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Abstract

Knowledge Graph Embedding (KGE) has been
proposed and successfully utilized for knowl-
edge Graph Completion (KGC). But classic
KGE paradigm often fail in unseen relation
representations. Previous studies mainly uti-
lize the textual descriptions of relations and its
neighbor relations to represent unseen relations.
In fact, the semantics of a relation can be ex-
pressed by three kinds of graphs: factual graph,
ontology graph, textual description graph, and
they can complement each other. A more com-
mon scenario in the real world is that seen and
unseen relations appear at the same time. In
this setting, the training set (only seen relations)
and testing set (both seen and unseen relations)
own different distributions. And the train-test
inconsistency problem will make KGE meth-
ods easily overfit on seen relations and under-
performance on unseen relations. In this paper,
we propose decoupling mixture-of-graph ex-
perts (DMoG) for unseen relations learning,
which could represent the unseen relations in
the factual graph by fusing ontology and tex-
tual graphs, and decouple fusing space and rea-
soning space to alleviate overfitting for seen
relations. The experiments on two unseen-only
public datasets and a mixture dataset verify the
effectiveness of the proposed method, which
improves the state-of-the-art methods by 6.84%
in Hits@ 10 on average.

1 Introduction

Knowledge Graphs (KGs) such as Freebase (Bol-
lacker et al., 2008), DBpedia (Lehmann et al., 2015)
and YAGO (Mahdisoltani et al., 2014) contain large
amounts of entities, relations and facts, which can
be used to support many NLP tasks. Knowledge-
dependent tasks rely heavily on the coverage of
KGs. And the incompleteness of those KGs is an
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Figure 1: The semantics of a relation in a KG is ex-
pressed by three kinds of graphs: factual graph, ontol-
ogy graph and textual graph. And the knowledge graph
completion involving unseen relations in factual graph,
which struggle in previous KGE methods, could be alle-
viated by utilizing their ontology and textual graphs.

urgent issue for its widespread utilization (Hogan
et al., 2021). Therefore, knowledge graph embed-
ding (KGE) (Arora, 2020; Ji et al., 2021) methods
have been proposed and successfully applied to
knowledge graph completion (KGC), which seek
out potential facts inside KGs.

In fact, most knowledge involves constantly
emerging new entities and relations. And tradi-
tional KGE paradigm makes hard to deal with
unseen entities and relations. For example, as il-
lustrated in Figure 1 top, the model was trained
on seen triples dataset, but required to answer the
open query “(Nernst, academicAdvisor, ?)”. Little
research try to learning unseen relations represen-
tation mainly by utilizing textual description and
neighboring seen relations (Qin et al., 2020; Geng
et al., 2021; Zhang et al., 2020). And some datasets
have been proposed to evaluate models general-
izability for unseen relations. (Qin et al., 2020).
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ZSGAN-KG (Qin et al., 2020) leverages a genera-
tive adversarial network to generate representations
of unseen relations based on their textual descrip-
tions. And OntoZSL (Geng et al., 2021) designs
several functions to learn and fuse textual features,
and then adapt a text-aware encoder to represent
zero-shot entities and relations. GRL (Zhang et al.,
2020) designs a classifier to select a neighboring
seen relation to replace the unseen relation.

Although the above-mentioned methods can deal
with unseen relations to some extent, they still have
the following weaknesses: 1) Unstructured textual
descriptions are incomplete and can only cover part
of the semantics of relations. 2) It is often inaccu-
rate and even noisy to use neighbor relations to
represent an unseen relations. 3) Previous mod-
els are evaluated for unseen data only, but do not
consider mixture dataset of seen and unseen rela-
tions. Therefore in this paper, we propose three
questions for currently unseen relation methods: 1)
What resources are accurate and abundant for un-
seen relations? 2) How to efficiently use resources
to improve representations of unseen relations? 3)
What challenges arise with models evaluated in
mixture dataset of seen and unseen relations?

