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Abstract

Successful Machine Learning based Named En-
tity Recognition models could fail on texts from
some special domains, for instance, Chinese ad-
dresses and e-commerce titles, where requires
adequate background knowledge. Such texts
are also difficult for human annotators. In fact,
we can obtain some potentially helpful infor-
mation from correlated texts, which have some
common entities, to help the text understand-
ing. Then, one can easily reason out the correct
answer by referencing correlated samples. In
this paper, we suggest enhancing NER models
with correlated samples. We draw correlated
samples by the sparse BM25 retriever from
large-scale in-domain unlabeled data. To ex-
plicitly simulate the human reasoning process,
we perform a training-free entity type calibrat-
ing by majority voting. To capture correlation
features in the training stage, we suggest to
model correlated samples by the transformer-
based multi-instance cross-encoder. Empirical
results on datasets of the above two domains
show the efficacy of our methods.

1 Introduction

Named Entity Recognition (NER), which first lo-
cates entity positions and then labels their types se-
quentially, is a fundamental topic in both academia
and industry (Li et al., 2022). Normal NER models
consider the input samples to be independent of
each other, learning the common intra-instance pat-
terns and making predictions in a sequential way.
This paradigm has shown surprising successes in
decades, especially with the help of emerging deep
learning (Shang et al., 2018; Zhang et al., 2018b;
Liu et al., 2019; Luo et al., 2020; Lison et al., 2020;
Fang et al., 2021; Meng et al., 2021).

However, learned models will fail at some hard
cases, which would be inevitably encountered in
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吉林⽩城镇赉县⽕车站 
(Train Station, Zhen-Lai County, Bai-Cheng, Ji-Lin)

吉林⽩城市镇赉县站前街⽕车站 (Train Station, Zhan-Qian Street, 
Zhen-Lai County, Bai-Cheng City, Ji-Lin) 

吉林省⽩城市镇赉县⼴通东路⽕车头商店 (Trainhead Shop, Guang-Tong 
East Road, Zhen-Lai County, Bai-Cheng City, Ji-Lin Province) 

吉林⽩城镇赉站前街春丽旅店 
(Chun-Li Hotel, Zhan-Qian Street, Zhen-Lai, Bai-Cheng, Ji-Lin) 

吉林省⽩城市镇赉县站前街富达⼩区0栋 (Building 0, Fu-Da Community, 
Zhan-Qian Street, Zhen-Lai County, Bai-Cheng City, Ji-Lin Province)

赉县⽕车站 (Lai County Train Station)POI

吉林 (Ji-Lin)City ⽩城镇 (Bai-Cheng Town)Town

⽕车站 (Train Station)POI

吉林  (Ji-Lin)Prov ⽩城 (Bai-Cheng)City

镇赉县 (Zhen-Lai County)Dist
Ground- 
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Input
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镇 (Zhen) = 镇 (Town)

Figure 1: An address example with retrieved texts. The
model incorrectly predicted “白城镇 (Baicheng Town)”
and “赉县火车站 (Lai County Train Station)” because
they match common patterns, i.e. “XX镇” (Xx Town)
and “X县火车站” (X County Train Station). “吉林” is
ambiguous, which is both a province and a city.

real scenarios (Li et al., 2019; Ding et al., 2019).
Figure 1 shows an example of the Chinese address
domain. This kind of bad cases can not be easily
solved by annotating more relevant training data1.
For human annotators, this case is ambiguous as
well if no extra information is given, for instance,
we can not distinguish the type of “吉林 (Jilin)”
without affixes “省 (Province)” or “市 (City)”. This
demonstrates that obtaining background knowledge
and information is crucial to the text understanding.

