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Abstract

Existing studies typically handle aspect-based
sentiment analysis by stacking multiple neural
modules, which inevitably result in severe error
propagation. Instead, we propose a novel end-
to-end framework, MRCOOL: MRC-PrOmpt
mOdeL framework, where numerous senti-
ment aspects are elicited by a machine reading
comprehension (MRC) model and their corre-
sponding sentiment polarities are classified in
a prompt learning way. Experiments show that
our end-to-end framework consistently yields
promising results on widely-used benchmark
datasets which significantly outperform exist-
ing state-of-the-art models or achieve compara-
ble performance.1

1 Introduction

Compared with traditional sentence-level or
document-level sentiment analysis tasks, aspect-
based sentiment analysis (ABSA) requires finer
grained analysis on the texts and extracting more
detailed information (Liu, 2012; Pontiki et al.,
2014a). ABSA contains many subtasks, such as
aspect category detection, opinion term extraction
(OE), etc. Aspect term extraction (AE) and aspect-
level sentiment classification (SC) are two elemen-
tal subtasks of ABSA. AE means extracting the
sentiment aspects from a given plain sentence and
SC implies recognizing the sentiment polarities of
the given aspects in a sentence. Combining the
above two subtasks, aspect term extraction and sen-
timent classification (AESC) establishes the third
fundamental subtask. The AE, SC and AESC for
the sentence Excellent food, although the interior
could use some help. are given in Figure 1.

In general, the existing mainstream approaches
can be roughly divided into two brands. The first
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1https://github.com/yangyifei729/
MRC4absa

AE
• food
• interior

Excellent food, although the interior could use some help.

SC
• food-positive
• interior-negative

Aspect Term Extraction and Sentiment Classification
• (food, positive)
• (interior, negative)

Figure 1: An example of AE, SC and AESC. AE needs
to identify the aspect terms food and interior. When
given these two terms, SC should recognize the senti-
ment polarities of them as positive and negative sepa-
rately. AESC is going to complete these two tasks from
the given sentence.

employs the two-stage method which first accom-
plishes the AE and is followed by another model
to perform SC, thus achieving the AESC (Yu et al.,
2018; Hu et al., 2019; Fan et al., 2019). The second
tries to fulfill the three subtasks by a more unified
methodology which extracts the terms and their cor-
responding polarities in a joint or interactive way
(Liu et al., 2016; Wang et al., 2017; Li and Lam,
2017; Fan et al., 2018; He et al., 2019; Luo et al.,
2019; Li et al., 2019; Peng et al., 2020; Chen and
Qian, 2020; Chen et al., 2020; Wan et al., 2020).
However, the above mentioned schemes perform
ABSA task by stacking recurrent neural networks
(RNN) or attention mechanisms and usually lead
to too complex models.

In recent years, machine reading comprehension
(Li et al., 2020; Liu et al., 2020; Su et al., 2020;
Mao et al., 2021) quickly become a hot topic among
various challenging natural language understanding
tasks. Generally, MRC model may give a proper
answer for a query based on a given passage. There
are various types of MRC tasks according to the
desired answer forms, among which span MRC or
extractive MRC draw quite a lot of attention (Glass
et al., 2019; Wu et al., 2019; Zhang et al., 2020).
Most of the progress for MRC may be attributed
to the latest pre-trained language models (PrLMs)

https://github.com/yangyifei729/MRC4absa
https://github.com/yangyifei729/MRC4absa
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The waiters were very professional, courteous and attentive.

SC as Prompt Learning
Input to PrLM (before embedded)
[CLS] The waiters were very professional, courteous and attentive. [SEP] I felt the waiters was [MASK].
[CLS] The waiters were very professional, courteous and attentive. [SEP] I [MASK] the waiters.
[CLS] The waiters were very professional, courteous and attentive. [SEP] The waiters made me feel [MASK].
[CLS] The waiters were very professional, courteous and attentive. [SEP] The waiters is [MASK].
Output of Prompt Learning: positive

AE as MRC
Input to PrLM (before embedded)
[CLS] find the sentiment aspect terms in the text. [SEP] The waiters were very professional, courteous and attentive.
Output of MRC: waiters

Figure 2: An example of modeling AE as MRC task and SC as prompt learning task. This figure shows the final
input of two subtasks to the PrLM.

such as BERT (Devlin et al., 2019). For enhancing
multiple downstream tasks including MRC, PrLM
may serve as a powerful enough encoder in the cor-
responding model for effectively capturing salient
features from input text (they are passage and query
in MRC).

