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Abstract

Medical Relation Extraction (MRE) task aims
to extract relations between entities in medi-
cal texts. Traditional relation extraction meth-
ods achieve impressive success by exploring
the syntactic information, e.g., dependency
tree. However, the quality of the 1-best de-
pendency tree for medical texts produced by
an out-of-domain parser is relatively limited so
that the performance of medical relation extrac-
tion method may degenerate. To this end, we
propose a method to jointly model semantic and
syntactic information from medical texts based
on causal explanation theory. We generate de-
pendency forests consisting of the semantic-
embedded 1-best dependency tree. Then, a task-
specific causal explainer is adopted to prune
the dependency forests, which are further fed
into a designed graph convolutional network
to learn the corresponding representation for
downstream task. Empirically, the various
comparisons on benchmark medical datasets
demonstrate the effectiveness of our model.

1 Introduction

Medical relation extraction (MRE) refers to iden-
tifying relations among entities from medical lit-
erature and reports. It plays a very important role
in downstream tasks such as medical knowledge
graph construction (Li et al., 2020; Rotmensch
et al., 2017) and biomedical knowledge discov-
ery (Quirk and Poon, 2016). On the other hand,
as the number of medical literature increases, it
becomes increasingly important to automatically
discover the relation among entities in the litera-
ture (Peng et al., 2017).

The addition of syntactic structure has been
demonstrated to be beneficial for various natural
language processing tasks (Zaremoodi and Haf-
fari, 2017; Zhou et al., 2005; Le and Zuidema,

∗Equal contribution.
†Corresponding author.

2015). As a type of syntactic structure, the de-
pendency tree capturing long-distance connections
between words can indeed improve benchmark re-
lation extraction methods (Tian et al., 2021; Chen
et al., 2021; Zhang et al., 2018; Sun et al., 2020).
We demonstrate an example in Figure 1. Specifi-
cally, the 1-best dependency tree of the sentence
“Aminopropylindenes derived from Grundmann’s
ketone as a novel chemotype of oxidosqualene
cyclase inhibitors” in the CPR dataset. Amino-
propylindenes and oxidosqualene cyclase are the
entities, and the relation between them is “down
regulator”, denoted as “CPR:4”.

However, in the medical field, the quality of the
1-best dependency tree generated by the out-of-
domain parsers, e.g., parsers for the news domain,
is relatively deficient. Generally, the main verb
in a sentence is treated as the root node in the de-
pendency tree, while, as the example shown in
Figure 1, the entity Aminopropylindenes, appar-
ently a noun, is treated as the root node. To solve
this problem, multiple methods with dependency
forests have been proposed (Song et al., 2019; Jin
et al., 2020; Guo et al., 2021). Such approaches
focus on redesigning the parser or substituting the
parser with a semantic encoder, but the semantic
and dependency tree syntactic information is used
in a biased manner. Furthermore, the causality
between the edges in the dependency forests and
the performance of the model is not explored by
benchmark methods.

To this end, we propose a novel approach,
namely Causality-Pruned semantic dependency for-
est Graph Convolutional Network (CP-GCN). To
acquire the dependency forests enriched with se-
mantic and syntactic information in an unbiased
manner, we first obtain the 1-best dependency tree,
as the sentence syntactic information, which is gen-
erated by the out-of-domain parser, and then fuse
the syntactic information with the semantic infor-
mation by using a switch gate network. The seman-
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Aminopropylindenes derived from Grundmann 's ketone as a novel chemotype of oxidosqualene cyclase inhibitors .
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Figure 1: 1-best dependency tree for a biological sentence generated by the parser. Aminopropylindenes and
oxidosqualene cyclase are the entities in the sentence.