To answer above questions 1) and 2), we found
that ontology, as an accurate resource, is worth con-
sidering. In fact, as shown in Figure 1, the seman-
tics of a relation can be expressed by three different
forms: 1 factual graph includes concrete relations
between entities, 2 ontology graph describes high-
level definitions for relations, and 3 textual graph
contains textual descriptions of different relations.
The factual graph is wide and links large amounts
of entities by relations. Most KGE methods can
represent KG effectively, but can not represent un-
seen relations. The ontology contains a high-level
definition of entities and relations. In Figure 1,
for relation academicAdvisor, the ontology graph
means that scientist have academic advisors who
are students. The textual descriptions are rich and
contain different semantic information in natural
language. In Figure 1, they can be assembled into a
textual graph through words and sentences associa-
tion. The above three graphs complete each other.
We leverage ontology graph and textual graph to
support factual graph to find unseen relations infor-
mation.

To answer above the question 3), we found that
seen and unseen relations appear at the same time in
the real world. In this setting, the training set (only

seen relations) and testing set (both seen and un-
seen relations) own different distributions. And the
train-test inconsistency problem will make KGE
methods easily overfit on seen relations and under-
performan on unseen relations. Empirically, as the
model converges in the training process the perfor-
mance of seen relations gets higher, but the perfor-
mance of unseen relations decreases. To overcome
this issue, we are committed to making the learning
of relation representations and factual reasoning in
different spaces. That is, the relation representa-
tions by mixture-of-graphs is implemented on the
fusion space, and fact prediction with the learned
entities and relations is conducted on the reasoning
space.

In this paper, we propose decoupling mixture-of-
graph experts (DMoG) for unseen relations learn-
ing, which could represent the unseen relations of
the factual graph by fusing ontology and textual
graphs. And our method decouples fusion space
and reasoning space to alleviate the overfitting on
seen relations. Specifically, we collect different
ontology graphs from official graph-based data, or
we derive them from official dump data in other
formats. To achieve the interactive information
between seen and unseen relations, we leverage dif-
ferent GNNs to encode ontology and textual graphs.
And we design different expert modules and mix-
ture mechanism to fuse different graph information.
Morevoer, we propose a transpose linear mapping
to separate fusion space and reasoning space and
alleviate overfitting.

We conducted extensive experiments on multiple
benchmarks from public KGs such DBpedia and
Wikidata. The proposed unseen relations learning
method improves the state-of-the-art method by
3.68% in MRR and 6.15% in Hits@10 on average.

In short, our main contributions are as follows:

* We found that relations are expressed by fac-
tual graph, ontology graph and textual graph.
Based on these observations, we propose
mixture-of-graph (MoG) experts for unseen
relations learning, which can represent unseen
relations accurately and richly.

* We propose a decoupling strategy that allevi-
ates the overfitting on seen relations during
training. Trained KGE models effectively rep-
resent seen relations and maintain unseen re-
lations performance.

* We implement our method with some main-
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stream KGE methods. And the experimen-
tal results show that our method significantly
improves the performance on the seen and
unseen relations.

2 Related Work
2.1 Knowledge Graph Embedding

Recently, massive work focused on translation-
based methods for knowledge graph comple-
tion (Zhang et al., 2021). The key issue of knowl-
edge graph embedding is to learn low dimensional
distributed embedding of entities and relations (Ji
et al., 2021). The current KGE models can gener-
ally be categorized into translation-based models
and similarity-based models. For KGE models:
the pioneering model TransE (Bordes et al., 2013)
embeds entities and relations as d-dimension vec-
tors in same space, and makes vectors follow the
translational principle h + r = t. The subsequent
work of TransE usually modifies the translational
principle in different forms of relationship-specific
spaces. And others translation-based models in-
cluding TransR (Lin et al., 2015), TransD (Ji et al.,
2015), TransAt (Qian et al., 2018) and RotatE (Sun
et al.,, 2019) have been improved from the per-
spective of how entities can be better represented
and translated. As for the similarity-based models,
ComplEx (Trouillon et al., 2016) migrates Dist-
Mult in a complex space and offers comparable
performance. However, previous embedding meth-
ods struggle in knowledge completion involving
unseen relations.

