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Abstract

Document-level relation extraction aims to rec-
ognize relations among multiple entity pairs
from a whole piece of article. Recent meth-
ods achieve considerable performance but still
suffer from two challenges: a) the relational
entity pairs are sparse, b) the representation of
entity pairs is insufficient. In this paper, we pro-
pose Pair-Aware and Entity-Enhanced(PAEE)
model to solve the aforementioned two chal-
lenges. For the first challenge, we design a Pair-
Aware Representation module to predict poten-
tial relational entity pairs, which constrains the
relation extraction to the predicted entity pairs
subset rather than all pairs; For the second,
we introduce a Entity-Enhanced Representa-
tion module to assemble directional entity pairs
and obtain a holistic understanding of the en-
tire document. Experimental results show that
our approach can obtain state-of-the-art perfor-
mance on four benchmark datasets DocRED,
DWIE, CDR and GDA.

1 Introduction

Relation extraction (RE) is a primary task in the
field of information extraction, which aims to iden-
tify the relationships between two entities in a doc-
ument. Previous works mainly focus on sentence-
level relation extraction, i.e, recognizing the rela-
tionships between entities in a sentence. However,
large amounts of relationships are expressed over
multiple sentences in real-world applications. Ac-
cording to DocRED (Yao et al., 2019), above 40.7%
of the relational facts can only be extracted from
multiple sentences. Therefore, it requires the model
to capture complex interactions among entities in
the whole document. Previous work commonly
referred to this problem as document-level relation
extraction which has attracted much attention re-
cently (Nan et al., 2020; Zhou et al., 2021; Zhang

et al., 2021). Although the considerable perfor-
mance of these methods, there are still two critical
challenges in document-level RE to be addressed.

Fig. 1: An example with entity pairs and relations from
DocRED. Entity mentions only involved in these rela-
tion instances are colored, other entities in the document
are highlighted in grey.

The first challenge is how to identify relational
entity pairs that are sparse in a document. Specifi-
cally, given a document with n entities, there will
be n(n − 1) combinations of entities to classify.
However, only a few entity pairs have predefined
relationships. For example, as shown in Figure 1,
this document contains 21 entities with 420 poten-
tial entity pairs. However, the number of relational
entity pairs is only 11, accounting for 2.62 % of
the total entity pairs. According to statistics, for
DocRED (Yao et al., 2019) dataset, the proportion
are 3.18% and 3.11% in the train set and dev set, re-
spectively. To further explore the impact of sparsity
on performance bottlenecks, we conduct a diagnos-
tic experiment on DocRED dataset. Utilizing pre-
vious SOTA model ATLOP (Zhou et al., 2021), we
divulge the information of whether existing a prede-
fined relationship between the entities to the model.
Specifically, we just concatenate a 0-1 variable on
the original representation of entity pairs, where
“1” represents the entity pair exists a predefined
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relationship. Experimental results show that the F1
score reaches 93.50% in dev set which is 32.20%
higher than normal setting. This demonstrates that
the importance of identifying the relational entity
pairs when facing the sparsity problem (Wang et al.,
2019a).

The second challenge is how to effectively
model the representations of entity pairs. There
are commonly two characteristics for entity pairs.
Firstly, the entities-scattering, which means the
entities of an entity pair may scatter across mul-
tiple sentences. Figure 1 illustrates an example
from the DocRED dataset. For Pair_A, the sub-
ject Ali Abdullah Ahmed and object Y asir al-
Salami are distributed in different sentences ([S1]
and [S7]), which requires model to capture the
long-distance dependency among entities across
sentences. Secondly, the directivity of entity pairs,
which means that the relationships of entity pairs
are directional. For example, the Pair_B and
Pair_B′ in the Figure 1, their subject and object
are opposite, and the relations of them are differ-
ent. Therefore, this challenge requires the model
to assemble directional entity pairs and obtain a
holistic understanding of the cross-sentence con-
text. To model the representation of entity pairs,
most current approaches include graph-based meth-
ods and transformer-based methods. Specifically,
some methods (Christopoulou et al., 2019; Nan
et al., 2020; Wang et al., 2020) construct a docu-
ment graph with structured attention, dependency
structures or heuristics. Meanwhile, considering
the transformer can capture long-distance informa-
tion, some studies (Wang et al., 2019a; Tang et al.,
2020; Zhou et al., 2021) directly apply pre-trained
language models without introducing graph struc-
tures. However, they directly concatenate two enti-
ties together to obtain the representation of entity
pair, without considering the directivity of entity
pairs and modeling the representations of entity
pairs adequately.