tic information is captured in different representa-
tion subspaces using multi-head attention (Vaswani
et al., 2017). To extract dependency forests’ edges
that are causally related to the MRE performance,
we construct a causal explanation dataset based on
Granger causality (Granger, 1969, 1980) and train a
task-specific causal explainer. We then obtain task-
specific explanations of the dependency forests
generated by the trained explainer and prune the
dependency forests by following the correspond-
ing explanations, which aim to eliminate the task-
irrelevant information from the dependency forests.
The pruned dependency forests are encoded by
DCGCNs (Guo et al., 2019b) for MRE task. Empir-
ically, the comparisons demonstrate that CP-GCN
achieves state-of-the-art on benchmark relation ex-
traction tasks, e.g., for the sentence-level relation
extraction task, our model obtains 67.3 and 92.9
scores on CPR and PGR, respectively. The contri-
butions are summarized as follows:

• We propose an approach to generate depen-
dency forests enriched with semantic and syn-
tactic information in an unbiased manner.

• We propose a causal pruning approach to re-
move task-irrelevant information from the de-
pendency forests, which is achieved by using
a task-specific explainer trained on a causal
explanation dataset for the target MRE task.

• CP-GCN achieves state-of-the-art on bench-
mark MRE datasets, and the ablation compar-
isons further support the effectiveness of each
part of our model.

2 Related Work

2.1 Medical Relation Extraction
Previous work performs the MRE task by construct-
ing the 1-best dependency tree of sentences (Peng
et al., 2017; Song et al., 2018). However, the ac-
curacy of the 1-best dependency tree generated by
the out-of-domain parser is relatively low, resulting

in a fall in MRE performance. Therefore, (Song
et al., 2019) proposes to use dependency forests to
solve this problem, which uses EDGEWISE and
KBESTEISNER algorithm to pick edges to con-
struct dependency forests. (Jin et al., 2020) encodes
all effective dependency trees generated by a parser
into dependency forests. (Guo et al., 2021) utilizes
multi-head attention and Kirchhoff’s Matrix-Tree
Theorem (MMT) (Koo et al., 2007) to automati-
cally generate latent dependency forests without
the usage of any parser. In general, (Song et al.,
2019) and (Jin et al., 2020) focus more on the syn-
tactic information in the 1-best dependency tree
generated by the out-of-domain parser, while (Guo
et al., 2021) directly discards the syntactic informa-
tion and focuses only on the semantic information.

2.2 Causal Explanation

Causal explanation is designed to explain the im-
portance of each module in a machine learning
model on the prediction, which receives increas-
ing attention recently (Datta et al., 2016; Schwab
and Karlen, 2019; Lin et al., 2021). There are sev-
eral viable forms of causality, including Granger
causality (Granger, 1969), causal Bayesian net-
works (Pearl, 1985), and structural causal mod-
els (Pearl, 2009). (Chattopadhyay et al., 2019) pro-
poses an attribution method based on the first princi-
ples of causality. (Schwab and Karlen, 2019) mod-
els the explanation task of image deep learning
models as a causal learning task and proposes a
causal explanation model based on Granger causal-
ity. (Lin et al., 2021) proposes a framework for
explaining graph neural networks using the first
principles of Granger causality.

3 Preliminaries

3.1 Task Definition

Our task is to extract relation between entities
in a sentence, focusing on both binary relation
extraction and ternary relation extraction. For-
mally, the input to our task is a sentence S =
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{w1, w2, . . . , wn} with n words and wi denotes
the i-th word in the sentence. S is annotated with
entity mentions E1 and E2

1. The output is the
relation between entities from a predefined relation
set R = {r1, r2, . . . , rm}, where m denotes the
number of relations.

3.2 Densely-Connected Graph Convolutional
Networks

Graph Neural Network is a set of models that can
effectively encode the information of graph struc-
ture, the classical models including Graph Atten-
tion Networks (GATs) (Velickovic et al., 2017),
Graph Convolutional Networks (GCNs) (Kipf and
Welling, 2016), etc. Densely-Connected Graph
Convolutional Networks (DCGCNs) (Guo et al.,
2019b) is a variant of GCNs, which introduces
dense connections to GCNs. Thus being able to
build multi-layer GCNs models with a large depth
and learn richer information than the shallower
GCNs models. More specifically, DCGCNs differs
from GCNs in that the embedding of node v in
the l-th layer receives information from all the pre-
ceding layers, which can be formulated as follows:

h(l)
v = ρ

 ∑
u∈N (v)