Prompt learning is a natural manner to leverage
the knowledge of PrLM which requires adapting
the downstream tasks into a self-supervised learn-
ing task of the corresponding PrLM. For example,
Chen et al. (2021) convert the relation extraction
task to the masked language model (MLM) task of
BERT and Sun et al. (2021) apply the next sentence
prediction (NSP) task to carry out the downstream
tasks. Even though MRC and prompt learning can
take advantage of the knowledge of PrLM and facil-
itate the performance on downstream tasks, these
paradigms still have obvious defects, (1) The query
for MRC can severely inhibit the performance of
downstream tasks, but the construction of query
is currently based on templates or empiric which
leads to huge labor costs and it is not guaranteed
to find the best matched query. (2) For the prompt
learning, after getting the output of PrLM, a stan-
dardized process is applying a verbalizer to project
the original labels to the label words of the down-
stream task. When adopting MLM to perform tag-
ging tasks, the current verbalizer selects the prob-
ability distribution of a few specific words from
the output word-embedding of [MASK] token to
determine the final prediction. This manner makes
the verbalizer very sparse and can not make full
use of the knowledge of PrLM.

To alleviate the above issues, we propose a novel
end-to-end framework named MRCOOL to han-
dle the AE, SC and AESC once for all. For AE, we

model it as an MRC task and propose a query en-
coder to search for the possible latent optimal query
in a continuous space. We treat SC as a prompt
learning task and apply a concise MLP verbalizer
to reduce the sparsity. Our experiments are con-
ducted on three widely-used benchmark datasets.
Results show that our framework outperforms the
current methods or gets comparable performance.

2 MRCOOL Framework

2.1 Task Formulation

The three subtasks can be formulated as a tuple
extraction task. Given an input sentence X =
{x1, x2, ..., xn} of length n, the corresponding
output is Y = {(a1, p1), (a2, p2), ..., (am, pm)}
where ai indicates an aspect and pi represents its
polarity.

Given a training dataset D =
{(X1, Y1), (X2, Y2), ..., (X|D|, Y|D|)}, the purpose
of our framework is to maximize the likelihood:

L(D) =

|D|∏
i=1

∏
(aj ,pj)∈Yi

P ((aj , pj) | Xi) (1)

The following section 2.2 and section 2.3 will
introduce our MRC modeling for AE and prompt
learning modeling for SC. An example of our mod-
eling is given in Figure 2.

The extractive MRC task requires to extract the
answer A = {a1, a2, ..., am} from a passage G =
{g1, g2, ..., gn} by answering a given query Q and
each ai in A is a span of G. The goal of a given
model M is to maximize the likelihood:
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P (A | G,Q) =
∏
ai∈A

P (ai | G,Q) (2)

In this paper, we model AE as an extractive MRC
task. For a sentence X = {x1, x2, ..., xn} whose
aspects are A = {a1, a2, ..., am} where ai is a
span of X , we regard X as the passage G and
each sentiment aspect ai as a corresponding an-
swer. Following the procedure of MRC, we desire
to find each sentiment aspect ai by asking model
M a query Q. However, the query for the stan-
dard MRC task is given by the datasets, but AE
datasets do not contain such an element. To let our
task inputs compatible to the adopted MRC model,
we construct a dedicated query Q. A large num-
ber of studies also have shown that the query has
a significant impact on the performance of MRC
no matter if such a query keeps a meaningful in-
put or not. Following (Liu et al., 2021), we set a
fixed-initialized query Q whose embedding can be
optimized during the training process and search
for the optimal best matching query in a continuous
space for each sentence X .

