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Abstract

Driven by recent advances in neural networks,
various Deep Embedding Clustering (DEC)
based short text clustering models are being
developed. In these works, latent representa-
tion learning and text clustering are performed
simultaneously. Although these methods are
becoming increasingly popular, they use pure
cluster-oriented objectives, which can produce
meaningless representations. To alleviate this
problem, several improvements have been de-
veloped to introduce additional learning objec-
tives in the clustering process, such as models
based on contrastive learning. However, exist-
ing efforts rely heavily on learning meaning-
ful representations at the instance level. They
have limited focus on learning global repre-
sentations, which are necessary to capture the
overall data structure at the cluster level. In this
paper, we propose a novel DEC model, which
we named the deep embedded clustering model
with cluster-level representation learning (DEC-
CRL) to jointly learn cluster and instance level
representations. Here, we extend the embedded
topic modelling approach to introduce recon-
struction constraints to help learn cluster-level
representations. Experimental results on real-
world short text datasets demonstrate that our
model produces meaningful clusters.

1 Introduction

Short Text Clustering has gained increasing atten-
tion in many real-world applications, such as event
discovery (Atefeh and Khreich, 2015), spam detec-
tion (Wu and Liu, 2018), and sentiment analysis
(Paltoglou and Thelwall, 2012). Unlike long texts,
which can be represented as, for instance, term
frequency inverse-document-frequency (TF-IDF)
vectors in the clustering task, short texts cannot
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be encoded in the same manner. This is because
the vector representation of short texts is highly
sparse, making it difficult to measure the similarity
between two sets of short texts (Xu et al., 2017).
With this observation, deep clustering methods are
being developed to encode raw short texts into la-
tent representational space using neural networks
and to detect clusters based on the learned repre-
sentations. Deep clustering methods generally fall
into two categories: the two-stage methods and the
deep embedded clustering (DEC) methods. The
two-stage methods (Zakaria et al., 2012; Tian et al.,
2014; Vincent et al., 2010) assign data samples to
different clusters after latent representations are
learned and fixed, while the DEC methods (Xie
et al., 2016) simultaneously learn latent representa-
tions and discover clusters via end-to-end training.
Different from the two-stage methods, the DEC
methods explicitly define the cluster-oriented loss
to jointly map raw data into latent representations
and acquire cluster assignments.

As discussed in (Jiang et al., 2016; Xie et al., 2016;
Aljalbout et al., 2018), significant improvement in
clustering performance can be achieved by learn-
ing better representations of texts. However, it has
been increasingly found that purely cluster-oriented
loss driven methods tend to generate meaningless
representations (Guo et al., 2017). The semantic
meaning of raw data cannot be preserved in the
latent space, which would, in turn, deteriorate the
performance of clustering. To tackle this problem,
sequence-to-sequence (seq2seq) based reconstruc-
tion models have been widely used to learn general
representations from texts in an unsupervised man-
ner. For example, (Kiros et al., 2015) generated the
text representations by predicting the context sen-
tences of a given sentence. The work in (Brahma,
2018) learned text representations by predicting
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multiple future sentences based on the seq2seq
model. Recently, instance-wise contrastive learn-
ing has achieved remarkable success in representa-
tion learning by adopting the contrastive loss along
with the cluster-oriented loss (Li et al., 2021; Tsai
et al., 2020; Van Gansbeke et al., 2020; Zhang et al.,
2021). However, the aforementioned methods fo-
cus on optimizing the representation at the instance
level. For example, the contrastive learning-based
methods heavily rely on the instance discrimination
(Li et al., 2021) such that their learning objectives
(i.e. instance-wise loss) do not perfectly align with
the ultimate goal of clustering. In the clustering
task, the final clustering performance heavily re-
lies on learning representations which are capable
of reflecting the overall semantic structure of data.
Instance-level representation learning methods can-
not guarantee that the structure of data can be easily
obtained through clustering.