Learning from correlated or nested data is mainly
studied in Machine Learning and Computer Vision
(Dundar et al., 2007; Choi and Won, 2019; Choi
et al., 2021). Images in sub-groups naturally show
a high degree of correlation on both features and
labels, and come with nested structures (Dundar
et al., 2007; Choi and Won, 2019), such as different

1Because this pattern is indeed correct in most cases. This
problem also exists in models with internal larger datasets.
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[SEP]

Figure 2: The overview of our suggested methods.

regions of interest could be drawn from the same
objects. In the address and e-commerce domain,
texts are also highly correlated in nature. For ex-
ample, two addresses may belong to the same city
or refer to the same location, e-commerce prod-
uct titles could come from the same brand, or they
are just the same product. In Figure 1, with cor-
related texts, annotators can infer that the “吉林
(Jilin)” and “白城 (Baicheng)” are short forms of
“吉林省 (Jilin Province)” and “白城市 (Baicheng
City)”. Hence, we argue that correlated samples
could offer sufficient disambiguation information
for NER models as well. Such kind of inductive
bias is seldom considered in previous NLP studies.

In this work, we propose to enhance NER mod-
els by modeling and inferencing with the corre-
lated samples. We first draw the correlated sam-
ples from in-domain large-scale unlabeled data by
the retrieval engine (Elasticsearch, 2022).2 Then,
we suggest two methods: (1) we perform an en-
tity type calibrating by parallelly predicting the
input text and all retrieved samples by the off-the-
shelf NER model, and then aggregating the final
labels by majority voting; (2) we propose to model
the correlations by transformers via multi-instance
cross-encoders to enhance the NER feature vectors.

To evaluate our methods, we conduct experi-
ments on two open-access datasets (Inc., 2022;
Ding et al., 2019) of the aforementioned two do-
mains. We implement our methods based on a
strong BiLSTM-CRF model with NEZHA (Wei
et al., 2019) representation. Empirical results show
that our methods outperform all baselines, and
achieve promising results in the simulated low-
resource setting. Finally, we present several analy-
ses to understand our methods comprehensively.

2Recently, Wang et al. (2021) and Geng et al. (2022) stud-
ied retrieving external contexts from Google or Baidu for
standard NER datasets, which is quite different from our idea
of modeling correlated samples for specific domains.

2 Approach

2.1 Unlabeled Data Retrieval

In the address (resp. e-commerce) domain, some
texts naturally possess entity co-reference relations,
for instance, they may belong to the same city (resp.
brand) or represent the same location (resp. prod-
uct). We call such texts, which usually have entities
with the same semantic but different expressions,
correlated samples. Since these texts are highly
structured and of limited vocabulary, showing a
high degree of lexical overlap. We could draw cor-
related samples for a given text by taking it as a
query and retrieving the domain-specific database
with text similarity measurements.

We implement an efficient BM25 (Robertson
and Walker, 1994) retriever by an off-the-shelf re-
trieval engine (Elasticsearch, 2022). For a cleaned
large-scale in-domain unlabeled corpus, we create
the Elasticsearch index by the build-in standard
analyzer. Then, we can retrieve top-K samples by
BM25 scores of an input text in nearly real-time.

2.2 Entity Type Calibrating

As shown in Figure 1, correlated sample can help
the entity disambiguation. If this kind of entity ap-
pears in correlated samples, human annotators can
decide its type by referring to answers of correlated
samples. For NER models, we suggest achieving
this process by entity-level (or span-level) majority
voting. Concretely, we first use a model (e.g., base-
line) to extract entities of the input text and each
correlated sample parallelly, and then re-assign la-
bels of shared entities by majority voting.

2.3 Correlation Modeling

To further capture sample correlations in the train-
ing time, we suggest modeling correlated sam-
ples by the cross-encoder (Reimers and Gurevych,
2019), letting transformers learn complex corre-
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Micro Macro
Method P R F1 P R F1

Chinese Address

Human 93.04 92.01 92.52 87.83 84.52 86.14

BC 85.56 83.90 84.72 82.20 76.48 79.24
NEZHA-BC 91.29 90.62 90.95 86.41 84.68 85.53

Entity-Voting† 91.67 91.00 91.34 86.70 84.83 85.76
Cross-Encoder† 92.41 91.95 92.18 87.25 85.71 86.48

Self-Training 91.57 91.02 91.29 86.65 85.37 86.01
Biaffine 91.35 90.25 90.80 86.32 84.59 85.45
Seq2set 89.43 87.69 88.55 83.89 80.12 81.96
Locate&Label 90.28 87.76 89.00 85.95 82.29 84.08
PIQN 90.27 87.83 89.03 86.04 80.28 83.06