2.2 Aspect Term Extraction as Machine
Reading Comprehension

In detail, our MRC module takes a PrLM M as a
backbone. The input X will be transformed into
word embedding W = {w1, w2, ..., wn} by the em-
bedding layer E of M . Then we initialize a query
Q = {q1, q2, ..., qm}. Since the alternative query
can largely influence the performance of the MRC,
we add an encoder module to more effectively cap-
ture the optimal potential query embedding. The
query encoder module consists of a randomly ini-
tialized embedding layer E ′, a Bi-direction LSTM
layer and a double-layer MLP activated by RELU
function (Glorot et al., 2011). The embedding ri of
qi can be formalized as:

ri = MLP
([
BiLSTM

(
E ′(q0:i)

)
: BiLSTM

(
E ′(qi:m)

)])
(3)

Then we combine the encoded embedding of
query and sentence to form the input sequence
for M . The embeddings of two special tokens
[CLS] and [SEP] are bound to be inserted in the
sequence. The final input sequence is like:

{E([CLS]), r1, r2, ..., rm, E ([SEP]) , w1, w2, ..., wn}

After feeding the sequence into M , the context
representation S ∈ Rn×∥V∥ of W is the only out-

put we need for the next steps, where the V is the
vocabulary of PrLM.

Subsequently, we carry out the selection of as-
pects. We adopt two independent binary classifiers
to predict whether a token is a start or end posi-
tion of an aspect following (Li et al., 2020). For
the start position prediction, we first project the S
into the dimension of Rn×2 by a learnable weight
Ostart ∈ R∥V∥×2 and get S′. Then, we apply the
softmax to each row of S′ to form a probability dis-
tribution which indicates the probability of every
token to be the start word of an aspect. The above
process can be formalized as:

Pstart = softmaxeach row (S ·Ostart) ∈ Rn×2

(4)
Following the same process, the probability dis-

tribution Pend of whether a token to be the end
position of an aspect can be attained by the learn-
able weight Oend ∈ R∥V∥×2.

The next step is to match the start position and
end position in order to extract the final aspects.
By the Pstart and Pend, we can get the start as well
as end positions simply according to the argmax
function and store them into two sets, these are:

Istart =
{
i | argmax

(
P

(i)
start

)
= 1, i = 1, · · · , n

}
Jend =

{
j | argmax

(
P

(j)
end

)
= 1, j = 1, · · · , n

}
(5)

The start position istart ∈ Istart means the
xistart should be the start token of an aspect and
the jend ∈ Jend implies the end token xiend

of an
aspect. Thus, we will train a sigmoid classifier to
predict the match possibility of the istart, jend to
be the boundary of one aspect, that is:

Pistart,jend
= sigmoid (m · concat (Sistart , Sjend

))
(6)

where m ∈ R1×2∥V∥.
During the training process, we leverage the

CrossEntropy loss as below:

Lstar = CrossEntropy (Pstart, Gstart)

Lend = CrossEntropy (Pend, Gend)

Lmatch = CrossEntropy (Pstart,end, Gstart,end)
(7)

where the Gstart, Gend and Gstart,end represent the
golden labels. The total loss of this MRC module
is the weighted sum of the above three losses:

LMRC = αLstart + βLend + γLmatch (8)
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where the α, β, γ ∈ [0, 1] are three hyper-
parameters to control the contributions of each ob-
jective function.

2.3 Aspect-level Sentiment Classification as
Prompt Learning

Incorporating the output from the MRC module,
we model the SC subtask as prompt learning, which
allows us to transfer a classification problem into
the form of predicting the [MASK] token contained
in a prompt sentence Q as a pre-specified word
w. Namely, for a given text X and its label Y ,
the purpose of prompt learning model M is to
maximize the likelihood:

P (Y | X) = P ([MASK] = w | X,Q) (9)

For a sentence X and one of its aspect aj ,
we insert aj into a pre-defined template T =
t1, ..., aj , ..., [MASK], ..., tm to form a prompt Q.
Then we feed the sequence [CLS]X[SEP]Q into
a module M to measure the likelihood of aj to be
classified as polarity pj :

P (pj | aj , X) = P ([MASK] = w | [CLS]X[SEP]Q)
(10)

In detail, first of all, we need to construct the
templates of prompts cautiously as the performance
of prompt learning is very sensitive to the choice of
prompts. Following (Seoh et al., 2021), we select
four efficient prompt templates:

• T0 =I felt the ai was [MASK].

• T1 =I [MASK] the ai.

• T2 =The ai made me feel [MASK].

• T3 =The ai is [MASK].

When given a sentence X and one of its aspect
aj , we fill Ti(i ∈ {1, 2, 3, 4}) to get four prompt
Qi and feed the sequence [CLS]X[SEP]Qi into
a PrLM, thus to attain its context representation Ci.