In this paper, we propose a Pair-Aware
and Entity-Enhanced (PAEE) model for
document-level RE. To deal with the spar-
sity of entity pairs, we propose the Pair-Aware
Representation(PAR) module to identify poten-
tial relational entity pairs, which constrains the
relation extraction to the predicted pairs subset
rather than all pairs. Furthermore, to capture
the global features of triples, PAR utilizes TNet
(Papadopoulos et al., 2021) to model the relation

between entity pairs, unlike previous methods,
PAR designs a Sliding Window Filling Strategy for
filling relation matrix, which enhances the inter-
action between entity pairs. To effectively model
the representation of entity pairs, we focus on the
global interactions among sentences and entities.
Specifically, we propose a Entity-Enhanced
Representation(EER) module. The EER first
introduces a Representation-Enhanced Encoder
to facilitate the interaction between all sentences
and entities. In this way, EER obtains a holistic
understanding of the entire document. Then,
considering that the characteristics of entities as
subjects and objects are different, especially in
different relationship categories, EER utilizes a
Cross Matching method to assemble directional
entity pairs.

Experiments on four document-level relation
extraction datasets, DocRED (Yao et al., 2019),
DWIE (Zaporojets et al., 2021), CDR (Li et al.,
2016) and GDA (Wu et al., 2019), demonstrate
that our PAEE model significantly outperforms the
state-of-the-art methods. To our best knowledge,
we are first to consider the sparsity and the direc-
tivity of relational entity pairs for the task.

We summarize our contributions as follows:

• To alleviate the negative impact of sparsity,
we propose Pair-Aware Representation(PAR)
module, which promotes the interaction be-
tween entity pairs and accurately identifies
potential relational entity pairs.

• To model the representation of entity pairs
better, we propose Entity-Enhanced Repre-
sentation(EER) module, which is based on a
Representation-Enhanced Encoder to capture
the global context for the scattered entities
and a Cross Matching method to assemble
directional entity pairs.

• We conduct experiments on four public
document-level relation extraction datasets.
Experimental results demonstrate that our
PAEE model can achieves state-of-the-art per-
formance compared with baselines.

2 Methodology

Before introducing our proposed approach for
PAEE in this section, we first introduce the prob-
lem definition. Given a document d and a set
of entities {ei}ni=1, and there are n(n − 1) entity
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[S1] All Abdullah Ahmed,  
also knowm Salah  
Ahmed al-Salaml  

(Arabic) (August 1, 1979 
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[S7] ther younger brother ,  
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Fig. 2: The overall architecture of our PAEE. Given a document, PAEE will obtain the representation of entities with
the Encoder module; Then, the Pair-Aware Representation module and Entity-Enhanced Representation module are
designed to get the representation of entity pairs. Finally, PAEE will obtain the relations between entities with the
Classification Module.

pairs in this document. The task of document-level
relation extraction is to predict a subset of rela-
tions from R ∪ {NA} between the entity pairs
(es, eo)s,o=1...n;s ̸=o, where R is a pre-defined set
of relationships, es, eo are identified as subject and
object entities, respectively. The entity pairs that do
not express any relation are labeled NA. In addition,
the model needs to predict the label of all entity
pairs (es, eo)s,o=1...n;s ̸=o at the test time. To model
relation extraction between es and eo, we define a
N × N matrix V , where entry Vs,o indicates the
relation type between es and eo. Entities in V are
arranged according to their first appearance in the
document. Unlike Zhang et al. (2021), we utilize
the sliding window filling strategy to fill matrix V ,
which can enhance the interaction between entity
pairs and is beneficial to relation extraction.