E-commerce

BC 65.31 62.54 63.90 58.88 50.38 54.30
NEZHA-BC 82.73 83.23 82.98 79.35 78.04 78.69

Entity-Voting† 82.83 83.33 83.08 79.56 78.19 78.87
Cross-Encoder† 83.49 83.74 83.61 81.45 79.34 80.38

Self-Training 81.51 85.25 83.34 78.89 79.29 79.09
Biaffine 81.91 84.06 82.97 80.14 79.05 79.59
Seq2set 82.77 81.65 82.21 81.39 76.44 78.84
Locate&Label 80.43 83.21 81.80 76.63 78.22 77.42
PIQN 83.43 82.54 82.98 81.23 75.60 78.31

BERT-CLS (2019) 77.06 80.65 78.81 - - -
MRC-NER (2020) 79.47 78.30 78.88 - - -
CoFEE-BERT (2020) 79.13 80.34 79.73 - - -
CoFEE-MRC (2020) 80.26 78.88 79.56 - - -

Table 1: Main results. † means statistically significant.

lation patterns among samples. Specifically, we
concatenate the input text with retrieved samples
by the separator (i.e., [SEP]), and then encode them
by pretrained language models. Finally, only the
contextual embeddings of the input text are fed into
the NER tagger (here BiLSTM-CRF). With this
simple strategy, NER models could benefit from
the contrastive view between multiple correlated
samples and understand the query instance better.

3 Experiments

3.1 Settings

Datasets. For the Chinese Address domain, we
use the recently published dataset from CCKS com-
petition (Inc., 2022). It is annotated by 21 classes
of address elements and contains 8856, 1970, 4000
addresses for train, dev, and test sets. For the E-
commerce domain, we use the dataset released by
Ding et al. (2019). It is collected from e-commerce
product titles and annotated by PROD (product)
and BRAN (brand) types. It has 3983, 499, 498
sentences3 for train, dev, and test sets. For our
retrieval-based methods, we process and index

3We remove a few sentences that are particularly long and
do not contain entities.

our internal in-domain unlabeled data with Elastic-
search, obtaining 400M and 600M samples for the
address and e-commerce domain, respectively.

Evaluation. We employ entity-level exact preci-
sion, recall, and F1-measure and report both micro
and macro aggregations. All experiments of the
same setting are conducted by 8 different random
seeds. We test the best model of the devset, and the
average scores are reported. We regard a result as
statistically significant when the p-value is below
0.05 by the paired t-test with baseline NEZHA-BC.

Implementation. We choose the BiLSTM-CRF
(Lample et al., 2016) to achieve NER task, and use
NEZHA-base (Wei et al., 2019) as the embedding
module. The BiLSTM hidden size is set to 384
for each direction. We apply the dropout (Srivas-
tava et al., 2014) with probabilities 0.5 and 0.2 to
NEZHA embeddings for address and e-commerce,
and 0.2 to BiLSTM features. We set the batch size
to 32 and use the AdamW (Loshchilov and Hutter,
2017) optimizer with a constant lr 1e-3 and 1e-5 to
update BiLSTM-CRF and NEZHA parameters.

For the entity type calibrating, we use the top
100 and 50 retrieved samples for address and e-
commerce, respectively. For the correlating model-
ing, we limit the max sample number to 12 and the
max sequence length to 256.

Baselines. We denote the BiLSTM-CRF with
random character embedding (resp. NEZHA) by
BC (resp. NEZHA-BC). We implement several
state-of-the-art methods, i.e., Biaffine (Yu et al.,
2020), Seq2set (Tan et al., 2021), Locate&Label
(Shen et al., 2021), PIQN (Shen et al., 2022). We
also implement Self-Training based on NEZHA-
BC and the unlabeled data of the same size as
our cross-encoder. We include e-commerce results
from Mengge et al. (2020) for comparison.