All we need is the representation Ci,[MASK] ∈
R∥V∥ of [MASK] which contains the prediction
information. To aggregate the prediction outcomes
of the four prompts, we simply add them all up:

C[MASK] =
3∑

i=0

Ci,[MASK] (11)

The current methods (Seoh et al., 2021;
Zhang et al., 2021) directly take the probabili-
ties of predicting [MASK] as several represen-
tative words to extract final sentiment polari-
ties. For instance, Seoh et al. (2021) map
the probabilities of three words {good, bad, ok}
to the probabilities of three sentiment polarities
{positive, negative, neutral} towards the tem-
plate T0:

P ([MASK] = good|X, ai) = P (pi = positive|X, ai)

P ([MASK] = bad|X, ai) = P (pi = negative|X, ai)

P ([MASK] = ok|X, ai) = P (pi = neutral|X, ai)

This seems to be an extremely blunt approach,
but we argue that it will increase the sparsity of
the model and can not plausibly exert all the intel-
ligence of C[MASK]. Following such practice, we
should exhaust all the tokens that can indicate sen-
timent to ameliorate this drawback. For example, if
we want to predict the positive polarity, in addition
to good, we also need to consider the words such
as nice, excellent, perfect, etc. Obviously, such
tedious work is not acceptable. In that case, we
propose to utilize a double-layer MLP head acti-
vated by a RELU function to address the limitations
mentioned above:

P (pi|ai, X) = MLP(C[MASK]) (12)

where the input dimension of MLP is ∥V∥ and the
output dimension is set to 3 indicating the probabil-
ity distribution over three polarities.

At this point, we merely need to follow the
idea of the maximum likelihood method and ap-
ply CrossEntropy loss to calculate LPL for prompt
learning, thus training MLP while fine-tuning
BERT.

2.4 Training
The above MRC model with prompt learning can
be trained together as a multi-task learning. We ag-
gregate the two losses together for conducting back
propagation and the total loss can be formalized as:

LTotal = LMRC + LPL (13)

2.5 Inference
When given trained MRC model for inferencing the
AE result, the start and end positions are separately
decided according to Istart and Jend (Eq.5) firstly.
The following sigmoid classifier (Eq.6) will detect
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Sentence

Q ={q1, q2,…,qm}

Query 
Encoder

BiLSTM

PrLM Encoder

MLP

aspect aj

MLP Verbalizer

Embedding Layer

Query

X={x1, x2,…, xi-1, xi …,xn}

Embedding Layer 
of PrLM

E([CLS]),r1,r2,…,rm,E([SEP]), w1,w2,…,wn

Template T=
{t1,…, aj,,…, [MASK]}

[CLS], x1, x2,…,xn,[SEP], t1,…, aj,…, [MASK] 

PrLM Encoder

Embedding Layer 
of PrLM

polarity pj

Aspect Term Extraction Aspect-level Sentiment Classification

(aj ,pj )

Figure 3: The architecture of our proposed MRCOOL framework.

Lap14 Res14 Res15
#s #a #s #a #s #a

train
test

3048
800

2373
654

3044
800

3699
1134

1315
685

1199
542

Table 1: The statistics of the three datasets (Wang et al.,
2017). #s and #a denote the numbers of sentences and
aspect terms.

the final start-end position combinations by Istart
and Jend. As for inferencing the SC result, the final
polarity p̂ of an aspect is:

p̂ =argmaxP (pi|X, ai)

= argmaxMLP(C[MASK])
(14)

For AESC, the above two inference processes
are united to obtain the final result. When given
a sentence X , our framework first inputs it into
the MRC model and receives the candidate aspect
terms set A. Then, each ai in A is enumerated
to construct four templates with its homologous
X . The prompt learning module takes them in
and outputs the polarity p̂, thus we get the triplet
(sentence, aspect, polarity) which is served as the
result of AESC.

3 Experiments

3.1 Setup
Datasets We conduct experiments on three widely
used benchmark datasets derived from SemEval

2014 (Pontiki et al., 2014a) and SemEval 2015
(Pontiki et al., 2014b). For each benchmark, the
golden boundaries of aspect terms are labeled and
the aspect terms are annotated with positive, neg-
ative, or neutral polarities. So AE, SC and AESC
subtasks are all available. LAPTOP2014 (Lap14)
contains the reviews of the products from the lap-
top domain. RESTAURANT2014 (Res14) and
RESTAURANT2015 (Res15) give some comments
on foods and dining halls. The training/test splits
are fixed for three datasets and more details about
them are shown in Table 1.