2.2 Zero-shot Learning for KGC

Zero-shot learning describes tasks that given the
prior knowledge (seen classes) and then transfer
features from seen classes to unseen classes. Most
works focus on computer vision such as image clas-
sification. In the area of knowledge graph comple-
tion, more studies focus on zero-shot entity learn-
ing which is devoted to deal with unseen entities.
Some works leverage text and other auxiliary fea-
tures to learn the entity representation(Xie et al.,
2016; Shah et al., 2019). Some works design dif-
ferent models or strategies to aggregate neighbor
seen entities for unseen entities (Wang et al., 2019;
Albooyeh et al., 2020). Currently, inductive rea-
soning(Teru et al., 2020) completely disregards the
symbol of entities and it means that all entities can
be unseen entities. While few works consider zero-
shot relation learning and model unseen relations.

Few works take text-embedding spaces as semantic
spaces of relation to represent unseen relations (Qin
et al., 2020; Geng et al., 2021). And (Zhang et al.,
2020) design a classifier-based method, which se-
lect an appropriate seen relation to replace the un-
seen relation. Our work focuses on unseen rela-
tions in knowledge graph completion and proposes
a method that incorporates ontology graph and tex-
tual description to leaning the representations of
unseen relations.

2.3 Ontology and Textual Information for
KGE

The ontology is the definition and meta-information
of KG, it is a core part of KG construction (Stevens
et al., 2000). The massive KG relation facts are
subject to frequent conflicts in the absence of on-
tological boundaries (Pasternack and Roth, 2013).
A few studies focus on embedding techniques of
cross-domain ontology and encode ontology from
different perspectives (Chen et al., 2018; Gutiérrez-
Basulto and Schockaert, 2018). Currently, some
studies try to adapt ontology to enhance the repre-
sentation of knowledge base. JOIE (Hao et al.,
2019) employs both cross-view and intra-view
modeling that learn on multiple facets of the knowl-
edge base. For textual information, (Yao et al.,
2019) propose to use pre-trained language models
for knowledge graph completion. However, there
are significant differences in the ontology of the
knowledge base and knowledge graph. And some
popular knowledge graphs do not distinguish be-
tween KB and KG (Ehrlinger and W68, 2016). Our
work focuses on learning ontology representation
for KGE involving unseen relations.

3 Knowledge Graph Embedding Models
for KGC

KGC aims at scoring a triple (h,r,t) from KG
G =(R,E), where r € R is relation and h,t € €
are entities. Traditional KGE models learn embed-
ding matrix to translate head entity A to tail entity ¢
through relation 7. And different models have been
proposed by mainly changing translating strategies.
For example, TransE focuses on adding head entity
and relation, which should be close to the corre-
sponding tail entity with the scoring function by
minimizes the score of a triple as follows:

s(h,mt) =| h+r—t|3 (1)
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Figure 2: Our method leverages different GNN to capture ontology graph and textual graph nodes information and
aggregate them by knowledge mixture of experts. By fusion ontology and textual features in fusion space (green),
DMoG pools the representation of the relation in predicting a triplet fact in reasoning space (blue).

where h,r,t € R? and d is dimension of embed-
ding.

KGE models use the hinge loss function to effec-
tively minimize the score. The loss function for a
minibatch of labeled triples is defined as follows:

LO= Y, b+ rt) = f(hrb)s
(h,rt)EGy

2

where + is a fixed margin, (h’, 7, t') is the negative
fact that is commonly constructed by randomly
replacing the head or tail entities from the true fact
(h,rt).

For evaluation, KGC is a link prediction task
that aims to predict the missing & or ¢ for a triple
(h,r,t). Given the query (h,r,?), search the en-
tity ¢ that gets the minimum score with scoring
function.

