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Abstract

Natural language understanding (NLU) mod-
els tend to rely on spurious correlations (i.e.,
dataset bias) to achieve high performance on
in-distribution datasets but poor performance
on out-of-distribution ones. Most of the ex-
isting debiasing methods often identify and
weaken these samples with biased features (i.e.,
superficial surface features that cause such spu-
rious correlations). However, down-weighting
these samples obstructs the model in learning
from the non-biased parts of these samples. To
tackle this challenge, in this paper, we pro-
pose to eliminate spurious correlations in a
fine-grained manner from a feature space per-
spective. Specifically, we introduce Random
Fourier Features and weighted re-sampling to
decorrelate the dependencies between features
to mitigate spurious correlations. After obtain-
ing decorrelated features, we further design
a mutual-information-based method to purify
them, which forces the model to learn features
that are more relevant to tasks. Extensive exper-
iments on two well-studied NLU tasks demon-
strate that our method is superior to other com-
parative approaches.

1 Introduction

Recently, researchers have found that the main rea-
son why large-scale pre-trained language models
perform well on NLU tasks is that they rely on
spurious correlations, rather than capturing the lan-
guage understanding for the intended task (Bender
and Koller, 2020). These spurious correlations are
also denoted as dataset bias in previous work (He
et al., 2019; Clark et al., 2019): prediction rules
that work for training examples but do not hold in
general. In reality, a variety of spurious correlations
appear in widely-used NLU benchmark datasets.

∗ Equal contribution.
† Corresponding author.

For example, in natural language inference (NLI)
tasks, McCoy et al. (2019) observe that models on
the MNLI dataset (Williams et al., 2018) rely heav-
ily on the features of word overlap to predict the
entailment label blindly. Consequently, these mod-
els perform poorly on out-of-distribution (OOD)
datasets where such correlations no longer hold
(Nie et al., 2019).

To mitigate these spurious correlations, some ex-
isting debiasing works (Clark et al., 2019; He et al.,
2019) prefer to train a bias model with known spuri-
ous correlations as prior knowledge to identify the
samples without biased features. This trained bias
model is used in the later stage to force the main
model to learn from these samples. For better trans-
ferability, Utama et al. (2020b); Sanh et al. (2020)
relax this basic assumption that spurious correla-
tion is apriori by using a small part of the training
dataset in the training phase of bias model. How-
ever, these methods are not end-to-end and their
training procedures are complicated. Moreover,
not all features in the samples with biased features
are insignificant (Wen et al., 2021). These sam-
ples may still contain features that generalize to the
real-world dataset, and weakening these samples
obstructs the model in learning from the non-biased
parts of these samples (Wen et al., 2021).

In this paper, unlike the above-mentioned meth-
ods, we propose an end-to-end method that can
eliminate the spurious correlations in a fine-grained
way1. Recently, some works (Marcus, 2018; Ar-
jovsky et al., 2019) have demonstrated that spuri-
ous correlations are essentially caused by the subtle
dependencies between irrelevant features (i.e., the
features that are irrelevant to a given label) and rel-
evant features. According to this observation, we
intend to eliminate spurious correlations by decor-

1Our code is available at https://github.com/Coling2022-
DePro/DePro.

 https://github.com/Coling2022-DePro/DePro
 https://github.com/Coling2022-DePro/DePro
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relating the dependencies between features in the
feature space. However, those irrelevant features
still exist in the feature space and may confuse
the analysis capability of deep models. To achieve
better performance, we further design another com-
ponent to purify the decorrelated features in the
feature space, which forces the model to learn use-
ful local features (i.e., features that are more rele-
vant to tasks (Wang et al., 2020)). Specifically, we
address two main challenges:

• Challenge 1: How to eliminate dependencies
among features in the feature space?

• Challenge 2: How to find the useful local
features and purify the decorrelated global
features with them?

To address the first challenge, some previous
works (Shen et al., 2020) try to decorrelate features
under linear frameworks. However, these linear
frameworks are not capable of dealing with nonlin-
ear dependencies between features in the feature
space. To further enhance the effectiveness of meth-
ods on decorrelating nonlinear dependencies, an
ideal candidate is to use kernel methods to remap
the original features to high-dimensional feature
space. In this way, both linear and nonlinear de-
pendencies can be decorrelated. Nevertheless, the
mapping operator of the kernel function cannot
be given explicitly. Therefore, we use Random
Fourier Features (RFF) (Rahimi and Recht, 2007)
to approximate the kernel method for the sake of
computability. After completing high-dimensional
feature reconstruction, we introduce weighted re-
sampling to remove the dependencies between re-
constructed features in the reconstructed feature
space. To tackle the second challenge, we introduce
a saliency-map-based method to identify the useful
local features in the samples and design a mutual-
information-based strategy to purify the decorre-
lated global features (i.e., sentence representation)
with these useful local features.