2.1 Encoder

Given a document D = [xt]
l
t=1 with l tokens,

we insert special symbols “ < e > ” and “ <
/e > ” to mark the entity positions at the start
and end of mentions. It is adapted from the entity
marker technique (Zhang et al., 2017; Shi and Lin,
2019; Soares et al., 2019). We leverage the pre-
trained language model as an encoder to obtain the
embedding as follows:

H = [h1, h2, ..., hl] = Encoder([x1, x2, ..., xl])
(1)

where hi is the embedding of the token xi. Note
that some documents are longer than 512, we thus
leverage a dynamic window to encoder whole
documents (Zhou et al., 2021). We take the em-
bedding of “ < e > ” at the start of mentions as
the mention embeddings. Then, for an entity ei
with mentions {mi

j}
Nei

j=1
, we leverage a logsumexp

pooling to obtain the entity embedding ei:

ei = log

Nei∑
j=1

exp(mj) (2)

This pooling accumulates signals from mentions
in the document. Compared with the mean pooling,
the logsumexp pooling shows better performance
in the experiment. We calculate the entity-level
relation matrix based on entity-to-entity relevance.
Specifically, we constructed a D-dimensional fea-
ture vector V(es, eo) to capture the relevance be-
tween entities. Note that we add the position and
type information of entities to enrich the vector
V(es, eo). For intra-sentential and inter-sentential
entity pairs, their position captured by a 0-1 vari-
able pos.
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a(s,o) = softmax(
K∑
i=1

As
i ·Ao

i ),

V(es, eo) =W1 ·H · a(s,o)

(3)

where W1 is the learnable weight matrix, a(s,o)
is the attention weight of last layer for entity-aware
attention and As

i refers to the tokens’ importance
to the i-th entity, H is the contextual embedding
in Eq.1. The K is the number of head in the trans-
former.

2.2 Pair-Aware Representation

In this section, we propose Pair-Aware Repre-
sentation(PAR) module to enhance the interaction
between entity pairs and identify potential entity
pairs. We build the module base on existing BERT
baselines (Zhou et al., 2021; Zhang et al., 2021)
and integrate other techniques to further improve
the performance.

Sliding Window Filling Strategy. To capture
the relevance of entity pairs, we utilize TNet (Pa-
padopoulos et al., 2021) to expand receptive field
and learn more global and local information. The
TNet is a novel multi-scale hard-attention architec-
ture that constantly adjusts the number of elements
to help us focus on the related entity pairs. We take
the matrix V ∈ RN×N×D as a D-channel variable
and feed it into TNet, where N is the largest num-
ber of entities, counted from all the dataset samples.
However, the number of entities annotated in each
document is usually different and often less than N ,
thus, we propose a sliding window filling strategy
to fill matrix before feeding matrix V into TNet.

V
′
= Sliding(V),

Y = TNet(W2V
′
)

(4)

where Y ∈ RN×N×D
′

denotes the entity-level
relation matrix. W2 is the learnable weight ma-
trix and D

′
is much smaller than D. As it shows

in the Figure 2, the diagonal dots are far apart in
the matrix V, which makes their interaction poor
(Ronneberger et al., 2015). Instead of previous
zero filling (Ronneberger et al., 2015), we utilize
the sliding window filling strategy to shorten the
distance between entity pairs. Specifically, for the
orange dashed window in matrix V, we slide the
window in three directions: transverse, longitudi-
nal and oblique, then we will obtain a filled matrix

V
′
. Furthermore, in the whole matrix V

′
, the spac-

ing between dots that were originally far away was
significantly shortened, which facilitates the inter-
action between them.

Potential Pair Prediction. This component is
shown as a 0-1 distribution box in Figure 2, where
“1” means potential relational entity pairs. Given
a document which contains multiple entity pairs,
different from previous works (Zhou et al., 2021;
Zhang et al., 2021) which redundantly perform re-
lationship classification to every entity pair, we
utilize this module to predict potential relational
entity pairs. Specifically, we utilize the average
pooling operation (Lin et al., 2013) to obtain the
representation Ppair of each entity pair, and then
feed it into the binary classifier to get the potential
entity pairs.