In this paper, we aim to develop a novel DEC
method which learns cluster-level as well as
instance-level representations to better capture the
semantic data structure for clustering. In our ap-
proach, the cluster-level representations are defined
as the representations of cluster centres. Different
from the SCCL model (Zhang et al., 2021) which
learns centre representations without imposing any
direct constraints, we adopt the reconstruction con-
straints (Ma et al., 2019) to encode the whole set of
raw texts into latent representations of cluster cen-
tres and then use these centre representations to re-
construct the text data. As reconstructing the whole
dataset from a limited number of cluster-level rep-
resentations is quite challenging, we designed a
cluster-level representation learning (CRL) module
to help the representations of cluster centres partici-
pate in the process of reconstructing input instances.
More specifically, we extend the idea of embedded
topic modelling (ETM) (Dieng et al., 2020) to re-
construct words from the representations of topics
in latent space. The representations of cluster cen-
tres will be integrated into the topic representations,
which will then be learned by optimizing both ETM
guided reconstruction and clustering objectives.

Our proposed model, named as deep embedded
clustering model with cluster-level representation
learning (DECCRL), consists of three modules:
an instance-level encoding module that maps the
original data inputs into latent representations; a
cluster selection module that generates cluster la-

bels; and a CRL model that learns the cluster-level
representations through reconstruction. Our main
contributions are summarized as follows:

• We develop a novel deep embedded cluster-
ing method to learn cluster-level as well as
instance-level representations to better cap-
ture the data structure.

• We extend the idea of embedded topic mod-
elling to impose reconstruction constraints to
the cluster-level representations.

• The experimental results show that our
method achieves the best clustering perfor-
mance compared with current state-of-the-art
short text clustering methods.

In the remainder of this paper, we first summarize
related works in Section 2. We formulate the prob-
lem and explain our DECCRL model in Section 3.
The experiments are introduced in Sections 4 and
5 and the paper is concluded in Section 6.

2 Related Work

2.1 Deep Embedded Clustering

Deep clustering (Xie et al., 2016; Wu et al., 2019)
applies deep neural networks to transform raw in-
puts into latent representations, based on which
clustering is performed. Traditional approaches
derive latent representations first, and then clus-
ters are detected (Zakaria et al., 2012; Tian et al.,
2014; Vincent et al., 2010). However, latent rep-
resentations learned by these approaches are not
cluster-oriented in that they are learned before hand.
The deep embedded clustering (DEC) methods are
then developed to simultaneously generate latent
representations and cluster assignments through
the end-to-end training (Dosovitskiy et al., 2015;
Caron et al., 2018; Asano et al., 2019; Ghasedi
et al., 2019; Yang et al., 2020).

However, methods that purely depend on the
cluster-oriented loss cannot well preserve the local
structure of raw data and are likely to generate cor-
rupted latent space (Guo et al., 2017). To address
the above-mentioned problem, researchers recently
introduced extra reconstruction modules along with
the clustering model. For example, to cluster im-
ages, Jiang et al. (2016); Madiraju (2018); Yang
et al. (2019) adopted auto-encoders to learn latent
representations and simultaneously perform clus-
tering using the latent representations from auto-
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Figure 1: The overview of the proposed deep embedded clustering model with cluster-level representation learning
(DECCRL). It contains three components: an instance-level encoding module, a cluster selection module and
a cluster-level representation learning module based on the embedded topic modelling. Some key variables are
described as follows: c1:K contains embeddings of cluster centers; αk refers to embeddings of topics in the k-th
cluster; θi represents topic proportions of the i-th input text; ρ contains word embeddings of the vocabulary; βk is
the distribution over the vocabulary for topics within the k-th cluster.

encoders. To cluster time-series data, Ma et al.
(2019) leveraged a seq2seq model to guide the gen-
eration of latent representations. To cluster text
data, Zhao et al. (2021) utilized the idea of data re-
construction to reconstruct data in the latent space
only other than the original space. In the same time,
there are many seq2seq models have been used to
assist text data clustering like (Kiros et al., 2015)
generated the text representations by predicting the
context sentences of a given sentence and the work
in (Brahma, 2018) learned text representations by
predicting multiple future sentences based on the
seq2seq model.

