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Abstract

Distantly supervised relation extraction aims
to extract relational facts from texts but suf-
fers from noisy instances. Existing methods
usually select reliable sentences that rely on
potential noisy labels, resulting in wrongly se-
lecting many noisy training instances or un-
derutilizing a large amount of valuable train-
ing data. This paper proposes a sentence-level
DSRE method beyond typical instance selec-
tion approaches by preventing samples from
falling into the wrong classification space on
the feature space. Specifically, a theorem for
denoising and the corresponding implementa-
tion, named Consensus Enhanced Training Ap-
proach (CETA), are proposed in this paper. By
training the model with CETA, samples of dif-
ferent classes are separated, and samples of the
same class are closely clustered in the feature
space. Thus the model can easily establish the
robust classification boundary to prevent noisy
labels from biasing wrongly labeled samples
into the wrong classification space. This pro-
cess is achieved by enhancing the classification
consensus between two discrepant classifiers
and does not depend on any potential noisy la-
bels, thus avoiding the above two limitations.
Extensive experiments on widely-used bench-
marks have demonstrated that CETA signifi-
cantly outperforms the previous methods and
achieves new state-of-the-art results.

1 Introduction

Relation Extraction (RE), which aims to identify
the relation between two specific entities in the
text, is a fundamental task in natural language pro-
cessing. Most supervised RE methods demand
large-scale labeled training data, which is diffi-
cult to acquire manually. To alleviate the problem,
Distant Supervision (DS) is proposed by (Mintz
et al., 2009) to automatically generate the labeled
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Figure 1: An example of annotating text corpus by dis-
tant supervision. S2 and S3 do not express the relation
born but still considered valid instances.

text corpus by aligning the plain texts and knowl-
edge bases. For example, as shown in Figure 1,
[Steve jobs, born,America] is a relational triple
in the knowledge base, DS annotates all sentences
that contain the entity pair (Steve jobs,America)
as valid instances for relation born. However, DS
inevitably introduces noisy labels when the sen-
tences do not express the labeled relation (e.g.,
cases S2 and S3 in Figure 1). Hence, investigat-
ing a denoising method against noisy labels has
become an urgent demand for Distantly Supervised
Relation Extraction (DSRE), which aims to train
the unbiased RE model under DS-built dataset.

To alleviate the noise issue in DSRE, existing
studies can be broadly classified into bag-level
methods and sentence-level methods. The bag-
level methods (Lin et al., 2016; Hu et al., 2019; Alt
et al., 2019; Yuan et al., 2019) typically relax the
relation label for each sentence to a bag, and then
train the model by employing reliable bag-level
representations. However, for bag-level methods,
Feng et al. (2018); Jia et al. (2019) empirically
verify that they cannot map each sentence to an
explicit sentence label, resulting in inefficiency for
sentence-level relation classification. From this
perspective, several studies focus on sentence-level
DSRE, which aims to select the reliable sentences
for training and regard the sentence as a basic test-
ing unit. Existing methods (Feng et al., 2018; Qin
et al., 2018b; Han et al., 2018b; Zeng et al., 2018)
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usually apply reinforcement learning or adversar-
ial learning to train sentence selector by receiving
feedback from the manually crafted reward func-
tion, or train the model to start with the reliable
sentences selected by frequent patterns (Jia et al.,
2019). Finally, these methods select trustable sen-
tences whose predicted labels are consistent with
DS-annotated labels. However, these methods may
be trapped by some common noisy instances whose
model-predicted labels and DS-annotated labels
are both wrong (Li et al., 2020b). Besides, the
patterns of many correct sentences do not match
the frequent patterns, resulting in much valuable
information being discarded, limiting the capability
of the trained model.

This work proposes a sentence-level DSRE
method beyond typical instance selection ap-
proaches by preventing samples from falling into
the wrong classification space on the feature space.
Specifically, a theorem for denoising and the cor-
responding implementation, named Consensus En-
hanced Training Approach (CETA), are proposed
in this paper. By training the model with CETA,
samples of different classes are separated, and sam-
ples of the same class are closely clustered in the
feature space. As a result, the robust classification
boundary can be easily established to prevent noisy
labels from biasing samples into the wrong classi-
fication space. Compared with existing sentence-
level DSRE methods, CETA performs denoising by
enhancing the classification consensus between two
discrepant classifiers within the model and does not
depend on any potential noisy labels. Therefore,
when dealing with noisy labels, CETA does not get
trapped by common noisy instances. In addition,
CETA enables the model to be trained on all data,
and the effect of noisy labels is eliminated in the
feature space instead of directly filtering sentences
as in previous methods.

Contributions of this paper can be summarized
as follows:

• This paper proposes and proves a theorem for de-
noising that enhancing the prediction consistency
between two different classifiers in a model can
reduce the impact of noisy instances.

• With the support of the proposed theorem, our
proposed CETA facilitates the model to separate
the samples of the different classes and cluster
the samples of the same class. As a result, a
robust classification boundary can be established
to reduce the impact of noisy labels.