3.2 Main Results

As shown in Table 1, our training-free calibrating
method consistently outperforms our implemented
baselines on both datasets, which verifies our intu-
ition that modeling the correlation between samples
is important in processing domain-specific texts.
By leveraging the retrieved samples in the train-
ing stage (Cross-Encoder), our approaches gain
a significant performance boost. This indicates
that these retrieved samples not only provide ex-
tended entity information (such as白城−→白城
市), but also supply sufficient disambiguate sig-
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Method 100% 50% 20% 10% 5% 3%

Chinese Address

Micro
NEZHA-BC 90.95 90.04 88.79 87.57 86.56 84.69

Cross- 92.18 91.56 90.33 89.13 88.61 86.82
encoder ↑1.23 ↑1.52 ↑1.54 ↑1.56 ↑2.05 ↑2.13

Macro
NEZHA-BC 85.53 84.22 82.14 78.08 75.99 72.78

Cross- 86.48 85.36 83.43 79.66 78.31 75.41
encoder ↑0.95 ↑1.14 ↑1.29 ↑1.58 ↑2.32 ↑2.63

E-commerce

Micro
NEZHA-BC 82.98 81.54 79.52 77.89 75.80 73.86

Cross- 83.61 82.21 80.29 78.99 77.18 74.60
encoder ↑0.63 ↑0.67 ↑0.77 ↑1.10 ↑1.38 ↑0.74

Macro
NEZHA-BC 78.69 77.03 75.17 72.86 69.63 67.11

Cross- 80.21 78.21 76.47 74.28 71.47 68.03
encoder ↑1.52 ↑1.18 ↑1.30 ↑1.42 ↑1.84 ↑0.92

Table 2: Test F1 scores at various low-resource settings.
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Figure 3: Test F1 of some hard entity types from main
results, where their scores are less than the overall value.

nals for entity understanding (such as 镇赉县火
车站 v.s镇赉县站前街火车站). When compared
with other recent state-of-the-art NER methods (Bi-
affine, Seq2set, Locate&Label, and PIQN), our
approaches outperform them by a large margin. It
is worth noting that our model outperforms the self-
training (whose unlabeled corpus is in the same
scale of samples we modeled), demonstrating that
the correlation modeling is more effective. Then
we plot detailed scores by categories whose F1
score is less than the overall F1 in Figure 3. All of
these difficult categories are significantly improved,
showing that the correlated samples are helpful.

Other Results. For the Chinese Address dataset,
we also report the performance of human annota-
tors without extra information provided. Notably,
our approaches achieve comparable performance
with humans, which empirically verifies that mod-
eling text correlation with the retrieval perspective
might have the possibility to simulate human expert
annotations. For the E-commerce dataset, we also
report other published results. Our NEZHA-BC is
comparable with all the baseline implementations.

#Address 400M 40M 10M 4M 400k 100k

Micro F1 92.18 92.07 91.89 91.53 91.31 91.16

Table 3: Test F1 scores of our Cross-encoder in various
sizes of unlabeled data for retrieval in address domain.

0 2 4 6 8 10

80

85

90 90.95
91.80 92.17 92.21 92.25 92.28 92.30

85.53
86.27 86.70 86.65 86.71 86.71 86.74

82.98 83.07 83.22 83.49 83.46 83.51 83.61

78.69 78.79 79.32
80.29 80.25 80.53 80.29

# retrieved sample

F1
sc

or
e

Address Micro Address Macro
E-commerce Micro E-commerce Macro

Figure 4: Test F1 scores of incooperating different cor-
related sample num by our cross-encoder.

3.3 Analysis
We conduct fine-grained analyses of cross-encoder.

Different Sizes of Labeled Data. Our idea es-
sentially introduces extra in-domain data to the
predictive models. Hence we can suppose that our
methods will achieve larger improvements in the
low-resource scenario. To verify this, we train the
baseline and our cross-encoder in simulated smaller
trainsets, which are sampled from the original train-
set by different proportions. Table 2 demonstrates
the test f1 scores of these two models in different
settings. We can roughly say that the score dif-
ference increases as the sampling ratio decreases,
which is in line with our intuition.