P
′
pair = κ(Ppair;λ; pos; subemb; objemb) (5)

where κ and λ denote the binary classifier and
threshold, subemb is the type embedding of sub-
ject in entity pairs, objemb is the type embedding
of object in entity pairs. We model it as a binary
classification task, and the corresponding entity
pairs will be assigned with tag “1” if the probabil-
ity exceeds a certain threshold λ or with tag “0”
otherwise (as shown in Figure 2). By concatenat-
ing the classification results P

′
pair with matrix Y in

Eq.4, we will obtain a entity-level relation matrix
Ypair ∈ RD

′
+1 incorporating the information of

candidate pairs.

2.3 Entity-Enhanced Representation
In this section, we propose a Entity-Enhanced

Representation module to model the representa-
tion of entity pairs. Specifically, we introduce
Representation-Enhanced Encoder to facilitate the
interaction between all sentences and entities.
Then, considering that the characteristics of en-
tity as subject and object are different, especially
in different relational categories, we propose Cross
Matching method to assemble directional entity
pairs.

Representation-Enhanced Encoder. To enable
the awareness of document-level contexts for sen-
tences and entities, we employ a Representation-
Enhanced Encoder to facilitate the interaction be-
tween all sentences and entities. Formally, we
can obtain the entity embedding ei from Eq.2 and
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the embedding [h1, h2, ..., hl] of every token in
sentence Sl

i from Eq.1, where l is the sentence
length. Hence the sentence embedding Si can be
obtained by a max-pooling operation over the to-
ken sequence representation. Then we employ
the Transformer (Vaswani et al., 2017) module,
Representation-Enhanced Encoder, as the encoder
to obtain the document-aware embedding for sen-
tences and entities. Note that we add the sentence
representation with sentence position embeddings
to inform the sentence order before feeding them
into the Representation-Enhanced Encoder.

[He;Hs]=RE-Encoder(e1...eNe ;S1...SNs) (6)

where Si is the local representation for i-th sen-
tence and ei is the representation for i-th entity. Uti-
lizing the Representation-Enhanced Encoder, we
can obtain the document-aware entities representa-
tion He ∈ RNe×D, Ne is the number of entities in
a document.

Cross Matching. To extract the different features
of entity as subject and object respectively, we uti-
lize the Sub-Obj layer (a Linear Layer(Ne × D,
2×Ne ×Nc)) for feature separation. Meanwhile,
we map these features to each relationship category,
which enhances the interaction between entities in
each relationship. For the Sub-Obj layer, we set a
corresponding loss (Appendix A.1) to learn that a
single entity may have several relationships . The
features of entity as subject and object in each rela-
tionship can be calculated as:

[Fsub;Fobj ] = Sub-Obj(He) (7)

where Fsub, Fobj ∈RNe×Nc denotes the features
of entities as subjects and objects respectively, Nc

is the number of relationship categories and Ne is
the number of entities. Meanwhile, we concatenate
these features with the representation He of enti-
ties, then we will obtain esub, eobj ∈ RNe×(D+Nc),
which are the representations of entities as subjects
and objects respectively.

Classification Module. Given the entity embed-
ding esub and eobj with entity-level relation matrix
Ypair in section 2.2, we map them to hidden rep-
resentations z with a feedforward neural network.
Then we calculate the probability of relation r by
bilinear function and sigmoid activation. Formally,
we obtain:

Statistics/Datasets DocRED DWIE CDR GDA
# Train 3,053 602 500 23,353
# Dev 1,000 98 500 5,839
# Test 1,000 99 500 1,000
# Relation 97 65 2 2
Avg. # entity per Doc. 19.5 14 7.6 5.4
Avg. # Ment. per Ent. 1.4 1.6 2.7 3.3

Table 1: Statistics of the experimental datasets.

zs = tanh(Ws · esub + Ys,o),

zo = tanh(Wo · eobj + Ys,o),

P (r |esub, eobj) = σ(zsWrzo + br)

(8)

where Ys,o is the entity-pair representation of
(s, o) in matrix Ypair, σ denotes the sigmoid func-
tion, Ws ∈ Rd×d, Wo ∈ Rd×d, b ∈ R, and Wr ∈
Rd×d are learnable parameters.

3 Experiments

3.1 Experimental Setup
Datasets. We evaluated our method on four
document-level RE datasets. The statistical results
of the datasets are shown in Table 2.