• Evaluations on widely-used datasets of DSRE
demonstrate that CETA significantly outperforms
the previous state-of-the-art models.

2 Related Work

We discuss two lines of related work as follows.
DSRE. DS is an effective approach to annotate
texts, but suffers from the noisy labels. Most ex-
isting studies of DSRE are bag-level DSRE meth-
ods, which apply multi-instance learning to handle
noisy sentences in each bag and train models by
exploiting the constructed reliable bag-level repre-
sentations. These methods usually utilize attention
mechanisms to assign small weights to the poten-
tial noisy sentences in the bag (Lin et al., 2016;
Han et al., 2018c; Alt et al., 2019; Hu et al., 2019;
Yuan et al., 2019; Li et al., 2020a), apply adversar-
ial training or reinforcement learning to remove the
noisy sentences from the bag. (Zeng et al., 2015;
Qin et al., 2018b; Han et al., 2018b; Shang et al.,
2020) However, the studies (Feng et al., 2018; Jia
et al., 2019) indicate that the bag-level DSRE meth-
ods are ineffective for sentence-level prediction.

This paper focus on sentence-level relation ex-
traction. Some recent studies also regard the sen-
tence as a basic training unit and perform denoising
by applying reinforcement learning to select reli-
able instances based on the reward of noisy labels
(Feng et al., 2018), building initial reliable sen-
tences based on several manually defined frequent
relation patterns (Jia et al., 2019), assigning the
complementary labels cooperating with the neg-
ative training to filter noisy instances (Ma et al.,
2021), and utilizing meta learning to exploit the
extra clean reference data (Li et al., 2020b). Differ-
ent from the previous works, our proposed method
does not rely on the noisy labels, frequent relation
patterns, and handles the noisy instances in the fea-
ture space without any extra clean reference data.
Supervised learning with noisy labels. In both
computer vision and natural language processing,
many methods have been proposed to train models
with noisy labels and these methods can be broadly
classified into: robust regularization (Krogh and
Hertz, 1991; Müller et al., 2019; Qu et al., 2021;
Zhou and Chen, 2021), robust loss function (Zhang
and Sabuncu, 2018; Wang et al., 2019a), label re-
weighting (Chang et al., 2017; Wang et al., 2019b),
noise filtering adaption layers (Goldberger and Ben-
Reuven, 2016) and sample selection (Han et al.,
2018a; Yu et al., 2019; Wei et al., 2020). In particu-
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lar, The methods (Zhou and Chen, 2021; Wei et al.,
2020) train two or more models simultaneously
and regularize their predictions to be similar, which
can be considered as consensus enhancement, but
are computationally expensive and affected by the
number of trained models. Different from these
methods, our method achieves denoising by en-
hancing the consensus of predictions between two
discrepant classifiers within a model, which is com-
putationally friendly and guaranteed by a proven
theorem.

3 Methodology

In this section, we start with the learning setup
and present the objective function in conjunction
with our proposed theorem: the generalization er-
ror bound for DSRE in subsection 3.1. Then, in
subsection 3.2, we will introduce the details of our
proposed CETA, which aims to implement the pro-
posed theorem for denoising.

3.1 Generalization Error Bound for DSRE

Formally, the DS-built training set can be denoted
asDcs = {(xi, ycsi )}mi=1 ∈ (X×Y), where xi ∈ X
and ycsi ∈ Y . X represents the input instances. Y
indicates the class labels. ycs indicates that the
label may be a clean label yc or a noisy label ys.
The relation extraction model based on neural net-
works is usually composed of a sentence encoder
and a classifier. The sentence encoder g : X → Z
maps input instances X into feature space Z . The
classifier f : Z → Y establishes the classification
boundary in the feature space and maps the features
of the instances into labels Y . In order to evaluate
the performance of the model, we denote the clean
test set as Dc = {(xi, yci )}

n
i=1 ∈ (X × Y), where

xi ∈ X and yci ∈ Y . We use ϵc(f) to denote the
expected error of the model. The goal of DSRE is
to reduce ϵc(f) under the DS-built training set.

The supervised methods usually reduce the ex-
pected error based on the structural risk minimiza-
tion whose basic theorem requires the training set
and the test set to come from the same distribution.
which is unsuitable for DSRE since the DS-built
training set cannot be as clean as the test data. In
this paper, the basic theorem is extended to DSRE,
a generalization error bound to measure the ex-
pected error is theoretically proposed as follows1.
Theorem 1. Let g be a fixed representation function
from X to Z , F be the hypothesis class of Vapink

1The detailed proof can be found in Appendix A.

Chervonenkis d. If a random sample of size m Zcs

is generated by applying g to a Dcs - i.i.d. for
any σ > 0, with probability 1 − σ, we have the
following uniform generalization error bound for
any classification functions f ∈ F ,

ϵc(f) ≤ ϵ̂cs(f) +
1

2
dF△F (Zcs) + λ, (1)

where

ϵ̂cs(f) =
1

m

m∑
i=1

∣∣∣f̂(zcsi )− ycsi

∣∣∣
dF∆F (Zcs)=2 sup

f ′ ,f ′′∈F

∣∣∣Pr[f ′
(zcs)̸=f

′′
(zcs)

]∣∣∣
f∗ = argminf∈F ϵc(f) + ϵcs(f)

λ=ϵcs(f∗)+ϵc(f∗)+

√
4

m

(
d log

2em

d
+log

4

δ

)
Eq. (1) demonstrates that the expected error ϵc(f)
can be bounded by using three terms. The corre-
sponding explanations are as follows.