Metrics For all experiments, we adopt F1 score
as evaluation metric following the previous re-
searches. For AE and SC, a predicted aspect term
or polarity is correct only if it matches the golden
data. And for AESC, we regard it as a right predic-
tion only if an aspect term and its corresponding
polarity are both recognized accurately at the same
time.

PrLM and Settings For the fair comparison,
our selected PrLMs are consistent with the pre-
vious strong baselines. We apply the publicly
available BERT-Base-Uncased and BERT-Large-
Uncased models2 with the vanilla parameters and
sizes for our MRCOOL framework. We adopt
AdamW optimizer with the learning rate of 2e-5
and warmup over the first 15% steps to train for 3
epochs. We use 30 epochs to train our framework.

2https://github.com/google-research/bert
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Lap14 Res14 Res15

AE SC AESC AE SC AESC AE SC AESC

IMN-BERT 77.35 75.56 61.73 84.06 75.67 70.72 69.90 70.10 60.22
SPAN-BERT 82.34 62.50 61.25 86.71 71.75 73.68 74.63 50.28 62.29
RACL-BERT 81.79 73.91 63.40 86.38 81.61 75.42 73.99 74.91 66.05
DUAL-MRC 82.51 75.97 65.94 86.60 82.04 75.95 75.08 73.59 65.08
BART-ABSA 82.52 76.76 67.37 87.07 75.56 73.56 75.48 73.91 66.61

MRCOOL 86.50 75.78 69.47 88.31 79.41 77.12 77.35 70.76 65.62

Table 2: Main results on three benchmark datasets for AE, SC and AESC. All results are measured by F1. The
state-of-the-art results are in bold.

The batch size is 16 and the α, β, γ for MRC are all
set to 1/3. For each experiment, we train our frame-
work multiple times with different random seeds.
The average of the best three results is regarded as
a final result. We conduct all experiments on one
Nvidia Titan RTX GPU.

3.2 Baselines

We compare our proposed MRCOOL framework
with the following methods on AE, SC and AESC
subtasks:

RACL-BERT Chen and Qian (2020) propose
a RACL framework which stacks multiple layers.
They also propose a relation propagation approach
to obtain interactive signals among different sub-
tasks. With the BERT model, their framework
achieves good performance on AE, SC and AESC.

IMN-BERT He et al. (2019) put forward an end-
to-end multi-task learning model for AE, SC and
AESC. They apply a mechanism of information
transmission to enhance their model.

SPAN-BERT Hu et al. (2019) propose a pipeline
model for AESC. They apply BERT as their back-
bone network and a multi-target extractor is used
to detect the boundaries of the sentiment aspects.
Then a polarity classifier recognizes the polarity
for each aspect.

DUAL-MRC Mao et al. (2021) present a unified
framework for AESC. Two BERT models are con-
tained by their framework and two different MRC
tasks are carried out by them separately. The left
BERT recognizes the boundaries of aspect terms
and the right BERT extracts their polarities.

BART-ABSA Yan et al. (2021) propose the cur-
rent state-of-art model which can solve the AE, SC
and AESC. It redefine each subtask as a sequence
mixed by pointer indexes and sentiment class in-

dexes. Then they convert all ABSA subtasks into
a unified generative formulation. Finally, they use
pre-trained sequence-to-sequence model BART to
handle the subtasks in an end-to-end framework.

3.3 Main Results

Table 2 compares our results with other state-of-the-
art approaches on three benchmark datasets. The
results of AE are all obtained by MRC on BERT-
large model. As for SC, we obtain the best results
by taking the BERT-base model as the backbone
of prompt learning for LAPTOP2014, RESTAU-
RANT2015 datasets and the BERT-large model for
RESTAURANT2014. More about the selection of
different scale PrLM will be discussed in section
4.1. It is worth noting that our better results do
not derive from the better PrLM, owing to DUAL-
MRC (Mao et al., 2021) having already adopted
the BERT-large model.

For the AE subtask, our MRC method has made
good progress. We exceed the prior SOTA model
by +3.98%, +1.24% and +1.87% on Lap14, Res14
and Res15 respectively. For the SC subtask, with
our prompt learning method, we also achieve per-
formance comparable to the best results before.
For AESC subtask, our framework attains state-of-
the-art performance by considerable margins over
previous methods on Lap14 and Res14. Even if we
do not obtain the SOTA on Res15, we also obtain a
better result than most previous models.