We evaluate our framework over two NLU tasks
including Natural Language Inference and Fact Ver-
ification. Through the experimental results, we ob-
serve that feature decorrelation and feature purifi-
cation are both useful for improving the generaliza-
tion ability of deep neural models. Moreover, our
method can achieve state-of-the-art performance
on predicting out-of-distribution datasets compared
with existing approaches. In summary, this paper
makes the following contributions:

• We introduce a novel end-to-end framework
that combines feature decorrelation with fea-
ture purification to strengthen the general-
ization ability of NLU models. The feature
decorrelation phase is used to eliminate spuri-
ous correlations of features while the feature
purification component is used to force the
model to learn features that are more relevant
to tasks.

• We conduct extensive experiments over sev-
eral widely used benchmark datasets. The
experimental results report that feature decor-
relation and feature purification can both en-
hance the generalization ability of deep mod-
els. Also, the results suggest the synergistic
effect between decorrelation and purification.
After combining them, our proposed method
outperforms the state-of-the-art methods.

2 Related Work

2.1 Spurious Correlations and Debiasing
Methods

The performance of machine learning models on
multiple natural language understanding bench-
marks has achieved remarkable results. However,
due to the presence of spurious surface lexical-
syntactic features in the training phase, deep mod-
els perform poorly on out-of-distribution examples.
These spurious properties are also known as spu-
rious correlations or dataset biases. For example,
McCoy et al. (2019) reports that models on the
MNLI dataset (Williams et al., 2018) rely heav-
ily on high word overlap to predict the entailment
label. In fact, spurious correlations also exist in
datasets of other NLU tasks such as multi-hop QA
datasets (Wen et al., 2021). Deep models’ exces-
sive dependence on these spurious correlations can
affect their generalization ability when testing on
more challenging datasets.

In response to the problem of spurious corre-
lations in datasets, many methods have been pro-
posed to mitigate the impact. For example, Clark
et al. (2019); He et al. (2019) propose a two-stage-
based framework to reduce the model’s dependence
on known spurious correlations. They first train a
bias-only model using known spurious correlations
and then leverage it to guide the main model to
distinguish biased examples. However, these ap-
proaches suffer from low transferability since they
require prior knowledge about the spurious correla-



2280

Feature Purification

Feature Decorrelation

Loss!

Loss

Re-sampling 
Weight

Label

Prediction

Useful Local Features

Global Feature Z

Prediction Loss

…

C
LS

RFF

+ +

⊕

⊗

BERT Encoder

Embedding

𝑇!

𝑇"

𝑇#

𝑇$

𝑇%

Sentence

Loss"

WRFD

MI

Classifier

Figure 1: System architecture of DePro. RFF, WRFD, and MI refer to Random Fourier Features, Weighted
Re-sampling for Feature Decorrelation, and Mutual Information, respectively.

tions in a dataset. To mitigate the issue, Utama et al.
(2020b); Clark et al. (2020) tend to train a weak or
shadow model as the bias-only model to provide
guidance on discriminating biased data. However,
these methods are not end-to-end and the training
procedures of these methods are complicated.

2.2 Feature Decorrelation

Since the correlation between features can affect
or even damage model predictions, several stud-
ies focus on eliminating this correlation during the
training process. Zhang et al. (2017) propose a
strategy that selects uncorrelated features in groups
to decorrelate features. Shen et al. (2020) address
this issue by re-weighting samples. However, these
two methods can only remove the linear depen-
dence between features which cannot tackle the
complex nonlinear dependence between features.
Bahng et al. (2020) propose to use the biased rep-
resentations to generate a debiased representation.
Although this method can decorrelate the nonlinear
and linear dependence between features, it needs to
artificially design the biased representation based
on the known spurious correlations in the dataset.
On the contrary, our method can remove all kinds
of dependencies between the features and does not
need to rely on prior knowledge.