1. ϵ̂cs(f) is the empirical error of the DS-built
training data Dcs.

2. dF△F (Zcs) is a key novelty of this theorem
and can be viewed as the regularization term
that represents the upper bound (sup) of the
probability (Pr) that two classifiers f

′
and f

′′

category the feature zcs into different classes.

3. λ indicates the shared error of the ideal joint
hypothesis (f∗). λ is a constant and can be
ignored during training stage.

Based on our proposed Theorem 1, a new denoising
method is pointed out, that is, the expected error
can be reduced by reducing the generalization error
bound. In particular, if dF△F (Zcs) is minimized,
the feature zcs will be classified into the same class
by f

′
and f

′′
with a higher probability, which is

equivalent to enhancing the consistency of model
predictions by two discrepant classifiers.

3.2 Consensus Enhanced Training Approach

CETA aims to reduce the expected error ϵc(f) by
minimizing dF△F (Zcs) and ϵ̂cs(f) in the gener-
alization error bound proposed in Theorem 1. We
introduce the architecture of CETA and the opti-
mization strategy of CETA in sequence.



2250

Part2 reduces the 
consensus areas.

Part3 restricts samples to 
consensus areas, away 
from classification 
boundary, to avoid 
samples moving to wrong 
classification space.

✕

☐

Consensus area of class B Classifier """
Classifier ""

Movement directions of samples caused by Part3

Classifier !!

Sentence Encoder "

Feature Space 3

Classifier !!!

$!! $!
"$%
" ""#

The Architecture of CETA The Changes in Feature Space During Training

Consensus area of class A

samples labeled as class B

* '!
! =
* '!

!−
2 '!

!& %
%&

* '!
! =
* '!

!+
∇ '!

!& "
#

*'! = *'! − ∇'! & %%&

*'! = *'! + ∇'!&"#

*$ = *$ − ∇$& %%&

Part 1

Part
 1

Par
t 2

Part 2

*$ = *$ − ∇$ &"#

☐

☐

☐

☐

☐

☐

☐

☐ ☐

☐

☐

☐

☐
☐

☐

☐

☐
✕

✕ ✕

✕

✕
✕

✕
✕

✕
✕

✕

✕

✕

✕

✕

☐
☐

☐

☐

☐

☐

☐

☐

☐

✕

✕
✕

✕

✕✕

✕

✕

✕

✕ ✕

✕

✕

✕

✕ ✕

☐
☐ ☐

☐☐
✕

✕

✕

☐ ✕ ✕☐ ☐

Part1 may cause 
samples move to wrong 
classification space.

Finally, samples 
between classes A 
and B are separated.
The samples with 
wrong labels can 
stay in the correct 
classification space.

☐
☐

✕
✕
✕

☐ ☐

☐
☐

☐
☐

☐
☐

☐

☐
☐

✕
✕

✕✕

✕✕ ✕
✕✕

✕

✕✕

✕

✕

✕

✕✕

✕
☐

Part 1

Part 1

Part 2

Part 2

Part 3

Wrong movement directions of samples caused by Part1

Movement directions of classifiers caused by Part2

☐
☐

☐☐

☐

☐

☐☐
☐

☐☐ ☐

☐
✕

✕

✕

✕
✕

✕

✕

✕

✕

✕

☐
☐

☐

☐ ✕

✕✕

✕

✕

✕

✕

✕
✕

✕

✕✕
✕

✕

☐

☐
☐ ✕

✕

☐ ✕
✕☐

✕

✕

✕

✕
✕

✕
✕

✕

✕

☐

☐

☐
☐

☐

☐
☐

☐

☐

☐
☐

☐

☐

☐

☐

☐

☐
☐

✕
✕

The samples in the wireframe 
originally belonged to class A, 
but were mislabeled as class B

samples labeled as class A

☐
☐

☐

(a)

(b)

(c)

Figure 2: The left part is the architecture and optimization strategy of CETA. The right part is the corresponding
changes in the feature space when the optimization algorithm acts on different components. Lcce is the categorical
cross-entropy loss function defined in Eq. (2). Lwd is the divergence loss based on wasserstein distance defined in
Eq. (3). The symbol Θ indicates the component’s parameters of the model. The symbol ∇ denotes the component’s
gradient calculated by the corresponding loss. The consensus area refers to the area where two classifiers classify
the sample into the same class.

.