• DocRED (Yao et al., 2019) is a large-scale
document-level relation extraction dataset.
It is constructed from Wikipedia articles.
DocRED contains 96 relationships and
3,053/1,000/1,000 instances for training, vali-
dating and test, respectively.

• DWIE (Zaporojets et al., 2021) is a document-
level RE dataset after processing. This dataset
has 700 documents for train and 99 documents
for test. The training set is then randomly split
into two parts: 602 documents for train and
98 for development.

• CDR (Li et al., 2016) is a relation extraction
dataset in the biomedical domain, which is
human-annotated and aims to predict the bi-
nary interactions between Chemical and Dis-
ease concepts.

• GDA (Wu et al., 2019) is a large-scale dataset
in the biomedical domain, which aims to pre-
dict the binary interactions between Gene and
Disease concepts.

Pretrained Transformers. We initialize PAEE
with three different pretrained language models in-
cluding BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019) and SciBERT (Beltagy et al., 2019).
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Model Dev Test
Ign F1 (%) F1 (%) Rela (%) Ign (%) F1 (%)

BERTbase (Wang et al., 2019b) - 54.16 58.41 - 53.20
BERT-TSbase (Wang et al., 2019a) - 54.42 - - 53.92
HIN-BERTbase (Tang et al., 2020) 54.29 56.31 - 53.70 55.60
CorefBERTbase (Ye et al., 2020) 55.32 57.51 - 54.54 56.96
SSAN-BERTbase (Xu et al., 2021a) 57.03 59.19 68.37 56.06 58.41
ATLOP-BERTbase (Zhou et al., 2021) 59.22 61.09 70.42 59.31 61.30
DocuNet-BERTbase (Zhang et al., 2021) 59.86 61.28 70.55 59.45 61.42
PAEE-BERTbase (Ours) 60.38 (↑0.52) 62.62 (↑1.34) 74.61 (↑4.06) 60.42 (↑0.97) 62.98 (↑1.56)
BERTlarge (Ye et al., 2020) 56.67 58.83 67.42 56.47 58.69
CorefBERTlarge (Ye et al., 2020) 56.82 59.01 68.78 56.4 58.83
RoBERTalarge (Ye et al., 2020) 57.14 59.22 69.23 57.51 59.62
CorefRoBERTalarge (Ye et al., 2020) 57.35 59.43 69.77 57.9 60.25
SSAN-RoBERTalarge (Xu et al., 2021a) 60.25 62.08 73.21 59.47 61.42
ATLOP-RoBERTalarge (Zhou et al., 2021) 61.32 63.18 74.39 61.39 63.4
DocuNet-RoBERTalarge (Zhang et al., 2021) 61.43 63.40 74.56 61.52 63.52
PAEE-RoBERTalarge (Ours) 62.44 (↑1.01) 64.82 (↑1.42) 79.02 (↑4.46) 63.06 (↑1.54) 65.09 (↑1.57)

Table 2: Main results on the development and test set of DocRED. We report the official test score on the CodaLab
scoreboard with the best checkpoint on the development set. The performance of our method is followed by the
improvements (↑) over the previous state-of-the-art method DocuNet.

• BERT employs a Transformer encoder to
learn from large unlabeled text corpora and
sub-word units to represent textual tokens,
which contains 12 and 24 self-attention layers.

• RoBERTa is an improved version of BERT,
which removes the Next Sentence Prediction
task and adopts way larger text corpora as well
as more training steps.

• SciBERT adopts the same model architecture
as BERT, but is trained on scientific text in-
stead. In this paper, we provide SciBERT-
initialized PAEE on the two biomedical do-
main datasets CDR and GDA.

Implementation Detail. We used cased BERT-
base, or RoBERTa-large as the encoder on Do-
cRED and SciBERT-base on CDR and GDA. We
use mixed-precision training (Micikevicius et al.,
2018) based on the Apex library. Our model is
optimized with AdamW (Loshchilov and Hutter,
2018) using learning rates ∈ [2e−5, 3e−5, 5e−5,
1e−4], with a linear warmup (Goyal et al., 2018)
for the first 6% steps followed by a linear decay to
0. We set the matrix size N=42 in the Figure 2 and
λ = 0.3. We preprocess CDR and GDA dataset fol-
lowing Christopoulou et al. (2019). For GDA, we
split 20% of the training set for development. For
CDR, we merge the training set and dev set to train
the final model after the best hyper-parameter is
set. The calculation of loss will be provided in the
appendix A.1. We report the mean and standard de-

viation of F1 on the development set by conducting
5 runs of training using different random seeds.

