterance

Figure 5 shows the effect of number of utterance
on ACEO5-E* and FOSAED-R. On ACE05-E™,
we use Prompt_3. While on FOSAED-R, we use
the prompt: & &) & T H 2 F 42 (which
has the same English meaning as Prompt_3).

From the results, we can observe that: compared
with the token-level attention, the utterance-level
attention has a greater fluctuation on the number
of utterance, and the hybrid attention is a fusion of
them. Due to the randomness of dialogue genera-
tion, higher quality generated dialogues are more
beneficial than dialogues with more utterances. Af-
ter further training, the knowledge of the dialogue
generation model is limited to a specific domain,
thus having a smoother performance.

4.8 Case Study

We conduct a case study to further show the effec-
tiveness of DESED intuitively in Table 8.

There exists data imbalance problem in ACEQ5-
E™ (e.g. Justice:Acquit only accounts for 1.1%
of all events in the training set). Additional dia-
logue information can be utilized as an effective

semantic complement for rare events. For a sen-
tence with multiple events, while general methods
may have difficulties capturing the association be-
tween events, DESED can further discover multiple
events through generated dialogues.

5 Conclusion

In this paper, we propose a new paradigm, dialogue-
based explanation, to enhance sentence semantics
for sentence-level event detection. We propose
three conceptually simple methods to generate dia-
logues for given original sentences, which concen-
trate on casual dialogues, focused dialogues and
domain-specific dialogues respectively. To make
effective use of generated dialogues, we design
hybrid attention mechanisms at different levels of
granularity. Extensive experiments and analyses
show that DESED has promising performance on
event detection. In the future, we are interested in
generating dialogue-based explanation in a more
controllable way and extending dialogue-based ex-
planation to other tasks.
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