3 Method

In this section, we introduce our proposed end-to-
end framework namely DePro. Figure 1 presents
the system architecture of DePro which mainly
consists of two phases: feature decorrelation and
feature purification. In the first phase, we intro-
duce Random Fourier Features (RFF) (Rahimi and

Recht, 2007) to map features from the original fea-
ture space to the reconstruction space. Then we use
weighted re-sampling to remove the dependencies
between reconstructed features. In the later phase,
we purify the global sample features from an infor-
mation theoretic perspective to further improve the
generalization ability.

Notations X , Y , and Z denote the space of sam-
ples (i.e., sentences), the space of labels, and the
feature space, respectively. We use f : X → Z to
denote the encoder function which can encode a
sample into the feature space. The classifier func-
tion is denoted as c : Z → Y , which can predict
the sample to the corresponding label. Given a
dataset D that consists of n pairs of sentences and
labels (Xi, Yi)i∈[1,n], with Xi ∈ X and Yi ∈ Y ,
the representation of Xi is denoted as Zi ∈ Z , and
Zi denotes the i-th variable in the feature space.
For an input sentence Xi = [X1

i ;X
2
i ; . . . ;X

k
i ], wi

denotes the re-sampling weight of this sentence Xi

and we use Ti = [T 1
i ;T

2
i ; . . . ;T

k
i ] to denote the

local feature of Xi in the encoder (e.g., the output
of BERT embedding layer).

3.1 Decorrelate Features of Feature Space
In this subsection, we mainly introduce our method
of removing both the nonlinear and linear de-
pendencies between features by using RFF and
weighted re-sampling.

High-dimensional Feature Reconstruction via
RFF
The kernel method can obtain mutually indepen-
dent features by mapping them from the original
feature space to Reproducing Kernel Hilbert Space
(RKHS) (Alvarez et al., 2012) as follows:
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K(x, ·) =
∞∑
i=1

λiφi(x)φi(·) =
(√

λiφi(x), · · ·
)
H

(1)

Here K(·, ·) is the mapping operator of a mea-
surable, symmetric positive definite kernel func-
tion and (·)H is Hilbert-Schmidt space. However,
the mapping operator K(x, ·) is implicit. In other
words, the reconstructed features cannot be ob-
tained explicitly. To mitigate this issue, we use
Random Fourier Feature (RFF) (Rahimi and Recht,
2007), inspired by Zhang et al. (2021), to approx-
imate the kernel function. The function space of
Random Fourier Features is denoted as H with the
following form:

H = {h :x →
√
2 cos(ωx+ ϕ) |

ω ∼ N(0, 1), ϕ ∼ U(0, 2π)}
(2)

where ω and ϕ are sampled from any distribution.
For the i-th variable Zi and the j-th variable Zj

of the feature space (Zi and Zj are represented
by A and B for simplicity), we sample nA and
nB mapping functions from H and denote them
as u = {uk}k∈[1,nA] and v = {vk}k∈[1,nB]

. Thus,
the reconstructed features u(A) of feature A can
be represented as Eq. (3) and v(B) of feature B
follows the same rule.

u(A) = (u1(A), . . . , unA(A)) , uk(·) ∈ HRFF , ∀k, (3)

By mapping the two features A and B to the
reconstructed space through RFF, only linear de-
pendencies between u(A) and v(B) remain.

Weighted Re-sampling for Feature
Decorrelation
We use cross-covariance operator ΣXY to measure
the independence between features as follows:

⟨g,ΣY Xf⟩H2
= EXY [f(X)g(Y )]−
EX [f(X)]EY [g(Y )]

(4)

Specifically, for u(A) and u(B), the cross-
covariance ΣAB between the distributions can be
calculated by their unbiased empirical estimation
with the following form:

ΣAB = 1
n−1

∑n
i=1

[(
u (Ai)− 1

n

∑n
j=1 u (Aj)

)T

·(
v (Bi)− 1

n

∑n
j=1 v (Bj)

)]
(5)

Hilbert-Schmidt Independence Criterion (HSIC)
(Gretton et al., 2007) uses the squared Hilbert-
Schmidt norm of ΣAB to test the independence of

random variables. In the Euclidean space which the
reconstructed space belongs to, Hilbert-Schmidt
norm degenerates to the equivalent Frobenius norm
(Zhang et al., 2021). Thus, we use Frobenius norm
to calculate the linear correlation between the re-
constructed features.