Evaluation. Our primary evaluation metric are
F1, Ign F1 (Yao et al., 2019) and Rela. Ign F1 is
computed by excluding relational facts that already
appeared in the training set. It avoids information
leakage from the training set. We propose Rela
for evaluating the accuracy of identifying relational
entity pairs. The prediction results of entity pairs
are processed into two classification tasks. The
relationship between entity pairs is divided into
NA and non NA.

3.2 Experiment Results

We conduct experiments on four DocRE datasets
to verify the effectiveness of our method PAEE.

Results on the DocRED Dataset. In the Do-
cRED dataset, we compare PAEE with transformer-
based models, including BERTbase (Wang et al.,
2019b), BERT-TSbase (Wang et al., 2019a),
CorefBERTbase (Ye et al., 2020), HIN-BERTbase

(Tang et al., 2020), SSAN (Xu et al., 2021a) and
ATLOPbase on the DocRED dataset; and graph-
based models, including GEDA (Li et al., 2020),
LSR (Nan et al., 2020), GLRE (Wang et al., 2020),
GAIN (Zeng et al., 2020), HeterGSAN (Xu et al.,
2021b) and DocuNet (Zhang et al., 2021). Re-
sults in Table 2 shows that PAEE performs bet-
ter than these methods. Our best model, PAEE
built upon RoBERTalarge, is +1.42 / +1.57 F1 bet-
ter on dev/test set than DocuNet-RoBERTabase
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Model Dev Test
Ign F1 (%) F1 (%) Rela (%) Ign (%) F1 (%) Rela (%)

CNN 37.65 47.73 56.43 34.65 46.14 55.83
LSTM 40.86 51.77 59.31 40.81 52.60 61.42
BiLSTM 40.46 51.92 59.49 42.03 54.47 64.78
GAIN 58.63 62.55 74.75 62.37 67.57 78.89
ATLOP 59.03 64.82 77.43 62.09 69.94 82.12
PAEE (Ours) 62.05(↑3.02) 67.52(↑2.70) 82.01(↑4.58) 66.45(↑4.36) 73.10(↑3.16) 86.45(↑4.33)

Table 3: Main results on the development and test set of DWIE. The performance of our method is followed by the
improvements (↑) over the previous state-of-the-art method ATLOP.

Model CDR GDA
BRAN (Verga et al., 2018) 62.1 -
LSR (Nan et al., 2020) 64.8 82.2
DHG (Zhang et al., 2020) 65.9 83.1
GLRE (Wang et al., 2020) 68.5 -
SciBERT (Beltagy et al., 2019) 65.1 82.5
SSAN-SciBERT (Xu et al., 2021a) 68.7 83.7
ATLOP-SciBERT (Zhou et al., 2021) 69.4 83.9
DocuNet-SciBERT (Zhang et al., 2021) 76.3 85.3
PAEE-SciBERT 78.2 (↑1.9) 87.7 (↑2.4)

Table 4: Test F1 score (%) on CDR and GDA dataset.
Our PAEE model with the SciBERT encoder outper-
forms the current state-of-the-art results. The perfor-
mance of our method is followed by the improvements
(↑) over the previous state-of-the-art method DocuNet.

(Zhang et al., 2021), and obtains a new state-of-the-
art(SOTA) result. Meanwhile, our method achieves
4.46% improvements of Rela score on the DocRED
dataset. The significant performance gain of our
method over the baselines demonstrates that the
proposed PAEE is very effective for this task.

Results on the DWIE Dataset. As show in Table
5, Our method improves upon the basic ATLOP
model (Zhou et al., 2021) by 2.70% and 3.16%
in term of F1 score on the Dev and Test sets of
DWIE dataset, respectively. Meanwhile, our PAEE
achieves 4.33% improvements of Rela score. We at-
tribute the improvements to that our method PAEE
takes advantage of Pair-Aware Representation and
Entity-Enhanced Representation, thus achieving
superior performance than the previous model AT-
LOP.