3.2.1 Architecture of CETA
As shown in Figure 2, the architecture of CETA
consists of two classifiers sharing an encoder.
Given the input instance x, the encoder g trans-
forms the x from the instance spaceX to the feature
space Z , the corresponding hidden feature vector
is denoted as: (z1, z2, . . . ze1 . . . ze2 . . . zL), where
ze1 and ze2 are the feature vectors corresponding to
the entities e1 and e2. We can obtain the instance
representation z = [ze1 ; ze2 ] for classification by
concatenating ze1 and ze2 . In particular, CETA
adds an auxiliary classifier, which is not only used
to reduce the empirical loss ϵ̂cs(f), but also aims
to use two classifiers to approximate f

′
and f

′′
in

dF△F (Zcs), and then combine the proposed opti-
mization strategy to reduce dF△F (Zcs).

3.2.2 Optimization Strategy of CETA
The optimization strategy of CETA can be broadly
divided into three parts. The first part aims to re-
duce the empirical loss ϵ̂cs(f). The second part
and the third part are combined to reduce the
dF△F (Zcs). The details are as follows.

Part 1. To reduce ϵ̂cs(f), we adopt the categori-
cal cross-etropy function to calculate the classifica-

tion loss Lcce of the noisy training set.

Lcce=−
1

M

M∑
i=1

K∑
k=1

I(yi=k)
[
log

(
p′ik

)
+log

(
p′′ik

)]
(2)

where M is the number of training instances, K is
the number of relation classes. I(yi = k) is an in-
dicator function, which returns 1 when yi = k, and
0 otherwise. The p′ik and p′′ik are two probabilities
that the instance i belongs to class k predicted by
two classifiers f ′ and f ′′, respectively. As shown
in Figure 2, we use Lcce to calculate the gradient
on each component of the model. Then we update
the parameters of each component to reduce the
empirical error ϵ̂cs(f). In feature space, reducing
ϵ̂cs(f) is equivalent to forcing the wrongly labeled
samples to move to the wrong classification space,
and the direction of the movement is indicated by
the red arrow in the right part of Figure 2.

Part 2. To reduce dF△F (Zcs), the goal of this
part is to increase the discrepancy between the two
classifiers, so as to approximate the dF△F (Zcs)
with two discrepant classifiers. Specifically, CETA
first adopts the wasserstein distance (Kantorovich,
2006) to capture the discrepancy Lwd between P ′
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and P ′′ for measuring the classification discrep-
ancy between two classifiers f ′ and f ′′. P ′ and
P ′′ are two probability distributions representing
the probabilities of the samples being divided into
different classes by f ′ and f ′′, respectively.

Lwd = argmin
γ∗∈Π[P ′ ,P ′′ ]

E(p′,p′′)∼γ∥p′ − p′′∥ (3)

P ′ = f ′(Zcs),P ′′ = f ′′(Zcs) (4)

where Π[P ′,P ′′] indicates the set of all jointed dis-
tributions whose marginals are P ′ and P ′′. Calcu-
lating Lwd can be regarded as finding the optimal
γ∗. γ∗ can transform P ′ into P ′′ with minimal
modification.

Then, CETA uses Lwd to calculate the gradient
∇f ′Lwd, ∇f ′′Lwd, and ∇gLwd of two classifiers
f ′, f ′′ and the sentence encoder g, respectively.

θf ′ = θf ′ +∇f ′Lwd (5)

θf ′′ = θf ′′ +∇f ′′Lwd (6)

Since the dF△F (Zcs) refers to the upper bound
of the probability that two classifiers divide the
sample into different classes. In order to approxi-
mate the upper bound of classification discrepancy
of dF△F (Zcs), we update the parameters θf ′ and
θf ′′ by executing Eq. (5) and Eq. (6). It can in-
crease the classification discrepancy between the
two classifiers. As shown in the right side of Figure
2, it can reduce the consensus area in the feature
space. The consensus area refers to the area where
two classifiers classify the sample into the same
class. The smaller the consensus area, the greater
the discrepancy between the classifiers. When the
discrepancy between the two classifiers reaches a
threshold value, the discrepancy between these two
classifiers is approximately equal to dF△F (Zcs).

Part 3. On the basis that the discrepancy be-
tween the two classifiers can well approximate
dF△F (Zcs), executing Eq. (7) can reduce the
discrepancy between the two classifiers, which is
equivalent to reducing dF△F (Zcs). As shown in
the right side of Figure 2, Eq. (7) is applied to the
sentence encoder g, which can change the distri-
bution of samples in the feature space. The sam-
ples encoded by g will enter the narrow consen-
sus area and be pulled away from each other, only
in this way the classification discrepancy between
two classifiers can be reduced. After three parts of
the optimization strategy, the samples of different
classes are separated in the feature space, and the

distance between clusters of different classes is en-
larged. So that the wrongly labeled samples cannot
be easily moved to the wrong classification space
and stay in the original correct classification space.

θg = θg −∇gLwd (7)

The complete training steps of CETA are summa-
rized in Algorithm 1. Besides, only sentence en-
coder g and the classifier f ′′ are adopted to predict
the relation type during the inference procedure.