However, the embeddings (e.g., vectors) of all
entities and relations must be initialized at the be-
ginning for previous KGE models. If some rela-
tions r miss in training but appear in testing, they
cannot be learned at all by the model. Therefore,
in order to represent the unseen relations and con-
duct zero-shot relational learning, we consider to
leverage multi-aspects information.

4 Decoupling Mixture-of-Graphs Experts

This section describes in detail our proposed ap-
proach. The framework is shown in Figure 2. Our
method directly improves the effectiveness of pre-
vious KGE models for unseen relations by making
rich and accurate their representations.

4.1 Framework

Our method mainly deals with three types of
graphs: factual graph, ontology graph and textual
graph. Factual graph is knowledge graph, follow-
ing as the previous definition. Ontology is the back-
bone of KGs, which provide meta-descriptions to
guide the knowledge graph construction and com-
pletion. Ontology is describe as directed graph
Go = (Ro, &), which uses meta-relations to as-
sociate ontology nodes (concepts and properties)
(ho,sTo,to). And the relations R and entities &€
of factual graph all find their own type in ontol-
ogy. And relations have a unique mapping between
the edges of factual graph and the nodes of on-
tology graph. Textual graph is undirected graph
Gt = (R4, &), the nodes are textual descriptions
of concept and property and the edge is word em-
bedding similarity between two nodes (h¢, r¢, tt),
and 0 < ry < 1.

4.2 Graph Construction

Ontology is stored in triples (head, relation, tail),
we take head and tail as node (indicates concept
(type of entity) and property (type of relation) of
factual graph) and relation (indicate meta-relations
among concepts and properties) as edge. Based on
the official released ontology file or the dump data,
we can directly construct or build ontology graph
by simple data filtering and format conversion.

For textual descriptions, we generate textual
graph from textual descriptions or full names of
concepts and properties. We want to find them
associated as below:
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4 — d(xi,x;), if d(x,x;)>¢
L 0, otherwise

A, is adjacency matrix of textual graph Gy, d(-, )
describes the cosine similarity function, € is a
threshold for connection between nodes. x; is the
word embedding of each node. Following previous
work (Qin et al., 2020), Glove (Pennington et al.,
2014) has higher performance than the pre-trained
language model, and we use Glove to initialize
word embeddings. The representation of a sentence
is obtained by averaging its word embeddings.

4.3 Graph Encoder

The ontology can be represented as a directed at-
tribute graph. Identically, the text descriptions of
relations can be represented as an undirected graph.
Our goal is to obtain the representation of unseen
relations based on other seen nodes (concepts, prop-
erties and textual descriptions) in different graphs.
Therefore, we encode ontology and textual graphs
by graph neural network (GNN).

In the textual graph G;, the weight w;; of each
edge is the similarity between nodes. We con-
sider the commonly used graph attention network
(Velickovié et al., 2017), but the attention value is
replaced by edge weight w. The process as follow-
ing:

l
U =o(>7 wiyWihl ; + Whh,) ()
JEN;
where h(lH) € R?. The o is sigmoid activation

function. Wls is GAT weight. N; denotes neigh-
bor nodes of i. And the h! for each node come
from pretrained word embedding. To overcome the
over-smooth problem of node representations, we
add self-loop encoding for nodes. Wé is self-loop
weight.

Similarly, ontology graph is directed graph, and
each edge has its own type. We are inspired by
RGCN (Schlichtkrull et al., 2018), a GNN model
for relational (directed and labeled) multi-graph.
To obtain the representations of concepts and prop-
erties, we use RGCN to get the representation of on-
tology nodes by aggregating neighborhoods nodes
through different meta-relations, as follow:

h); = e.E, 4)

1
bV = ReLU(Y 3 —W'h)
rER, JENT Cirr 5)

W)

hgjl) Norm, Layer(h(Hl)) (6)
where e, € &, is node in ontology graph. h(l+1)
R? is hidden state of ontology node ho,; in the [-th
layer, and d is dimension of layer’s representation.
N denotes the set of neighbor indices of node ¢
under meta-relation r, € R,. WS}) is relation pa-
rameters of meta-relation  which weight for node
¢ neighboring node in [-th layer. W((]l) is self-loop
weight for encoding self-node features. ¢; , is a
normalization constant that can either be learned
or chosen in advance. ReLU is the activation func-
tion. We also use layer normalization to speed the
training.