Different Sizes of Correlated Samples. In the
above experiments, we limit the max sequence
length of our cross-encoder to 256 for efficiency.
Here we relax this constraint to investigate the in-
fluence of encoded sample num (from 04 to top
10 retrieved texts) in cross-encoder on both two
domains. As shown in Figure 4, the performance
increment is significant at the lower sample number.
And adding more relatively low-ranking samples
is of limited gains.

Different Sizes of Unlabeled Data. All of the
previous experiments are based on the same large-
scale in-domain unlabeled data, which almost reach
the billion-level (400M and 600M samples for ad-
dress and e-commerce, respectively). We also sam-
ple several smaller unlabeled corpus (i.e., 40M,

4The 0 samples cross-encoder degrade to the baseline
NEZHA-BC.
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Method NEZHA-BC Entity-Voting Cross-Encoder

Seconds 14.73 500+ 38.41

Table 4: Running times of different methods on the
address domain testset, which has 4,000 texts.

10M, 4M, 400k, 100k) and re-train our cross-
encoder. As shown in Table 3, with the size of
unlabeled data declines, the retrieved samples are
less relevant, the improvements of our model are
lower. Interestingly, this experiments also could
reflect the effect of unlabeled data quality to the
performance of our cross-encoder. The higher the
quality of the data, the more correlated samples can
be retrieved. The behavior of low-quality unlabeled
data is similar to the small size data.

Running Speed of Different Methods. Another
key concern of our methods is the running speed.
The entity-voting needs parallelly decode dozens
of texts, and the cross-encoder will significantly
enlarge the text length. We measured the running
time of several methods on the testset of the address
domain dataset. As demonstrated in Table 4, the
entity-voting is truely slower than other methods in
an order of magnitude. But the cross-encoder just
took about twice as long as the baseline NEZHA-
BC. This is because the most time-consuming part
is the CRF, where the concatenated samples are
droped before the CRF. So it can avoid the redun-
dant decoding in the entity-voting, and has a higher
running speed. Besides, the forward of pretrained
language models are highly optimized.

3.4 Discussion
Retrieval-augmented models are showing state-of-
the-art performance in many NLP tasks, such as
Dialogue (Weston et al., 2018), Neural Machine
Translation (Zhang et al., 2018a), Question Answer-
ing (Izacard and Grave, 2021), and Language Mod-
eling (Guu et al., 2020; Yao et al., 2022; Borgeaud
et al., 2022). Our work aims to model the internal
correlation within sub-groups of samples. We first
retrieve correlated sample groups for a given input
by the off-the-shelf Elasticsearch engine. Then,
we propose painlessly calibrating entity type and
transformer-based correlation modeling, where the
latter one is similar to Wang et al. (2021). Our
recent work (Wang et al., 2022) also investigated
retrieving knowledge from the Wikipedia, which
can augment the context of NER inputs and shows
significant improvements in SemEval-2022 Task
11 Multilingual NER.

This work could be further investigated with
some more sophisticated techniques, such as
example-based learning (Gao et al., 2021; Lee et al.,
2022; Liu et al., 2022). Meanwhile, it also may
help the NER task to extend to the low-resource
and zero-shot scenarios (Meng et al., 2021; Zhang
et al., 2021; Hu et al., 2021; Lu et al., 2022; Hu
et al., 2020).

4 Conclusion

In this work, we investigated utilizing naturally
correlated samples to improve current NER mod-
els on the Chinese address and e-commerce do-
main. We propose to retrieve correlated samples
for the given text by the BM25 and elasticsearch
engine. To explore the correlations in a light way,
we suggest calibrating the predicted entity types
by cross-instance entity voting. To further incorpo-
rate these correlated samples into model training,
we use multi-instance cross-encoders to learn more
complex correlations. Empirical results show that
the painless entity type calibrating improved the
performance to some extent, and modeling correla-
tions by cross-encoders achieved the state-of-the-
art performance. We hope this idea could benefit
the similar scenario/domains of other tasks.

We will release our code and data at
github.com/izhx/NER-unlabeled-data-retrieval to
facilitate future research.
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