Suppose P (A,B) is denoted as the joint distri-
bution of features A and B. Due to the complicated
correlation between A and B, P (A,B) cannot be
obtained by their respective marginal distributions,
which means P (A,B) ̸= P (A)·P (B). Inspired by
the Acceptance-Rejection Sampling method (Naes-
seth et al., 2017) which reparameterizes the tar-
get distribution function from the standard normal
distribution by introducing the proposal distribu-
tion, we use the normalized weight function instead
of the rejection process to obtain a linearly inde-
pendent weighted marginal distribution from the
original complex joint distribution. Specifically,
consider a probability density function with the
independent marginal distributions of A and B as
Q(A,B) = Q(A) · Q(B), the Q can be fitted by
the proposal distribution P and the normalized sam-
pling weight is denoted as follows:

w(x) =
Q(§)
τP(x)

(6)

where x ∈ H(A,B) and τ is a normalization con-
stant with the following form:

τ−1 =

∫
x∈H(A,B)

w(x)dx (7)

Thus, the linear dependencies between recon-
structed features can be removed by the normalized
weight function as follows:

w(x) · x(A,B) ∼ τw(x) · P (x) = Q(A) · Q(B) (8)

In practice, we use the training dataset to learn
the optimal sampling weights. Through Eq. (5)
and Eq. (8), the cross-covariance with weighted
re-sampling can be estimated as:

Σ̃AB;w = 1
n−1

∑n
i=1

[(
wiu (Ai) − 1

n

∑n
j=1 wju (Aj)

)T
·(

wiv (Bi) − 1
n

∑n
j=1 wjv (Bj)

)]
(9)

As aforementioned, we use Frobenius norm
to measure the correlation between features (i.e.,∥∥∥Σ̃AB;w

∥∥∥2
F

). Thus, by optimizing w in the training
process, both nonlinear and linear dependencies
between features of the feature space can be elimi-
nated. Specifically, the correlation between the two
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variables Zi and Zj of the feature space is repre-

sented as
∥∥∥Σ̃ZiZj ;w

∥∥∥2
F

. Therefore, the re-sampling
weight w can be optimized as follows:

w∗ = argmin
w∈W

∑
1≤i<j≤mZ

∥∥∥Σ̃ZiZj ;w

∥∥∥2
F

(10)

where W =
{
w ∈ Rn

+ |
∑n

i=1wi = n
}

and mZ

denotes the dimension of space Z . We use a mini-
batch to update the global weight repeatedly during
the optimization process. Moreover, the optimiza-
tion objective function for encoder f and classifier
c can be expressed as:

f∗, c∗ = argmin
f,c

n∑
i=1

wiL(c(f(Xi)), yi) (11)

where L(·, ·) is the cross entropy loss function.

3.2 Feature Purification via Local
Information

For better generalization, we propose to purify the
decorrelated global features from an information
theoretic perspective. Specifically, we find the use-
ful local features by a saliency-map-based method
and purify the decorrelated global features with
these local features by mutual information (MI).

Inspired by Han et al. (2020), we measure the
significance of all local features of the sentence by
computing the absolute value of the partial deriva-
tive of loss w.r.t. these local features. The gradient
of each local feature can be calculated as:

G(T i) = ∇T iℓ (f(T ), y) (12)

where T i is the i-th feature of the local features T .
We consider the part of the local features with the
smallest values as the useless local features (e.g.,
stopwords and punctuation) which carry limited
information and cannot be used to make predictions
(Wang et al., 2020). Therefore, the information of
such useless features should not be encoded into
the global features of a sentence.

After feature filtering, we treat these remaining
local features as useful local features that are signif-
icant to the label (Wang et al., 2020), and use them
to purify the decorrelated sentence representation
by mutual information. Specifically, by maximiz-
ing the mutual information between the useful local
features and the decorrelated sentence representa-
tion, the useful features are retained and the useless
features are compressed. In practice, we simply

examine the ℓ2 norm of the gradient G(T i) of each
local feature T i. The optimization goal can be
expressed as:

argmax
f,c

α

M∑
j=1

I(T j ;Z) (13)

where α is a hyper-parameter to control the trade-
off, T j is the above-mentioned useful local seman-
tic feature, and M is the number of remaining fea-
tures. In addition, due to the intractability of com-
puting MI, we use InfoNCE (Oord et al., 2018) as
the lower bound of MI to approximate I(T j ;Z).