4.4 Decoupling Mixture of Graph Experts

We obtain the effective representation of the re-
lation r from ontology space and textual space
for the triple involving unseen relations and alle-
viate the overfitting on seen relations. For each
factual triple (h,r,t), we can find ontology rep-
resentation (h,, 7o, t,) and textual representation
(h¢, 14, t¢) from their space. We leverage adding op-
eration to fuse two graphs information in another
space, as show in:

x;, = hf'W, + hf'w, (7)
x, = rbW, +rtw, (8)
x; = t'W, + tf'w, )

where W, is transformation matrix, it transforms
the multi representations into the fusion-aware
space.

Based on the previous representations, we de-
sign aggregating strategies with mixture-of-graph
experts to represent relations. Recently, the mixture
of experts (Jordan and Jacobs, 1994; Shazeer et al.,
2017; Fedus et al., 2021) has been widely used to
capture features by different experts’ views, and it
can efficiently merge different features. For differ-
ent knowledge roles (head, relation, tail), MoG can
capture each role representation through ontology
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and textual space. We define different expert net-
works Ey,, B, E; for the head, relation, tail, and a
gating network M, proceeding as follows:

(10)

1D

The expert networks and gating network are single-
layer MLPs, and same dimension between input
and output for expert networks. analyze the three
roles individually and then vote to obtain the over-
all result.

After those processes, the representation r con-
tain multiple information, but it still need to be put
in fusion space V;. We operate a inverse transfor-
mation to pull r back to reasoning space V,. from
fusion space V7, as follows:

r=rw/ (12)
where Wg transpose of a linear map, and we define
W}; as square matrix to simplify calculations. It
can be learned to satisfy two space bilinear forms,
as follows:

W, = min E L(hi,rit;)
WpiVr— V5

wWlive—vy

13)

where N is seen dataset.

Following previous KGE models, we train our
model with the margin-based ranking loss, and use
a negative sampling loss function for effectively
optimizing ranking loss :

L=- lOgO'(’Y - f(hWEa r, tWE))

-3 %loga(f(
=1

hWE 1, ttWF) — 5)
(14)

where W indicates entity embedding, ~ is a
fixed margin value, o is the sigmoid function, and
(h%,r t}) is the corresponding negative triple. The
loss function can sample multiple negative triples
for each positive triple at one minibatch.

S Experiments

We conduct extensive experiments with KGC task
on several public datasets, and mainly evaluate the

performance of the proposed framework on zero-
shot relational learning. We also verify the pro-
posed decoupling strategy to prevent overfitting on
seen relations. To directly demonstrate the effec-
tiveness of our method, we show a visualization of
seen and unseen relations.

5.1 Dataset

We select datasets from four public knowledge
graphs, DBpedia, NELL, and Wikidata, to evaluate
models on unseen relation learning. The current
benchmark datasets contain only factual graph and
not ontology graph. Therefore, we extract ontology
from their origin websites!?. Generally, we col-
lect series ontology: DBpedia have human-created
high-quality ontology, their have 17,663 triples,
7,966 nodes and 8 meta-relations. The ontology of
NELL has 1,494 nodes, 6,907 triples and 14 meta-
relations (e.g. antisymmetric, mutexpredicates). It
should be noted that Wikidata has no official on-
tology, we collect 20,899 triples including 8,907
nodes and 604 meta-relations (e.g. instance of
(P31), see also (P1659)) as their ontology from
the released dump data 3.

Current zero-shot relational benchmarks focus
entirely on inference on unseen relations. However,
the seen and unseen relations should be be con-
sidered together. It requires that the model must
be effective for seen relations and maintain un-
seen relation performance. Therefore, we propose
DB100K-ZS from DB100K, which contains 383
seen relations and 77 unseen relations. We move
77 relations from training set to testing set based
on DB100K. We select relations by frequency of
appearing k, k > 60 and £ < 300. Finally, we
get training triples 540,570, seen validation triples
45,357, and seen testing triples 45,282 and unseen
testing triples 13,420.