W (l) × g(l)
u + b(l)

 (1)

where × denotes matrix multiplication, h(l)
v is the

embedding of node v in the l-th layer, ρ is an ac-
tivation function, N (v) denotes the neighbours of
node v, W (l) and b(l) are the weight matrix and
bias vector of the l-th layer respectively, and g

(l)
u

indicates the information about node u from all the
preceding layers. Mathematically, g(l)

u can be cal-
culated by concatenating the initial embedding xu

and the node embedding h
(1)
u ; . . . ;h

(l−1)
u produced

in layer 1, . . . , l − 1, respectively.

g(l)
u = [xu;h

(1)
u ; . . . ;h(l−1)

u ] (2)

3.3 Dependency Tree Generation
To construct the 1-best dependency tree, we use
Standard CoreNLP Toolkits (SCT) (Manning et al.,
2014) to obtain the dependency tree T for each
input sentence S and represent T by a adjacency
matrix T = (ti,j)n×n

2, where ti,j is the depen-
dency type (e.g., dobj) between wi and wj , e.g.,

1E1, E2 and E3 for ternary relation extraction.
2The adjacency matrix T adds the self-loop of each word

to the dependency tree T with the “self” dependency type and
regards the dependencies between words as unoriented.

ti,j = 0 if the connection between wi and wj do
not exist. Then, we encode ti,j to the correspond-
ing embedding cti,j with a learnable matrix, and use
C = (cti,j)n×n to denote the syntactic matrix.

4 Methodology

In this section, we introduce our proposed CP-GCN
model shown in Figure 2.

4.1 Causality-Pruned Semantic Dependency
Forest Generator

In the medical domain, the quality of the 1-best
dependency tree generated by the out-of-domain
parsers is relatively deficient. Thus, we propose
the Causality-pruned Semantic dependency Forest
Generator (CSFG) to generate dependency forests
enriched with syntactic and semantic information
and derive task-relevant information from them.

4.1.1 Semantic Embedding Module

In order to construct dependency forests that com-
bine both semantic and syntactic information in
an unbiased manner, we propose a semantic em-
bedding module to incorporate the semantic infor-
mation of the sentence into the 1-best dependency
tree.

Specifically, we model semantic information us-
ing the multi-head attention mechanism (Vaswani
et al., 2017) with N heads, which captures the se-
mantic relevance between words in a sentence. For
the p-th head, we compute the semantic matrix Ap

by using the query vector Q and the key vector K:

Ap =

(
Q×WQ

)
×
(
K ×WK

)⊤
√
d

(3)

where WQ and WK are learnable transformation
matrices for Q and K, respectively, and d is the
dimension of K.

Finally, the p-th dependency forest can be ob-
tained by summing the syntactic matrix C and the
semantic matrix Ap with a switch gate network and
a softmax function:

Fp = softmax ((1− α) Ap + αC) (4)

where α ∈ [0, 1] is a hyper-parameter to balance
the syntactic matrix C and the semantic matrix
Ap, and Fp is the adjacency matrix of the p-th
dependency forest.
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Figure 2: The overall architecture of CP-GCN with an example input sentence (“Cadmium” in red and “NADPH
oxidase” in blue are two entities of the sentence). The model consists of three components: 1) BiLSTM Encoder
obtains the sentence representation with a BiLSTM model. 2) CP-GCN is the main component of the model which
contains M identical blocks, and each block contains two modules. Causality-Pruned Semantic Dependency Forest
Generator combines the dependency tree and the multi-head attention with N heads to generate dependency forests
and then prunes them using a task-specific causal explainer. Dependency Forest Encoder uses DCGCNs to encode
the pruned dependency forests. 3) Relation Prediction module predicts relations using global and local max pooling
and feedforward neural networks (FFNN).