Results on the Biomedical Datasets. In the
biomedical datasets, we compare PAEE with base-
lines including: BRAN (Verga et al., 2018), LSR
(Nan et al., 2020), DHG (Zhang et al., 2020),
GLRE (Wang et al., 2020), SciBERT (Beltagy et al.,
2019), SSAN (Xu et al., 2021a), ATLOP (Zhou
et al., 2021) and DocuNet (Zhang et al., 2021).
Following ATLOP (Zhou et al., 2021), we replace

Model Ign F1 F1
PAEE-BERTbase 60.38 62.62
w/o PAR 57.67 (↓ 2.71) 59.61 (↓ 3.01)
w/o EER 59.57 (↓ 0.81) 61.53 (↓ 1.09)

w/o SW 59.72 (↓ 0.66) 61.72 (↓ 0.90)
w/o PPP 59.63 (↓ 0.75) 61.52 (↓ 1.10)

Table 5: Ablation study of PAEE on DocRED. We turn
off different components of the model one at a time.

the encoder with SciBERT (Beltagy et al., 2019),
which is pre-trained on the scientific publication
corpora. Results in Table 4 shows that PAEE has
achieved new state-of-the-art with the F1 score
reached to 78.2% and 87.7% on CDR and GDA
datasets.

3.3 Ablation Study

To show the efficacy of our proposed techniques,
we conduct an ablation study experiment by turning
off one component at a time. 1) w/o PAR, which
removes the Pair-Aware Representation module;
2) w/o EER, which removes the Entity-Enhanced
Representation module, we directly splice two enti-
ties as the representation of entity pairs; 3) w/o SW,
which removes the Sliding Window strategy, the
previous zero filling method is used to fill the whole
relationship matrix; 4) w/o PPP, which removes the
Potential Pair Prediction module. We present the re-
sults of ablation study in Table 5. From the results,
we can observe that:

(1) Effectiveness of Pair-Aware Representa-
tion. When we remove the Pair-Aware Represen-
tation module from the PAEE, the F1 score drops
by 3.01% on DocRED dataset. It proves the Pair-
Aware Representation module is very effective for
the task.

(2) Effectiveness of Entity-Enhanced Rep-
resentation. Compared with the model re-
moved Entity-Enhanced Representation module,
our method PAEE achieves 1.09% improvements
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[S1] Johan Gottlieb Gahn ( 19 August 1745 – 8 December 1818 ) was a Swedish chemist who discovered manganese in 1774 .
[S2] Gahn studied in Uppsala 1762 – 1770 and became acquainted with chemists Torbern Bergman and Carl Wilhelm Scheele .
[S3] 1770 he settled in Falun , where he introduced improvements in copper smelting , and participated in building up several         
 factories , including those for vitriol , sulfur and red paint.

19 August 1745

Gahn Swedish

Uppsala

Falun8 December 1818

Date of birth

Date of death

Country of citizenship

Country

Country

19 August 1745

Gahn Swedish

Uppsala

Falun8 December 1818

Date of birth

Date of death

Country of citizenship

BERT PAEE

Title: Johan Gottlieb Gahn

Fig. 3: Case study on our proposed PAEE and baseline model. Entity mentions only involved in these relation
instances are colored, other entities in the document are high-lighted in grey. We utilize arrows to connect relational
entity pairs.

Model ACC F1
BERTbase 48.83 54.16
CorefBERT 59.37 57.51
ATLOP 65.42 61.09
PAEE-BERTbase (Our) 70.30 (↑4.88) 64.82 (↑3.73)

Table 6: The ACC means the accuracy of identifying
relational entity pairs.

of F1 score on the DocRED dataset. It demon-
strates that the EER module is able to effectively
model the directivity of entity pairs.

(3) Effectiveness of Sliding Window strategy.
Removing the SW, the performance drops signif-
icantly. Specifically, the F1 score drops from
62.62% to 61.72% on the DocRED dataset.

(4) Effectiveness of Potential Pair Prediction.
When we remove the PPP module, the F1 score
drops from 62.62% to 61.52%. It indicates that
the performance of the model can be effectively
improved by predicting potential relational entity
pairs.