5.2 Evaluation Metrics

Triples in training data are utilized to learn KGE
model, while those of validation and test dataset
are respectively used to tune (hyper-parameters se-
lection) and evaluate the model. The most typical
KGC task is link prediction which aims to predict
the missing h or ¢ for a triple (h, r,t). We follow

"https://www.dbpedia.org/resources/
ontology/

http://rtw.ml.cmu.edu/resources/
results/08m/NELL.08m.1115.0ontology.csv.
gz

‘https://www.wikidata.org/wiki/
Wikidata:Database_download
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Model NELL-ZS Wiki-ZS DB100K-ZS
UNSEEN UNSEEN UNSEEN SEEN
MRR H@10 MRR H@10 MRR H@10 MRR H@10
DistMult 23.50 32.60 18.90 23.60 4.61 9.12 9.23 20.17
TransE 9.70 20.30 5.30 11.90 2.24 7.41 14.87 40.14
GRL(TransE) (Zhang et al., 2020) - - - - 5.15 13.12 15.12 41.51
ZSGANga(DistMult) (Qin et al., 2020) 25.30 37.10 20.80 29.40 - - - -
ZSGANga(TransE) (Qin et al., 2020) 24.00 37.60 18.50 26.10 - - - -
OntoZSL(DistMult) (Geng et al., 2021) 25.60 38.50 21.10 28.90 - - - -
OntoZSL(TransE) (Geng et al., 2021) 25.00 39.90 18.40 26.50 - - - -
DMoG(DistMult) 25.81 3841 19.12 28.86 10.33 2391 14.51 35.18
DMoG(TransE) 30.49 49.11 23.18 31.13 23.31 40.79 27.37 52.07

Table 1: Zero-shot relational learning results on NELL-ZS, Wiki-ZS and DB100K-ZS. SEEN is that relation of
triples exist in training. UNSEEN is that relation of triples only in testing. Bold numbers denote the best results.

the setting (Sun et al., 2019) and create the query
(h,r,7), and then find the ranking entities assigned
by our proposed method and other KGE methods.
We also apply bi-direction prediction that evaluate
query (h,r,?) and (?,r,t) for a test triple. The
mean reciprocal rank (MRR) is computed as:

1 1 1
( + )
2N7est (h,r,tz)E:Test MR(h,r,?) MR(?,r,t)
5)

5.3 Implementation Details

In our experiments, we adopt the following KGE
methods because of their effectiveness on link pre-
dictions. Our codes are based on (Sun et al., 2019)
and adopt the PyTorch (Paszke et al., 2017) frame-
work. For graph encoder, we used the implemen-
tation in the deep graph library (DGL). The initial
word embedding is from GloVe (Pennington et al.,
2014) and we set a similar threshold ¢ to 0.85. The
entity embedding size is set to 100 for all KGE
models. The GNN hidden size is set to 100, the
number of layers is set to 2, and use self-loop for
each node. We selected the hyperparameters cor-
responding to learning rate and batch size from
{0.0001, 0.0005, 0.001} and {128, 256, 512, 1024}.
And we use Adam to optimize all the parameters.

5.4 Results

The unseen relations denote that relation of the
triples are in the test set, but they do not appear in
the training set. Previous KGE models are trans-
ductive inference methods, and cannot deal with
those relations. Table 1 shows the experimental
results on NELL-ZS, WiKi-ZS and DB100K-ZS.
The testing set of NELL-ZS and WiKi-ZS are all

unseen relations (Qin et al., 2020), DB100K-ZS
mix seen and unseen relations. Apparently, the
newly constructed DB100K-ZS is more suitable
for real-world applications.