4.1.2 Task-Specific Causal Pruning Module

In this part, our major objective is to extract depen-
dency forests’ edges that are causally related to the
MRE performance. Inspired by (Lin et al., 2021),
we propose a method consisting of three processes
for pruning dependency forests based on Granger
causality. The first two processes aim to train a
task-specific causal explainer, which are illustrated
in Figure 3. The causal pruning process prunes
the dependency forests with the trained causal ex-
plainer.

Causal explanation generation process. This
process is designed to construct a causal expla-
nation dataset for a specific MRE task. Given a
pre-trained MRE model denoted by fMRE(·) and
the gold-standard relation r of the sentence S. We
start by using the semantic embedding module of
the pre-trained MRE model to generate N ∗ M
dependency forests of the sentence S, denoted by
G = {G1,G2, . . . ,GN∗M}. For any dependency
forest Gi, it can be represented as Gi = (Fi,H0),
where Fi is the fully-connected adjacency matrix
indicating the weights of the edges, and H0 is the
matrix of node features, which is the same for each
dependency forest. Then, we need to extract the top
K edges from the dependency forests that are most
relevant for predicting relation r. We implement
this based on Granger causality.3

3Granger causality describes the causal relationships be-
tween two (or more) variables. Specifically, if we are bet-
ter able to predict variable ỹ using all information U than
excluding information about variable x, which means that

Specifically, we use LG to denote the model er-
ror of fMRE(·) when taking the N ∗M dependency
forests into account, and LG\{ek} represents the
model error excluding the edge ek from each de-
pendency forest. According to Granger causality,
we can quantify the causal contribution of edge ek
to our MRE task by the change in model error after
removing edge ek:

∆ek = LG\{ek} − LG (5)

where ∆ek represent the causal contribution of
edge ek.

To calculate LG and LG\{ek}, we first take the
N ∗M dependency forests G and G \ {ek} as the
input to the pre-trained model, respectively, and
obtain their corresponding outputs rG and rG\{ek}:

rG = fMRE
(
F1, . . . ,FN∗M)

(6)

rG\{ek} = fMRE
(
F1 \ {ek}, . . . ,FN∗M \ {ek}

)
(7)

We then use the cross-entropy loss function to
measure the model error, denoted as CE.

LG = CE (r, rG) (8)

LG\{ek} = CE
(
r, rG\{ek}

)
(9)

Finally, we filter out the edges with the top K
causal contributions to form the causal explana-
tion. In summary, our causal explanation dataset

the variable x helps predict variable ỹ. Then we say that x
Granger-causes ỹ (Granger, 1980), denoted by x → ỹ.
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Figure 3: Illustration of training a task-specific causal explainer. Causal explanation generation process generates the
causal explanations for the dependency forests using a pre-trained MRE model and the designed rules. Task-specific
explainer training process trains a task-specific causal explainer with the generated causal explanation dataset.

is constructed with dependency forests and the cor-
responding causal explanations. Therefore, such a
dataset is relevant to the specific MRE task.

Task-specific explainer training process. This
process generates a task-specific explainer based
on the causal explanation dataset. Following (Lin
et al., 2021), we use an encoder-decoder architec-
ture as the explainer. The encoder consists of sev-
eral graph convolutional layers to aggregate infor-
mation between neighbors in the dependency forest
and learn node features. The decoder uses the inner
product operation to obtain the explanation matrix.
Specifically, the explanation matrix for Gi can be
obtained by the explainer as:

Xi = σ
(
fGCN

(
Fi,H0

)
× fGCN

(
Fi,H0

)⊤)
(10)

where fGCN(·) denotes graph convolutional layers,
Xi is the explanation matrix and each value in
Xi represents the contribution of its corresponding
edge to the prediction relation r, and σ is the activa-
tion function. Causal pruning process. Based on
the pre-trained explainer, task-relevant explanation
of the dependency forest can be obtained. Given
the Fp calculated by Eq. 4 and the pre-trained ex-
plainer, the explanation matrix Xp corresponding
to Fp can be calculated via Eq. 10. Causal pruning
for Fp can be formulated as:

F̂p = softmax (Fp ⊙ (1 + βXp)) (11)

where ⊙ is the element-wise multiplication, and
β ∈ [0, 1] is a hyper-parameter to control the coef-
ficient of the explanation matrix Xp.