Algorithm 1 CETA Algorithm
Input: training sets Dcs, β, learning rate η, sen-
tence encoder θg , full connected layers as classifier
θf ′ and θf ′′ , epoch T , iteration N
Output:θf ′ , θf ′′ , θg

1: for t = 1, 2, 3, ..., T do
2: Shuffle training set Dcs

3: for n = 1, 2, 3, ..., N do
4: Fetch mini-batch c̄s from Dcs

5: Calculate Lcce and Lwd on c̄s
6: Update θf ′ ← θf ′ −∇f ′Lcce
7: Update θf ′′ ← θf ′′ −∇f ′′Lcce
8: Update θg ← θg −∇gLcce
9: Update θf ′ ← θf ′ +∇f ′Lwd

10: Update θf ′′ ← θf ′′ +∇f ′′Lwd

11: Update θg ← θg − β∇gLwd

12: end for
13: end for

4 Experiments

The experiments in this work are divided into two
part. (1) The first part is the effectiveness study
on sentence-level evaluation for our method and
the compared methods. Many previous bag-level
DSRE methods adopt held-out evaluation, where
both training set and test sets are DS-built. How-
ever, the studies (Gao et al., 2021; Feng et al., 2018)
have demonstrated that the bias is inevitably in-
troduced into held-out evaluations since the DS-
build test set is noisy. To provide more accurate
and credible evaluations, this part of experiment
follows most sentence-level DSRE methods that
conduct sentence-level evaluations on benchmarks
with clean test sets. (2) The second part is the
ablation experiments, which adopts feature visu-
alization to better illustrate the behaviors of our
proposed CETA.
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Benchmarks NYT KBP
#Label num 24 6

Train Instances 371,461 151,091
Positive 110,518 38,922

Test Instances 2,164 4,168
Positive 323 1,075

Table 1: Statistics of benchmarks. "Positive" means
positive instances that are not labeled as "NA". "NA"
indicates that the sample does not belong to any of the
predefined relation labels.

4.1 Benchmarks
We evaluate our method on two widely-used DSRE
benchmarks: NYT and KBP, and the dataset statis-
tics are shown in Table 1.
NYT. This dataset is developed by Riedel et al.
(2010) aligning New York Times corpus with the
relation facts in Freebase. The origin training set
and test set are both DS-built. To make the evalua-
tion more precisely, we adopt the original training
set and a widely-used manually annotated test set
provided by Jia et al. (2019).
KBP. This dataset is constructed by Ling and Weld
(2012) aligning English Wikipedia corpus with the
relation facts in Freebase as training set. and the
test set is built by utilizing the manually-annotated
sentences from 2013 KBP (Ellis et al., 2012). How-
ever, some test relation types have no or only one
training instance. Besides, this test set only con-
tains 165 positive instances. To reduce the bias of
evaluation, we utilize the other refined version of
KBP proposed by Li et al. (2020b) to avoid the
above problems. Our adopted test set has the same
relation types with the training data, contains more
positive instances, and keep the same proportion of
positive instances as the training set.

4.2 Baseline Models
Our proposed CETA is a sentence-level DSRE
method. For the fairness of the comparison, we
compare with several strong DSRE methods. These
compared methods can be categorized as: bag-level
DSRE methods, sentence-level DSRE methods,
sentence-level RE methods without denoising.

• PCNN+ATT (Lin et al., 2016) A bag-level
DSRE method which employs the selective atten-
tion to alleviate noise.

• PCNN+RA_BAG_ATT (Ye and Ling, 2019) A
bag-level DSRE method which utilizes inter-bag

and intra-bag attentions to reduce the impact of
noisy instances.

• CNN+RL1 (Qin et al., 2018b) A bag-level DSRE
method which applies reinforcement learning to
generate the false-positive indicator to recognize
false positives, and redistribute the filtered data
into the negative examples.

• CNN+RL2 (Feng et al., 2018) A sentence-
level DSRE model which employs reinforcement
learning to jointly train a RE model for relation
classification and an instance selector for filtering
the potential noisy instances.

• PCNN+DSGAN (Qin et al., 2018a) A sentence-
level DSRE model which adopts adversarial
learning to train a generator to recognize true
positive instances, and then redistributes the re-
maining false positives to the negative set to ob-
tain a new cleaned dataset.

• ARNOR (Jia et al., 2019) A sentence-level
DSRE model which selects the reliable instances
based on the reward of attention score on the
selected patterns.

• SENT (Ma et al., 2021) A sentence-level DSRE
model which filters noisy instances and re-
labeling based on negative training. It is the
state-of-the-art method in sentence level.

• CNN (Zeng et al., 2014), PCNN (Zeng et al.,
2015), BiLSTM (Zhang et al., 2015) and BERT
(Devlin et al., 2019) are commonly-used models
for RE without denoising methods.

4.3 Implementation Details

Our proposed CETA is a model-agnostic sentence-
level DSRE method. We implement CETA using
BiLSTM, PCNN, and BERT as sentence encoder,
respectively2.