To verify our method for unseen relation learn-
ing, we chose the latest proposed models for com-
parison. The GRL (Zhang et al., 2020) is the
classifier-based method and hard to solve massive
unseen relation. ZSGAN (Qin et al., 2020) and
OntoZSL (Geng et al., 2021) always generate a
representation for relation, therefore it cannot to
keep traditional KGE methods performance in the
seen dataset, and they do not work in DB100K-ZS.

From Table 1, our method performs better than
other comparative methods in all evaluation met-
rics and on all three datasets. Our method in-
creases MMR and Hits@10 by 3.86% and 6.15%
for the previous state-of-the-art zero-shot method
on NELL-ZS and Wiki-ZS. And our method can
deal with seen and unseen relations at same time.
For DB100K-ZS, DMoG not only improves the
performance of unseen relations but goes beyond
the base model on seen relations. We believe that
the proposed model is more suitable to real world
applications. In fact, Graph encoder effectively
represents nodes from ontology graph and textual
graph. And DMoG fully mixes different roles to
extract the representation of unseen relations. The
decoupling alleviates overfitting in training. The
above three reasons are the key factors for our ap-
proach to achieve better results. In addition, our
method could apply to any conteined in the ontol-

ogy.
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Figure 3: Hist@10 for seen (a), unseen (b) and all (c) relations performance in different training step. The red start
denote the best performance of model in seen relations, and it still marks the same step in seen and all relations
performance. In each figure, the single denote directly adding two representations. The double denote proposed
decoupling strategy methods to separate the representations in different spaces. The concat denote concatenated two

representations.

5.5 Alleviate Overfitting Experiment

In our setting, model trained by seen relations
triples and can not get any information of unseen re-
lations during training. And, we take early stopping
through seen relations triples performance. The red
star marks best checkpoint in seen performance
but not all performance. As seen relations perfor-
mance increases the unseen relations performance
become lower, as show in Figure 3 (a, b). The
reason is that model fit seen relations data and far
away unseen relations latent representation. There-
fore, we propose methods, which decouple fuse
space and reasoning space, to alleviate the overfit-
ting on seen relations. As show in Figure 3 (b), our
method could make unseen performance decline
more slowly compared to single space methods.
While, our method harms seen performance little,
due to its excellent unseen performance, it still has
the best performance on whole seen+unseen per-
formance, as show in Figure 3 (c).

unseen unseen
seen seen

(a) TransE (b) DMoG(TransE)

Figure 4: Visualization for relation representations of
DB100K-ZS testing set via t-SNE.

Model DB100K-ZS
UNSEEN SEEN
MRR H@10 MRR H@10
TransE 224 741 1487 40.14
DMoG-T(TransE) 15.92 30.10 20.17 44.16
DMoG-O(TransE) 21.12 37.13 2596 51.10
DMoG(TransE) 23.31 40.79 27.37 52.07

Table 2: The table shows the ablation experiment for
using different information. “-T” denote only textual
graph. “-O” denote only ontology graph.

5.6 Visualization of Relation Representations

In Figure 4, we show the visualization of relation
representations via t-SNE. As show in Figure 4 (a),
TransE can not represent unseen relations effec-
tively, the unseen relation embeddings crowded in
a cluster, which separate away seen relations space.
However, our method can fully represent seen and
unseen relations, the relation representations uni-
formly distributed in the same space, as show in
Figure 4 (b).

5.7 Ablation Experiment

In order to further evaluate the effect of each mod-
ule of the model, we design an ablation experiment
for different graphs. As shown in Table 2, we can
see that both ontology and textual graphs are help-
ful to KGC. DMoG enhances relations representa-
tion quality by fusing ontology and textual graph
compared to single information. Further analysis
showed that ontology graph is better than textual
graph, formal language describe knowledge more
accurately than natural language.
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6 Conclusion

Our paper focuses on unseen relation representa-
tions of knowledge graph. We propose to utilize
three different kinds of graphs to obtain represen-
tations of relation. And decoupling strategy allevi-
ates the overfitting in training process. Experimen-
tal results demonstrate that our method significantly
outperforms the existing state-of-the-art method on
unseen relation learning.
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