4.2 Dependency Forest Encoder
Given N pruned dependency forests, DCGCNs are
used to encode information from the forest struc-
ture. For the p-th pruned dependency forest, which
is represented by the adjacency matrix F̂p. We use
DCGCNs with L layers to aggregate information
about neighbors in F̂p, and the representation of
node i at the l-th layer can be calculated as:

h(l)
pi = ρ

 n∑
j

F̂p
ij

(
W (l)

p × g(l)
pj + b(l)p

) (12)

where F̂p
ij denotes the weight between node i and

node j in F̂p. g(l)
pj denotes the information about

node j in the p-th pruned dependency forest from
all the preceding layers and can be obtained by the
same way as Eq. 2.

Then, we concatenate the representations ob-
tained from the N dependency forests and fuse
them using a linear layer. This process can be for-
mulated as follows:

Hb = Linear
(
[H1;H2; . . . ;HN ]

)
(13)

where Hi is the node representations obtained by
DCGCNs for the i-th dependency forest, and Hb
denotes the node representations of each block. M
identical blocks are combined in the same way as
above to obtain the final node representations for
sentence S, denoted as H.

4.3 Relation Prediction
To predict the relations among entities, the max
pooling mechanism is used. We obtain the global
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CPR PGR
TRAIN 16107 11780
DEV 10030 -
TEST 14269 219

Table 1: The number of instances of CPR and PGR.

sentence representation hS by applying the max
pooling function to all the words in sentence S:

hS = MaxPooling({h1, . . . ,hn}) (14)

where hi is the feature vector of word wi, and then
obtain the representation of each entity by applying
the max pooling function to the words that belongs
to an entity mention (i.e., Eq). Therefore, the entity
representation of Eq can be obatined by:

hEq = MaxPooling({hi|wi ∈ Eq}) (15)

The sentence representation and entity represen-
tations are concatenated and fed into a feed-forward
neural network (FFNN), and then we transform it
into an m-dimensional vector hR using a linear
layer to make a prediction:

hR = Linear
(
FFNN

(
[hS ;hE1 ; . . . ;hEQ ]

))
(16)

where Q is 2 in the binary relational extraction task
and is 3 in the ternary relational extraction task, m
denotes the number of relations R.

5 Experiment

5.1 Datasets
We evaluate our model on three datasets with two
types of tasks: cross-sentence n-ary relation extrac-
tion and sentence-level relation extraction follow-
ing (Guo et al., 2021).

For the cross-sentence n-ary relation extraction
task, we use the dataset extracted by (Peng et al.,
2017) based on PubMed. Most of the instances in
this dataset contain multiple sentences, and the en-
tities in the instances are cross-sentence. In detail,
this dataset contains 6987 instances of ternary rela-
tions and 6087 instances of binary relations, each
of them is divided into five folders according to
(Song et al., 2018). The relation between entities
in each instance belongs to one of the relation sets,
including “resistance or non-response”, “sensitiv-
ity”, “response”, “resistance”, and “None”. Fol-
lowing (Guo et al., 2021), we define two sub-tasks
on this dataset: multi-class and binary-class rela-
tion extraction. For multi-class relation extraction,

we keep the original dataset unchanged, and for
binary-class relation extraction, we define the first
four relations as “Yes” and the “None” as “No”.

For the sentence-level relation extraction
task, we use two datasets for Medical Rela-
tion Extraction, namely, BioCreative Vi CPR
(CPR) (Krallinger et al., 2017) and Phenotype-
Gene relation (PGR) (Sousa et al., 2019). CPR
focuses on the relations between chemical compo-
nents and human proteins, which contains six rela-
tion types (“CPR:3”, “CPR:3”, “CPR:4”, “CPR:5”,
“CPR:6”, “CPR:9”, “None”). PGR focuses on
whether human phenotypes are related to human
genes, which contains two relation types (“TRUE”
for related and “FALSE” for unrelated). The num-
ber of instances for train/dev/test sets of CPR and
PGR datasets is shown in Table 1.