When implemented with BiLSTM, our adopted
word embedding are 50-dimensional Glove word
embedding published by Lin et al. (2016). Besides,
we utilize 50-dimension randomly initialized po-
sition and entity type embedding. The BiLSTM
is single layer with hidden size 256 and optimized
by Adam optimizer with the learning rate of 5e-
4. All the adopted word embedding, position and

2The code and training scripts will be released at
https://github.com/Ethan-RR/CETA
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Model NYT
Prec. Rec. F1

CNN∗ 35.75 64.54 46.01

PCNN∗ 36.06 64.86 46.35

BiLSTM∗ 35.52 67.41 46.53

BERT∗ 36.21 70.41 47.82

PCNN+ATT∗ 45.41 30.03 36.15

PCNN+RA_BAG_ATT∗ 56.76 50.60 53.50

CNN+RL1
∗ 39.41 61.61 48.07

CNN+RL2
∗ 40.23 63.78 49.34

BiLSTM+ARNOR∗ 65.23 56.79 60.90

BiLSTM+SENT∗ 71.22 59.75 64.99

BERT+BiLSTM+SENT∗ 76.34 63.66 69.42

BiLSTM+CETA 71.34 61.12 65.83
BERT+CETA 63.98 69.13 66.45
BERT+BiLSTM+CETA 76.29 64.63 69.98

Table 2: Main results of the sentence-level evaluation
on NYT. Compared baselines include normal RE model
(the first part of the table) and models for distant RE
(the second part of the table). We run our experiment 5
times and report the average result. The results with ∗

are reported in Ma et al. (2021).

entity type embedding, the hyperparameters of BiL-
STM and the optimizer are consistent with SENT.
When implemented with PCNN, the size of posi-
tion embeddings are 30 dimensions. The number of
convolution filter for PCNN model is 230, and the
filter window size is 3, which keeps the same with
Li et al. (2020b). When implemented with BERT,
we use bert-base-uncased as sentence encoder and
apply AdamW optimizer with a learning rate of 2e-
5. The above experimental setup is also applied to
the compared RE model that utilizes BERT without
denoising method.

We determine the best hyperparameters by grid
search. Specifically, when training on the NYT and
KBP datasets, we train the model for 10 epochs
with a batch size of 256 when using BiLSTM and
a batch size of 16 when using BERT. The optimal
values of the scalar β for scaling gradients on the
sentence encoder mentioned in Algorithm 1 are
β = 2.1 for BiLSTM and β = 4.7 for BERT.

4.4 Sentence-Level Evaluation

we adopt the same evaluation metrics as the previ-
ous sentence-level DSRE method (Jia et al., 2019;
Li et al., 2020b; Ma et al., 2021): Micro-Precision

Model KBP
Prec. Rec. F1

PCNN∗ 56.12 33.38 41.75

BiLSTM † 57.10 47.06 51.48

PCNN+ATT∗ 72.65 29.24 41.69

PCNN+RL∗
1 57.64 38.79 46.32

PCNN+DSGAN∗ 59.86 38.54 46.65

BiLSTM+ARNOR∗ 54.83 34.59 42.35

PCNN+SENT 59.98 32.78 42.39

BiLSTM+CETA 59.74 56.15 57.89
PCNN+CETA 58.72 39.83 47.46

Table 3: Main results of the sentence-level evaluation
on KBP. We run our experiment 5 times and report the
average result of our proposed method. The results with
∗ and † are reported in Li et al. (2020b) and Li et al.
(2022), respectively.

(Prec.), Micro-Recall (Rec.) and Micro-F1 (F1).
The sentence-level evaluation results of our pro-
posed CETA and other baselines are on NYT and
KBP are shown in Table 2 and Table 3, respectively.
We can observe that: (1) Our proposed CETA sur-
passes all baselines in F1 metrics on both KBP and
NYT datasets when applying the same sentence
encoder. (2) The results on the NYT dataset show
that CETA has higher Rec. than both ARNOR and
the current state-of-the-art SENT when LSTM is
used as the basic sentence encoder. In addition, the
results on the KBP dataset show that when PCNN
is used as the basic sentence encoder, the Rec. of
CETA is higher than that of other baselines, which
shows that CETA can facilitate the model to fully
exploit the training data. (3) The F1 metrics of
ARNOR on the NYT dataset is significantly higher
than that of RL1, but on the KBP dataset, the F1
metrics of ARNOR is lower than that of RL1. It
shows that the performance of ARNOR is suscep-
tible to different data distributions. Our proposed
method consistently outperforms on both NYT and
KBP datasets. We believe that the stability of the
method is important for practical scenarios.

In addition, we conduct a hyperparameter-tuning
study about the number of classifiers of CETA on
NYT in Appendix B.

4.5 Ablation Study

The section 3.2 has demonstrated that training the
model with CETA allows the model to separate
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Figure 3: The visualization of instances’ representations. The first column and second column show the repre-
sentations produced by the sentence encoders trained by the normal training method and the consensus enhanced
training method, respectively. The first row and second row show the results of 3750 and 410 random sampled
instances from the noisy training set of and the clean test set of our adopted NYT, respectively.

samples between different classes, thereby reduc-
ing the possibility of mislabeled samples entering
the wrong classification space, making it easier for
the model to establish robust classification bound-
aries. To further verify this proposal, we conduct
an ablation experiment that training our proposed
CETA with two different training methods on the
NYT dataset. The specific steps of this experiment
are as follows.