The above results prove that our framework is
very effective. We directly use the knowledge of the
PrLM to avoid complex neural layers and feature
engineering to attain SOTA or the results close
to SOTA on multiple subtasks. The fine-tuning
of PrLM is also very time-saving. With only 30
training epochs, our framework can get such a good
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base large large-wwm

F1

84.15

86.5
85.76

88.23 88.31 88.04

76.04
77.39 77.5

AE as MRC

Lap14
Res14
Res15

base large large-wwm
F1

75.78 75.61 75.02
79.25 79.41

26.26

70.76

58.44

17.16

SC as Prompt Learning

Lap14
Res14
Res15

Figure 4: The F1 change curve with the increment of
the scale of PrLM on AE and SC.

Lap14 Res14 Res15

w/o Query Encoder 85.24 87.35 77.05
Query Encoder 86.50 88.31 77.35

Table 3: Ablation study on Query Encoder for MRC.
The BERT-large model is adopted. All results are F1 for
the AE subtask.

performance. The experimental results indicate
the effectiveness and simplicity of our MRCOOL
framework.

4 Ablation Study

4.1 Effect of different PrLM scale

Plenty of earlier studies have proved that the scale
of the PrLM has a great influence on the perfor-
mance of downstream tasks. Therefore, we adopt
BERT-base, BERT-large and BERT-large-wwm
models that derived from one series but of different
scales to test our framework. The results are given
in Figure 4.

For MRC, it can be speculated from the curve
that the PrLM of different scales is relatively sta-
ble on the three datasets. Among three PrLM,
the performance of BERT-large is usually bet-
ter than BERT-base and BERT-large-wwm. For
prompt learning, some not robust phenomena hap-
pen. BERT-base still performs well on the three
datasets. But with the BERT-large, a significant
loss of accuracy on the Res15 occurs. And BERT-
large-wwm produces disastrous results both on
Res14 and Res15. We check the training logs of
these poorly experiments and find that the training
loss usually reaches zero after 10 epochs but the
testing loss still maintains a high value. This means
that heavy overfitting could be triggered.

For these three benchmark datasets, BERT-large
seems to be usually the best choice and it is defi-
nitely not true that a larger scale of PrLM leads to

Lap14 Res14 Res15

w/o Prompt Encoder 75.78 79.25 70.76
Prompt Encoder 73.92 73.04 66.55

Table 4: Ablation study on Prompt Encoder for prompt
learning. The BERT-large model is adopted. All results
are F1 for the SC subtask.

Lap14 Res14 Res15

Selecting Words 74.40 78.95 69.45
Single-Layer MLP 74.69 79.21 69.29
Double-Layer MLP 75.78 79.25 70.76

Table 5: Ablation study on different verbalizer. Select-
ing words means the current dosage of selecting the
probability distribution of a few of words. The BERT-
large model is applied and all results are F1 for the AE
subtask.

a better result.

4.2 Effect of Query/Prompt Encoder Module

We propose a query encoder module in this paper to
find the potential optimal query for MRC. We also
directly think of whether we can learn a potential
optimal prompt template by the prompt encoder
module whose structure is the same as the query
encoder module. For example, we desire to find the
optimal embedding of I felt the ai was [MASK] in
the template T0. So we conduct ablation studies on
the query encoder of MRC module and prompt en-
coder of the prompt learning module, respectively.
The results are shown in the Table 3 and Table 4.

It can be indicated that the introduced query
encoder has facilitated the performance of MRC,
which is in line with the previous research that the
query plays an important role in MRC and also sup-
ports the effectiveness of the query encoder module.
But the prompt encoder harms to the prompt learn-
ing. The explanation we give is that we use four
different templates for prompt learning and it is too
difficult for a simple query encoder module to learn
perfect embeddings for them all. We attempted to
apply only one template and combine the query
encoder module. The result shows that the query
encoder module does boost the performance but
such a manner is far not as good as the combina-
tion of four templates. Thus, we abandon the query
encoder module in our framework.
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4.3 Effect of MLP Verbalizer

In this paper, one of our major improvements to
prompt learning is to desert the original verbalizer
that selecting the probability distribution of minor-
ity specific words from the output word-embedding
of [MASK] and we leverage an MLP with a RELU
activation function to overcome the sparsity and
loss of information. We respectively use the origi-
nal method, a single-layer MLP and a double-layer
MLP with RELU activation function for ablation
study. Table 5 displays the result.