5.2 Implementation
During the causal explanation generation process,
we use a pre-trained CP-GCN model without the
task-specific causal pruning module as fMRE(·) and
choose 1/5 of the training set for the (Peng et al.,
2017) dataset while the full training set for other
datasets to generate the full dependency forests.
Then, we set K = 20 to construct causal explana-
tion datasets.

For evaluation, we follow previous studies to
use the test accuracy averaged over five cross vali-
dation folds for the cross-sentence n-ary task and
F1 scores for the sentence-level task. Refer to the
supplementary files for the details.

See Appendix A.1 for the hyper-parameter ex-
periment on N , α, and β.

5.3 Results on Cross-Sentence N-Ary Relation
Extraction Task

For the cross-sentence n-ary relation extraction
task, We compare CP-GCN against two kinds of
models and report the average test accuracies on
the (Peng et al., 2017) dataset in table 2.

Tree: models use the 1-best dependency tree.
DAG LSTM, GRN, and GCN(Full) use the full
dependency tree directly, while GCN(Pruned)
generates a pruned dependency tree with some
rules (Zhang et al., 2018). Besides, DAG LSTM
uses graph-structure LSTM to encode the depen-
dency tree, while GRN and GCN use graph recur-
rent networks and graph convolutional networks,
respectively.

Forest: models construct dependency forests.
ACGCN treats a fully connected graph obtained by
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Syntax Type Model
Binary-class Multi-class

Ternary Binary Ternary Binary
Single Cross Single Cross Single Cross Single Cross

Tree

DAG LSTM (Peng et al., 2017) 77.9 80.7 74.3 76.5 - - - -
GRN (Song et al., 2018) 80.3 83.2 83.5 83.6 - 71.7 - 71.7
GCN(Full) (Zhang et al., 2018) 84.3 84.8 84.2 83.6 - 77.5 - 74.3
GCN(Pruned) (Zhang et al., 2018) 85.8 85.8 83.8 83.7 - 78.1 - 73.6

Forest

AGGCN (Guo et al., 2019a) 87.1 87 85.2 85.6 - 79.7 - 77.4
AGGCN* (Guo et al., 2019a) 86.3 87.2 86.3 85.8 77.7 78.7 77.7 77.3
LF-GCN (Guo et al., 2021) 88 88.4 86.7 87.1 - 81.5 - 79.3
LF-GCN* (Guo et al., 2021) 88.2 88.3 87 86.3 82.9 83.9 80 79.6
AC-GCN (Qian et al., 2021) 88.8 88.8 86.8 86.5 - 84.6 - 81
CP-GCN(ours) 89.5 89.1 87.3 86.5 84.3 84.9 81 80.1

Table 2: Average test accuracies on the (Peng et al., 2017) dataset for binary-class n-ary relation extraction and
multi-class n-ary relation extraction. “Ternary” denotes drug-gene-mutation tuple and “Binary” denotes drug-
mutation pair. “Single” means considering the instances within a single sentence, while “Cross” means considering
all instances. Models with * indicate the accuracy of our reimplementation on their released implementation.

multi-head attention as a forest. LF-GCN automat-
ically generates latent forests using multi-head at-
tention and MMT. AC-GCN generates dependency
forests with multi-head attention and encodes them
with a 2D convolutional network.

As shown in Table 2, our proposed CP-GCN
model achieves state-of-the-art performance in
most settings. Specifically, the model using the
pruned dependency tree performs better than those
using the full dependency tree, suggesting that
noisy information does exist in the 1-best depen-
dency tree. In addition, the forest structure shows
an advantage on this task, while CP-GCN surpasses
the current state-of-the-art forest-structured model
(AC-GCN) by 0.7 and 0.3 points on the binary-
class ternary relation extraction task. The multi-
class n-ary relation extraction task in (Peng et al.,
2017) dataset is more challenging due to the unbal-
anced distribution of each relation, and CP-GCN
can consistently achieve comparable performance.