Combining Eq. (11) and Eq. (13), the overall
optimization goal can be as follows:

f∗, c∗ = argmin
f,c

n∑
i=1

(wiL(c(f(Xi)), Yi)−

α

M∑
j=1

Î(InfoNCE)(fT (X
j
i ); f(Xi)))

(14)

w∗ = argmin
w∈Wn

∑
1≤i<j≤mZ

∥∥∥Σ̃ZiZj ;w

∥∥∥2

F
(15)

where fT (·) is the function (i.e., the BERT embed-
ding layer) that obtains the local features.

4 Experiments

In this section, we conduct extensive experiments
to demonstrate (1) DePro outperforms the state-
of-the-art comparative approaches; and (2) Both
feature decorrelation and feature purification can
improve the model’s generalization ability.

4.1 Datasets
We conduct experiments on two well-studied NLU
tasks including Natural Language Inference and
Fact Verification to evaluate DePro. Natural Lan-
guage Inference aims to infer the relationship be-
tween the premise and hypothesis. For this task, we
use MNLI (Williams et al., 2018) as our ID data,
MNLI-hard (Gururangan et al., 2018) and Heuristic
Analysis for NLI Systems (HANS) (McCoy et al.,
2019) as our OOD test set. Fact Verification aims
to verify a claim by the evidence document. For
this task, we use FEVER (Thorne et al., 2018) for
ID evaluation and FEVER Symmetric (Schuster
et al., 2019) (version 1&2) as our OOD test set.

Specifically, we report the main results and ab-
lation studies on the test set and evaluate all the
sensitivity analyses on the development set. How-
ever, for the MNLI dataset, only the train set and
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Method
MNLI FEVER

ID MNLI-hard HANS ID Symm. v1 Symm. v2

BERT-base 84.3 75.9 61.1 85.4 55.2 63.2

prior knowledge required

Learned-Mixin + H (Clark et al., 2019) 84.2 - 65.8 83.3 60.4 64.9
Reg-conf (Utama et al., 2020a) 84.5 77.3 69.1 86.4 60.5 66.2
Reweight (Clark et al., 2019) 83.5 - 69.2 84.6 61.7 66.5
PoE + CE (He et al., 2019) 83.3 77.6 67.9 85.7 57.7 61.4

prior knowledge NOT required

MCE (Clark et al., 2020) 83.3 77.6 64.4 - - -
Reg-conf (Utama et al., 2020b) 84.3 - 67.1 87.6 59.8 66.0
PoE (Sanh et al., 2020) 81.4 76.5 68.8 85.4 59.7 65.3
MoCaD (Xiong et al., 2021) 81.5 - 70.0 87.4 65.7 69.0

DePro (Our method) 83.2 77.8 70.3 84.5 65.2 69.2
w/o feature decorrelation 84.7 76.8 63.2 85.9 57.5 65.2
w/o feature purification 82.6 77.1 68.7 83.6 64.3 67.9

Table 1: Accuracy results on MNLI and FEVER, and out-of-distribution test sets MNLI-hard, HANS and FEVER
Symmetric (version 1&2). We conduct the ablation study to further validate that our feature decorrelation and
feature purification indeed improve the generalization ability. We compared 8 state-of-the-art debiasing methods
including 4 debiasing methods with known bias and 4 debiasing methods with unknown bias. The hyper-parameters
of BERT are identical for each model in the same dataset.

dev set are publicly available, but not the published
test set. So we split 10 percent of training data into
a dev set dedicated to picking hyper-parameters in
order to avoid overfitting. And the original dev set
of MNLI is used as the test set.

4.2 Implementation
Similar to the majority of current debiasing meth-
ods, we choose the uncased BERT-base model (De-
vlin et al., 2018) as our baseline. For all sentence-
pair classification tasks, we concatenate the two
sentences of one sentence pair into a single se-
quence and use the final-layer [CLS] embedding to
represent the sentence representation. For BERT
hyper-parameters, we use a batch size of 32, Adam
optimizer with the learning rate 5e−5 for the MNLI
dataset and 2e−5 for the FEVER dataset, respec-
tively.

For feature decorrelation, we set the learning rate
of weight to 1e−2 which decays with a rate of 1e−3

for the MNLI dataset, and the learning rate to 5e−2

which decays with a rate of 1e−3 for the FEVER
dataset. For the parameter of Random Fourier Fea-
tures dimension, we have verified through exten-
sive experiments that our method can get the best
performance on HANS, Symm. v1, and Symm.