The first training method only reduces the em-
pirical error ϵ̂cs(f) by performing steps 6, 7, and 8
in our proposed Algorithm 1. We call the first
training method normal training method. The
second training method reduces both the empir-
ical error ϵ̂cs(f) and the classification- consensus-
related term dF△F (Zcs) proposed in Theorem 1
by performing all steps in Algorithm 1. We call
the second training method consensus enhanced
training method. The normal training method and
the consensus enhanced training method adopt the
same experimental environment, relation extrac-
tion model (We adopt BERT model as sentence
encoder), and hyperparameters. Second, we pick
four main classes3 of instances from the noisy train-
ing set and the clean test set of NYT. The randomly
picked instances are mapped into representations
by two sentence encoders that are trained by nor-

3Four selected classes are: (1) /Loca-
tion/Location/Contains (LLC), (2) /People/Person/Nationality
(PPN), (3) /People/Person/Place lived (PPP) and (4) /Loca-
tion/Administrative division/Country (LAC), respectively.

mal training method and consensus enhanced train-
ing method, respectively. Third, we adopt Principal
Component Analysis (PCA) to reduce dimension of
the representations and visualize these 2-dimension
representations in Figure 3.

From the visualization of instances’ representa-
tions plotted in Figure 3, we can observe that our
proposed consensus enhanced training method fa-
cilitates model to closely cluster the representations
of the same class’s samples and clearly separate
the representations of different classes’ samples
compared with the normal training method.

In addition, we perform sentence-level evalua-
tion on the clean test set of NYT, and the model
trained by normal training method achieves the
following results: Prec. = 36.21, Rec. = 70.41,
F1 = 47.82. The result of the model trained by
consensus enhanced training method is as follows:
Prec. = 63.98, Rec. = 69.13, F1 = 66.45. We
can observe that the results obtained by the model
trained by consensus enhanced training method
lead across the board, strongly demonstrating the
effectiveness of CETA.

5 Conclusion

This paper goes beyond the typical instance selec-
tion approaches, and focuses on handling the noisy
labels in the feature space. A theorem for denois-
ing and the corresponding implementation, named
Consensus Enhanced Training Approach (CETA),
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are proposed in this paper. By training the model
with CETA, samples of different classes are sep-
arated in the feature space. Thus the model can
easily establish the robust classification boundary
to prevent noisy labels from biasing wrongly la-
beled samples into the wrong classification space.
Besides, CETA achieves denoising does not depend
on any potential noisy labels. Therefore, CETA is
not affected by common noisy instances. Extensive
experiments on the widely-used benchmarks have
demonstrated that our proposed CETA outperforms
previous methods.
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A Appendix

In this section, we proof our proposed Theo-
rem 1. For ease of reference, we restate Theorem 1.

Theorem 1: Let g be a fixed representation func-
tion from X to Z , F be the hypothesis class of
Vapink Chervonenkis d. If a random sample of size
m Zcs is generated by applying g to a Dcs - i.i.d.
for any σ > 0, with probability 1− σ, we have the
following uniform generalization error bound for
any feature classification functions f ∈ F ,

ϵc(f) ≤ ϵ̂cs(f) +
1

2
dF△F (Zcs) + λ (8)

where

ϵ̂cs(f) =
1

m

m∑
i=1

∣∣∣f̂(zcsi )− ycsi

∣∣∣ (9)

dF∆F (Zcs)=2 sup
f ′ ,f ′′∈F

∣∣∣Pr[f ′
(zcs)̸=f

′′
(zcs)]

∣∣∣
(10)

f∗ = argminf∈F ϵc(f) + ϵcs(f) (11)

λ=ϵcs(f∗)+ϵc(f∗)+

√
4

m

(
d log

2em

d
+log

4

δ

)
(12)

Eq. (8) indicates the generalization error bound
of ϵc(f). It demonstrates that the expected error
ϵc(f) of the clean test set can be bounded by using
three terms (ϵ̂cs(f), dF∆F (Zcs) and λ), which are
defined in Eq. (9), Eq. (10) and Eq. (12), respec-
tively. The corresponding explanations for these
three terms are as follows.

1. ϵ̂cs(f). This term is the empirical error of
Dcs.

2. dF△F (Zcs). This term represents the upper
bound (sup) of the probability (Pr) that two
classification functions f

′
and f

′′
divide the

feature zcs of the same sample into different
classes.

3. λ. This term is the shared error of the ideal
joint hypothesis (f∗) proposed in Eq. (11).
This term is a constant.