5.4 Results on Sentence-Level Relation
Extraction Task

For the sentence-level relation extraction task, we
implement our approach on the CPR and PGR
datasets and compare it against state-of-the-art
models. We classify these models into three groups
according to their syntax type.

None: models do not use tree or forest structures.
Att-GRU adds a self-attention layer to GRU, and
Bran uses a bi-affine self-attention model to capture
interactions in sentences. BioBERT is a biomedical
pre-trained language representation model.

Tree: models use the 1-best dependency tree.
GCN, Tree-DDCNN, and Tree-GRN encode the
full tree with GCN, DDCNN, and GRN, respec-

Syntax Type Model F1

None
Att-GRU (Liu et al., 2017) 49.5
Bran (Verga et al., 2018) 50.8

Tree
GCN (Zhang et al., 2018) 52.2
Tree-DDCNN (Jin et al., 2020) 50.3
Tree-GRN (Jin et al., 2020) 51.4

Forest

Edgewise-GRN (Song et al., 2019) 53.4
KBest-GRN (Song et al., 2019) 52.4
AGGCN (Guo et al., 2019a) 56.7
ForestFT-DDCNN (Jin et al., 2020) 55.7
LF-GCN (Guo et al., 2021) 58.9
AC-GCN (Qian et al., 2021) 65.8
CP-GCN(ours) 67.3

Table 3: Main results on CPR.

tively. BO-LSTM prunes the tree, retaining only
the shortest dependency path.

Forest: models construct dependency forests.
Edgewise-GRN chooses edges with weights greater
than the pre-defined threshold to form the depen-
dency forest. KBest-GRN constructs the forest by
aggregating K-best trees. ForestFT-DDCNN gener-
ates forests with a learnable dependency parser.

The results of CPR and PGR datasets are shown
in Table 3 and Table 4. CP-GCN achieves state-
of-the-art performance on both datasets. F1 score
increases by 1.5 and 0.5 on the CPR and PGR
datasets, respectively. Compared to models with
forest structure, CP-GCN performs significantly
better than both models with a bias towards syntac-
tic information (Edgewise-GRN, KBest-GRN, and
ForestFT-DDCNN) and models using almost only
semantic information (AGGCN, LF-GAN, and AC-
GCN), which demonstrates the effectiveness of our
proposed CSFG method.

5.5 Analysis and Discussion
Ablation study. To validate the effectiveness of
the ingredients of CP-GCN, i.e., the semantic em-
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Syntax Type Model F1
None BioBERT (Lee et al., 2020) 67.2

Tree
BO-LSTM (Lamurias et al., 2019) 52.3
GCN (Zhang et al., 2018) 81.3
Tree-GRN (Jin et al., 2020) 78.9

Forest

Edgewise-GRN (Song et al., 2019) 83.6
KBest-GRN (Song et al., 2019) 85.7
AGGCN (Guo et al., 2019a) 89.3
ForestFT-DDCNN (Jin et al., 2020) 89.3
LF-GCN (Guo et al., 2021) 91.9
AC-GCN (Qian et al., 2021) 92.4
CP-GCN(ours) 92.9

Table 4: Main results on PGR.

Model F1
CP-GCN 67.3
-semantic embedding module 66.7
-task-specific causal pruning module 65.7

Table 5: An ablation study for CP-GCN on CPR dataset.