Method w/o Prior Knowledge End-to-End

MCE (Clark et al., 2019) é
Reg-conf (Utama et al., 2020b) é
PoE (Sanh et al., 2020) é
MoCaD (Xiong et al., 2021) é

DePro (Our method) ✓

Table 2: The structural details of state-of-the-art meth-
ods without the need for prior knowledge.

v2 when the RFF dimensions are four times, two
times, and four times, respectively, that of the orig-
inal feature space. For feature purification, α is
set to 1e−4 to control the trade-off between feature
decorrelation and feature purification.

4.3 Experimental Results
Detection Performance
Table 1 shows the experimental results of De-
Pro and comparative methods on the MNLI and
FEVER datasets, respectively. Through the table,
we can see that DePro can significantly improve the
performance of the two NLU tasks and obtain state-
of-the-art results on OOD datasets. Meanwhile, the
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loss of DePro on ID datasets is not significant com-
pared to other methods. Moreover, we also observe
that the experimental results of the model under
different random seeds have high variance, which
has been demonstrated in previous works (Utama
et al., 2020b). To mitigate this impact, we perform
our experiments with five different seeds and report
the average of these results.

1x 2x 4x 6x 8x 10x

67

68

69

70

71

HANS

sub
HANS

1x 2x 4x 6x 8x 10x

64

66

68

70

A
cc

ur
ac

y

Symm. v1
Symm. v2

RFF Dimension

Natural Language Inference Fact Verification

A
cc

ur
ac

y

Figure 2: The results of DePro using different RFF di-
mensions. Meanwhile, the ratios of feature purification
for HANS, Symm. v1, and Symm. v2 are 0.7, 0.7, and
0.6, respectively.

For the NLI task, compared to the baseline
method (i.e., Uncased BERT-base model), De-
Pro improves by 1.9 and 9.2 percentage points
on two OOD datasets MNLI-hard and HANS, re-
spectively. The generalization ability of DePro
on OOD datasets is also promising compared to
other methods that introduce prior knowledge or
unknown prior knowledge. For the Fact Verifica-
tion task, DePro also has the best performance on
the OOD dataset Symm. v2, with 6.0 percentage
points higher than the accuracy of the BERT-base
model. Meanwhile, the performance of our pro-
posed method DePro is second only to MoCaD
(Xiong et al., 2021), which is 0.5 percent lower
when evaluated on Symm. v1. However, MoCaD
is not an end-to-end method, but rather an improved
version of the existing two-stage methods, as shown
in Table 2. On the contrary, DePro is a complete
end-to-end method, which is more flexible while
preserving similar detection capabilities.

In conclusion, DePro outperforms the majority
of state-of-the-art approaches on OOD datasets for
two NLU tasks while the loss in ID datasets is
acceptable.

Ablation Study
We also perform two ablation experiments to check
whether feature decorrelation and purification can
contribute to DePro or not. Through the results

in Table 1, we find that feature decorrelation and
purification can both boost the generalization abil-
ity of DePro. As aforementioned, the essence of
spurious correlation is the subtle dependencies be-
tween relevant and irrelevant features. Therefore,
after removing dependencies between features, we
can mitigate the impact caused by spurious corre-
lations, thus improving the model’s generalization
ability on OOD datasets. The results in Table 1 are
consistent with this situation. On the other hand,
if we directly perform feature purification on the
original features, the model’s performance on ID
datasets can be enhanced. It is reasonable because
feature purification can align the useful local fea-
tures and the sentence representation, so that the
representation generated by the model is more in-
dependent of useless local features, allowing the
model to focus on the useful parts of the training
data. After combining feature decorrelation with
feature purification, DePro can achieve state-of-
the-art performance on distinguishing samples in
OOD datasets. Such results indicate that compared
to aligning uncorrelated sentence representation,
using feature purification on decorrelated repre-
sentation enables sentence representation to better
align the useful local features while staying away
from the useless local features.

In conclusion, both feature decorrelation and fea-
ture purification can improve the detection ability,
but if we can first remove the dependencies be-
tween features and then purify these decorrelated
features, the generalization ability of the model can
be improved to the level of state-of-the-art.
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Figure 3: The results of DePro using different purifica-
tion ratios. Meanwhile, the RFF dimensions for HANS,
Symm. v1, and Symm. v2 are 4x, 2x, and 4x, respec-
tively.