Experiments express that MLP does have a rel-
atively large improvement in the effect of prompt
learning and the double-layer MLP with RELU has
a stronger ability to learn the probability distribu-
tion of three polarities. As a result, our proposed
simple MLP verbalizer shows quite effective.

5 Related Work

Open-domain sentiment analysis or ABSA requires
to extracting the aspect terms with their correspond-
ing sentiment polarities in the open domain, which
is an active research topic in recent years. Early
studies treat them as two separate tasks and use
some traditional algorithms such as Conditional
Random Fields (CRF) to complete the task. Wang
et al. (2016) apply recursive neural CRF to perform
ABSA. Shu et al. (2017) use a lifelong learning
CRF to extract the prior knowledge of past do-
mains. With the rise of deep learning technology,
more and more models based on neural networks
have begun to emerge. (Poria et al., 2016; Xu et al.,
2018; Shu et al., 2019; Wu et al., 2021) take con-
volutional neural network (CNN) to handle ABSA
tasks. In addition, some researchers apply RNN
and also make some progress (Wadawadagi and
Pagi, 2018; Han et al., 2018; Luo et al., 2019; Zeng
et al., 2019). In recent years, more studies have
proposed diverse attention mechanisms to extract
more knowledge from the text and boost the per-
formance of the model. Wang et al. (2017) put
forward a novel layer containing two attentions to
extract sentiment aspects, opinions and polarities.
Li et al. (2018) propose a history attention to ex-
ploit the opinion summary and the aspect detection
history. Rida-E-Fatima et al. (2019) propose a deep
learning-based multilayer dual-attention model to
extract the mediate relationships between the as-
pects and opinions.

Recently, offering promising performance,
PrLM has become an important and rapid devel-

opment area in the field of natural language pro-
cessing. However, minority studies directly utilize
the knowledge of PrLM. Even if the current state-
of-art model (Yan et al., 2021), it merely regards
BART (Lewis et al., 2020) as a powerful seq-to-seq
model without using its erudition. For extracting
the knowledge from PrLM, MRC is an excellent
solution. Li et al. (2020) convert named entity
recognition into an MRC task and achieve the state-
of-the-art. Mao et al. (2021) design a DUAL-MRC
framework for ABSA and get the promising re-
sult. Gan et al. (2021) employ MRC to handle
dependency parsing. Yu et al. (2021) and Chen
et al. (2021a) respectively propose a self question-
answering model and a bidirectional MRC model
for ABSA, but they can not solve all three AE, SC
and AESC tasks.

For prompt learning, many researchers regard it
as a new learning paradigm along with the swift
growth of PrLM and argue that it can effectively
reel off the enlightenment of PrLM. (Chen et al.,
2021b; Seoh et al., 2021) have applied prompt
learning to named entity recognition and sentiment
analysis respectively. Han et al. (2021) implement
a sentence classification model by prompt learning
and logic rules. On the selection and generation
of prompt, Shin et al. (2020) propose an automatic
prompt generation method and Liu et al. (2021) put
forward a p-tuning idea to improve the effective-
ness of prompt.

However, the above works do not pay attention
to the query generation of MRC and the sparsity of
the verbalizer of prompt learning. In this paper, we
propose a MRCOOL framework for ABSA which
designs a query encoder to improve the capability
of MRC and a simple MLP verbalizer is used to
reduce the sparsity of prompt learning.

6 Conclusion

In this paper, we propose a MRCOOL framework
to handle AE, SC and AESC subtasks of ABSA in
one shot through the process of MRC with prompt
learning. In detail, we first model aspect extrac-
tion as an MRC task and then let the MRC mod-
ule help aspect-level sentiment classification imple-
mented in a prompt learning way so that we present
an end-to-end framework to fulfill the complete
task requirement of ABSA. The experimental re-
sults demonstrate the effectiveness of our proposed
framework by providing consistent and general per-
formance improvement over strong baselines. In
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detail, our framework attains new state-of-the-art
for AE subtask by considerable margins over previ-
ous methods on three datasets and reaches state-of-
the-art performance for AESC on two datasets.
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