bedding module and the task-specific causal prun-
ing module, we conduct the ablation study on
CPR. We train the complete CP-GCN, an abla-
tion model without the semantic embedding mod-
ule, and another ablation model without the task-
specific causal pruning module, respectively. Our
experimental results are reported in Table 5. We
observe that the performance of the model dropped
(compared with complete CP-GCN) regardless of
which module is removed, suggesting that both
modules can help construct dependency forests that
are more conducive to predicting relation. Com-
paring these two modules, the removal of the task-
specific causal pruning module has a greater impact
on performance, which suggests that the proposed
causal pruning method can effectively distinguish
vital information from noise.
Performance against sentence length. Figure 4
compares the F1 scores of our CP-GCN model and
the LF-GCN model (Guo et al., 2021) under differ-
ent sentence lengths. Following (Guo et al., 2021),
We divide the test set of CPR into three groups
((0,25], (25,50], >50) based on sentence length. In
general, CP-GCN outperforms LF-GCN against
various sentence lengths. Otherwise, our model
achieves a significant improvement on the more
challenging long sentences, which demonstrates
the ability of our model to capture long-range de-
pendencies. Moreover, the dependency forests of
the long sentences are more sophisticated, thus in-
dicating that the task-specific causal explainer is
able to extract task-relevant information from the
sophisticated graph structure.
Case study. To further validate the efficiency of
CP-GCN, we conduct a case study on an exam-

Figure 4: F1 scores against sentence length. The results
on LF-GCN are reproduced based on its released imple-
mentation.

Aspirin induced autophagy , a feature of mTOR inhibition .

nsubj dobj punct

punct

appos

det

nmod
case

compound

Aspirin induced autophagy , a feature of mTOR inhibition .

(a)

(b)

Figure 5: Visualizations of (a) 1-best dependency tree
and (b) top 10 highest causal weight edges of the pruned
dependency forest for the example input, where thicker
lines denote the connections with higher causal weights.

ple sentence “Aspirin induced autophagy, a feature
of mTOR inhibition”, which can be correctly pre-
dicted by our model to be a “down regulator” rela-
tion between Aspirin(E1) and mTOR(E2). Figure
5(a) shows its 1-best dependency tree, and Figure
5(b) visualizes the top 10 edges with the highest
causal weights in the pruned dependency forest
generated by the proposed CSFG and the thicker
lines referring to higher causal weights. In this
example, the connection between “induced” and
“feature” enhances in the pruned dependency forest,
and we reckon the latent reason is that CP-GCN can
capture richer semantic information. We observe
that there exists a strong connection between “au-
tophagy” and “feature” in the pruned dependency
forest, which improves the prediction of the rela-
tion between Aspirin and mTOR, supporting the
effectiveness of the task-specific causal explainer.

6 Conclusion

In this paper, we introduce a novel approach for
the medical relation extraction task, namely CP-
GCN, which proposes a causality-pruned depen-
dency forest enriched with semantic and syntactic
information. We first construct dependency forests
by incorporating semantic information into the de-
pendency tree generated by the off-the-shelf parser.
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Then, a task-specific causal explainer is trained
to prune the dependency forests. Experiments on
the benchmark medical datasets demonstrate the
superiority of CP-GCN over the state-of-the-art
methods for the medical relation extraction task.
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Figure 6: F1 scores with different hyper-parameter settings.

A Appendix

A.1 Hyper-Parameter Experiment
We perform several experiments on the CPR dataset
to study the influence of the hyper-parameters in
our proposed CP-GCN model, and the results are
shown in Figure 6. The hyper-parameter α bal-
ances semantic and syntactic information in the
dependency forest. The hyper-parameter β bal-
ances the impact of the task-specific causal prun-
ing module. The hyper-parameter N represents
the richness of semantic information. As (a), (b),
and (c) are shown in Figure 6, our proposed CP-
GCN model achieves comparable performance in
most settings, which indicates the robustness of our
model. Specifically, CP-GCN achieves the highest
F1 score 67.3 with N = 2, α = 0.9, and β = 1. As
shown in Figure 6(c), when N decreases to 1, i.e.
the semantic information decreases, CP-GCN per-
forms best when the weight of the dependency tree,
α, decreases as well, suggesting that our model is
able to balance the syntactic and semantic informa-
tion. As shown in Figure 6(a), when the weight of
dependency tree α increases, CP-GCN performs
best when the weight of task-specific causal prun-
ing module β increases as well. This demonstrates
that there is indeed some noise in the dependency
tree and our proposed task-specific causal pruning
module can remove task-irrelevant information.