Sensitivity Analysis
In this part, we further explore the effect of the map-
ping dimension size of RFF and the degree of fea-
ture purification on the generalization ability of the



2285

model. Specifically, we choose six different RFF
dimensions and nine different purification ratios to
commence our study. Due to the limited pages, we
only show the corresponding experimental results
of the best parameters in Figure 2 and Figure 3. For
the NLI task, DePro performs the best when the
RFF dimension is four times that of the original
features and the top 70% of the features are used
for purification. In addition, for the FEVER dataset,
DePro can maintain the best results on Symm. v1
and Symm. v2 when the RFF dimensions are two
times and four times, respectively, that of the origi-
nal features and the top 70% and 60%, respectively,
of the features are used for purification. Through
these two figures, we see that the detection effect
of DePro is different when choosing different RFF
dimensions and different purification ratios. When
the dimension is expanded to a certain number, the
dependencies between features can be easily re-
moved. At this point, when continuing to increase
the dimension, it may bring additional overhead
and impact, making the detection effect decrease
instead.

For feature purification, if too many local fea-
tures are removed, it can make the aligned sentence
representation contain too little information. More-
over, if too many local features are purified, it may
make the sentence representation contain too much
useless information, so that the subsequent clas-
sifier cannot make predictions well based on the
sentence representation.
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Figure 4: The mean of the correlations (i.e., cross-
covariance) between features at different iterations.

Decorrelation Study
Finally, we check whether feature decorrelation can
remove the dependencies between features or not.
Specifically, during the training phase, we record

the mean of the correlations between features at
different iterations. For the baseline experiment,
we use the same RFF mapping functions to map
the features to high-dimensional space. However,
the reconstructed features are only used to calcu-
late the cross-covariance, not to calculate the loss
and optimize the parameters. Through the compar-
ative results in Figure 4, we observe that the cross-
covariance between features can be reduced as the
number of iterations increases in DePro. However,
in the baseline experiment, it barely decreases.

Overall, DePro can effectively remove depen-
dencies between features. In this way, the spurious
correlations can be mitigated at the feature level.

DePro
MNLI FEVER

ID HANS ID Symm. v2

With β-VAE 82.7 67.3 83.6 65.9
With RFF 83.2 70.3 84.5 69.2

Table 3: Evaluation results of the feature decorrelation
phase leveraging Random Fourier Features (Rahimi and
Recht, 2007) and β-VAE (Higgins et al., 2017) on two
tasks, respectively.

4.4 Discussion

In this subsection, we primarily discuss two aspects:
(1) Why we choose Random Fourier Features to
decorrelate features in the feature decorrelation
component; and (2) What distinguishes this work
from prior works that use RFF to decorrelate fea-
tures.

Many works (Rahimi and Recht, 2007; Zhang
et al., 2021; Kingma and Welling, 2014) have
been proposed to improve the generalization of the
model by performing latent representation decor-
relation learning. We compare the performance
of two decorrelation methods RFF (Rahimi and
Recht, 2007) and β-VAE (Higgins et al., 2017) in
our model structure. The performance results are
illustrated in Table 3, which shows that RFF out-
performs β-VAE in our model both in ID and OOD
datasets. In contrast to RFF, VAEs decorrelate the
representation while compressing it, thus damag-
ing the generalization ability. So we choose RFF to
decorrelate the feature representation to obtain the
uncompressed decorrelated representation, which
benefits succeeding feature purification to distin-
guish useful from useless local features.

The distinction between DePro and other RFF-
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based methods (Rahimi and Recht, 2007; Giffon
et al., 2019; Zhang et al., 2021) is that our proposed
method not only uses RFF for feature decorrelation
but also combines two complementary approaches
(i.e., feature decorrelation and feature purification).
These two methods are not mutually exclusive. In
Section 4.3, we analyze the relationship between
these two in detail, that is, the decorrelated fea-
tures can be better purified, allowing the model to
ignore more impurities when purifying useful fea-
tures. Moreover, after feature decorrelation, feature
purification can constrain the model to concentrate
more on useful features rather than useless features.

5 Conclusion

In this paper, to improve the generalization ability
of deep models on OOD datasets, we design an end-
to-end framework called DePro which can elim-
inate spurious correlations and purify the decor-
related features. Extensive experiments on two
well-studied NLU tasks demonstrate the synergis-
tic effect between decorrelation and purification.
After combining them, our method outperforms
state-of-the-art methods in terms of effectiveness.
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