We begin with the following lemmas to prove the
Theorem 1.
Lemma A. Definition 1: Given two feature distri-
bution Zs and Zc extracted by a fixed g, and a
hypothesis class F , a set of classifiers. Through
a given classifier f , the divergenceF∆F between
Zs and Zc is:

dF△F (Zs,Zc)

= 2 sup
η∈F∆F

∣∣∣∣ Pr
z∼Zc

[f
′
(z)̸=f

′′
(z)]− Pr

z∼Zs
[f

′
(z)̸=f

′′
(z)]

∣∣∣∣
= 2 sup

η∈F∆F

∣∣∣∣ Pr
z∼Zs

[z :η(z)=1]− Pr
z∼Zc

[z :η(z)=1]

∣∣∣∣
F∆F = {η : η (z∗) = 1} ,⊕ : XOR operator

z∗ = {z : f1(z)⊕ f2(z), f1, f2 ∈ F}

where Zs ⊆ Zcs and Zc ⊆ Zcs are feature
distribution of noisy data and clean data, respec-
tively. Lemma A has been proposed and proved in
(Ben-David et al., 2010).

Lemma B. The upper bound of the probability
dF△F (Zcs) that two classification functions f

′
and

f
′′

divide the feature zcs of the same sample into
different classes is equal to the upper bound of
dF△F (Zs,Zc).

Proof. Now we proof the Lemma B.

dF△F (Zs,Zc)

= 2 sup
η∈F∆F

∣∣∣∣ Pr
z∼Zs

[z :η(z)=1]− Pr
z∼Zc

[z :η(z)=1]

∣∣∣∣
≤ 2 sup

η∈F∆F

∣∣∣∣ Pr
z∼Zs

[z :η(z)=1]+ Pr
z∼Zc

[z :η(z)=1]

∣∣∣∣
= 2 sup

η∈F∆F

∣∣∣∣ Pr
z∼Zcs

[z :η(z)=1]

∣∣∣∣ (13)

= 2 sup
f ′ ,f ′′∈F

∣∣∣∣ Pr
z∼Zcs

[f
′
(z)̸=f

′′
(z)]

∣∣∣∣ (14)
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The Eq. (14) is equal to Eq. (10), which is
the dF∆F (Zcs), thus the dF△F (Zcs) is the up-
per bound of dF△F (Zs,Zc). Lemma B has been
proved.

Proof. Now we proof the Theorem 1.
For a classifier f , let Zf ⊆ Z be the feature

subset for whose characteristic function is f . The
parallel notation Zf∗ and Zf are used for classifier
f∗ and f . Through the feature subset, we make
Prc [Zf△Zf∗ ] = Prz∼Zc [f(z) ̸= f∗(z)], and the
parallel notation Prcs is used.

ϵc(f) ≤ ϵc (f∗) + Prc [Zf∆Zf∗ ] (15)

≤ ϵc (f∗) + Prcs [Zf△Zf∗ ]

+ |Prc [Zf∆Zf∗ ]− Prcs [Zf△Zf∗ ]|
≤ ϵc (f∗) + ϵcs (f∗) + ϵcs(f)

+ |Prc [Zf∆Zf∗ ]− Prcs [Zf∆Zf∗ ]|
(16)

= ϵc (f∗) + ϵcs (f∗) + ϵcs(f)

+ |Prs [Zf∆Zf∗ ]|
≤ ϵc (f∗) + ϵcs (f∗) + ϵcs(f)

+ sup
f̂∈F
|Prs[Zf∆Zf̂ ] + Prc[Zf∆Zf̂ ]|

≤ ϵc (f∗) + ϵcs(f) +
1

2
dF∆H (Zcs)

Eq. (15) and Eq. (16) rely on the trian-
gle inequality for classification error (Schölkopf
et al.). Besides, according to the standard Vapnik-
Chervonenkis theorem (Vapnik, 1999), the ϵcs(f)
can be bounded by its empirical estimate:

ϵcs(f) ≤

√
4

m

(
d log

2em

d
+ log

4

δ

)
+ ˆϵcs(f)

(17)
in summary:

ϵc(f) ≤ ϵ̂cs(f) +
1

2
dF△F (Zcs) + λ (18)

Theorem 1 has been proved.

B Appendix

In this section, we conduct a hyperparameter tuning
study on the number of classifiers for CETA. CETA
is designed according to the denoising theorem,
which states that the decomposition of the classifier
helps to reduce the generalization error. To explore
whether more classifiers can further improve the
performance, we conduct the experiment of CETA

Model NYT
#Classifier Prec. Rec. F1

BiLSTM 1 35.52 67.41 46.53

CETA+BiLSTM 2 71.34 61.12 65.83

CETA+BiLSTM 3 71.46 61.37 66.03

CETA+BiLSTM 4 71.49 61.39 66.05

Table 4: Main results of the sentence-level evaluation
on NYT. #Classifier indicates the number of classifiers
used to implement CETA.

implemented with two, three, and four classifiers
on NYT based on BiLSTM, and the results are
shown in Table 4.

The results demonstrate that CETA implemented
by four classifiers is 0.34% higher than that of the
two classifiers in F1 metrics. Besides, CETA imple-
mented by three classifiers is 0.3% higher than that
of the two classifiers in F1 metrics, indicating more
classifiers can further improve the performance of
CETA.