3.4 Discussion and Analysis

In order to explore whether the performance bot-
tleneck of the model is effectively solved, we utilize
experiments to analyze it.

The effect of PAEE on sparsity. To assess the ef-
fectiveness of PAEE on identifying relational entity
pairs, we analyze it from contrast experiments, the
experiments are based on the pre-training model
BERTbase and DocRED dataset. As show in Table
6, the ACC score if 70.3% which is 4.88% more
than previous SOTA model ATLOP. This shows
that PAEE model can effectively identify potential
relational entity pairs.

The effect of Entity-Enhanced Representa-
tion(EER). To show that our EER can model the
representation of entity pairs better, we divide the

documents in dev set of DocRED into different
groups by the proportion of relational entity pairs,
and evaluate models trained with or without the
EER. Experiment results are shown in Figure 4.
We observe that for both models, their performance
gets better when the proportion of relational en-
tity pairs becomes larger, and the model w/ EER
consistently outperforms the model w/o EER. This
demonstrates that EER can model the representa-
tion of entity pairs better.
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Fig. 4: Dev F1 score on DocRED. The x-axis refers to
the proportion of relational entity pairs per document
(Unit: %), the y-axis refers to the dev F1.

3.5 Case Study

We select a sample from the dev set of the Do-
cRED dataset and conduct a case study to fur-
ther illustrate the effectiveness of our model PAEE
compared with the baseline. As shown in Fig-
ure 3, we notice that both BERTbase and PAEE-
BERTbase can successfully extract the “Country
of citizenship” relation between “Gahn” and
“Swedish”. However, only our PAEE-BERTbase

can deduce that the “Country” of “Uppsala” and
“Falun” are same, namely “Swedish”.

4 Conclusion

In this paper, we propose the Pair-Aware and
Entity-Enhanced (PAEE) model. Specifically,
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PAEE introduces Pair-Aware Representation(PAR)
module to alleviate the negative impact of spar-
sity, which constrains the following relation extrac-
tion to the predicted entity pairs subset rather than
all pairs. In addition, PAEE also designs Entity-
Enhanced Representation(EER) module to assem-
ble directional entity pairs and obtain holistic un-
derstanding of document. Experiments on four
benchmark datasets DocRED, DWIE, CDA and
GDA, show that PAEE outperforms the previous
methods and obtains new state-of-the-art results.
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A Appendix

A.1 Training Strategy

In the Relationship Classification stage, previ-
ous work (Wang et al., 2019b) observed that there
is an imbalance relation distribution for RE (the
relational entity pairs are sparse). To alleviate the
negative impact of sparsity, Zhang et al. (2021) in-
troduces a balanced softmax method inspired by
the circle loss (Sun et al., 2020). Based on this, we
design Adaptive Softmax loss, which introduces
a addition threshold class TH, which is automati-
cally learned in the same way as other classes. The
class TH aims to separate positive classes and neg-
ative classes, hoping that the scores of the target
category are all greater than sTH and the scores
of the non-target categories are all less than sTH .
Formally,
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Lrel = log(esTH+
∑

i∈ωneg

esi)+ log(e−sTH+

∑
i∈ωpos

e−si)

(9)

In the Potential Pair Prediction stage, in order
to match binary classification task, we design the
loss as:

Lpot =− 1

np

np∑
i=1

(yi logPpair+(1−yi) log(1−Ppair))

(10)
where np is the size of full entity pairs set. In

the Cross Matching stage, to capture the features
of entities as subject and object respectively, we
design the loss as:

Lsub = − 1

ncne

ne∑
j=1

nc∑
i=1

(yi logF
j
sub+(1−yi)

log(1−F j
sub)),

Lobj = − 1

ncne

ne∑
j=1

nc∑
i=1

(yi logF
j
obj+(1−yi)

log(1−F j
obj))

(11)

where nc is the size of full relation set, ne is size
of full entities set. The total loss is the sum of the
above losses:

Ltotal = αLrel+βLpot+γ
Lsub+Lobj

2
(12)

Performance might be better by carefully tuning
the weight of each sub-loss, but we just assign
equal weights for simplicity (ie., α=β=γ=1 ).