2.2 Neural Topic Modelling in Various NLP
tasks

With the development of neural networks, there has
been a surge of methods that seek to combine deep
neural networks with probabilistic topic models
(Srivastava and Sutton, 2017; Cong et al., 2017;

Zhang et al., 2018). Most of these methods used
amortized inference and variational auto-encoder
to reduce the dimension of the input data (Rezende
et al., 2014; Dieng et al., 2020). For example, ETM
(Dieng et al., 2020) is a neural topic model that
uses word embeddings from Word2Vec (Mikolov
et al., 2013). Neural topic modelling is not only
used to learn hidden topics from a collection of
texts, but has also been increasingly used to assist
other NLP tasks. For example, See et al. (2017);
Ailem et al. (2019); Wang et al. (2020) combined
seq2seq models with topic models in the abstract
generation task. (Dieng et al., 2016) incorporated
topic modelling with the recurrent neural network
to capture the long-range dependencies. Zeng et al.
(2018); Wang and Yang (2020) integrated NTM
with a memory network for short text classification.
Tang et al. (2019); Wang et al. (2019) used neural
topic modelling to assist text generation. Our work
aims to improve clustering by incorporating ETM.
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3 Method

The overview of the proposed deep embedded clus-
tering model with cluster-level representation learn-
ing (DECCRL) is shown in Figure 1. It contains
three components: an instance-level encoding mod-
ule, a cluster selection module and a cluster-level
representation learning module (CRL) based on
the embedded topic modelling. The instance-level
encoding module generates the latent representa-
tions of texts; the cluster selection module takes
the outputs of the encoding module as the input to
generate the cluster assignments; CRL attempts to
optimise the overall structure of data by connecting
the latent representations of cluster centres with the
embedded topic model. More detailed descriptions
of our method will be provided in the following.

3.1 The Instance-level Encoding Module

In the instance-level encoding module, we aim to
generate optimised instance-level representation
by contrastive learning. Suppose the inputs of
the encoding module include: the original texts
B = {xi}Mi=1 and its corresponding augmentation
set Ba = {(x̃i1 , x̃i2)}

M
i=1, where xi is a sample

of input texts, M is the number of samples, and
(x̃i1 , x̃i2) contains augmented versions of xi to
enable contrastive learning. We will apply the
Contextual Augmenter (Kobayashi, 2018), which
utilizes the pre-trained transformer-based models
to find suitable words for synonym substitution
(Kobayashi, 2018): Bertbase (Devlin et al., 2018)
and Roberta (Liu et al., 2019) are used for generat-
ing x̃i1 and x̃i2 , respectively.

As shown in the lower left part of Figure 1, a lan-
guage model followed by a fully connected neural
network FCe are used to map the data from the
original space X to latent space H. Here, Sentence-
BERT (Reimers and Gurevych, 2019) is chosen as
the language model since it has fine-tuned BERT
(Devlin et al., 2018) for better measuring sentence
similarities which would suit short text clustering.
The outputs of the encoding module can be repre-
sented as:

hi = FCe(SentenceBERT (xi)),

h̃ij = FCe(SentenceBERT (x̃ij )),

i ∈ {1, ...,M}, j ∈ {1, 2}.
(1)

In order to optimise instance-level representations
in latent space, we follow the work in (Zhang et al.,

2021) and introduce the same contrasting module to
DECCRL for leveraging the power of contrastive
learning. For any xi in B, we refer to its aug-
mented versions, x̃i1 and x̃i2 in Ba, as the positive
pair, while treating the other elements in sample
pairs of Ba as negative instances. The contrasting
module adopts fully connected neural networks to
transform latent representations h̃ij into ṽij .

The contrastive loss is defined to make the positive
samples closer and negative samples further apart
from each other as follows:

lCL
i1 = −log

exp(sim(ṽi1 , ṽi2)/τ)∑M
m=1 1m̸=i · exp(sim(ṽi1 , ṽm2)/τ)

,

(2)

lCL
i2 = −log

exp(sim(ṽi2 , ṽi1)/τ)∑M
m=1 1m̸=i · exp(sim(ṽi2 , ṽm1)/τ)

,

(3)
where 1m ̸=i is an indicator function, τ denotes
the temperature parameter, and sim(.) measures
the cosine similarity between two vectors (Chen
et al., 2020). The contrastive loss averaged across
samples is:

LCL =

M∑
i=1

(lCL
i1 + lCL

i2 )/M. (4)

3.2 The Cluster Selection Module
The cluster selection module is designed to assign
each data sample to a certain cluster as shown in
the upper left of Figure 1. Assume there are K
clusters, where each cluster can be characterized
by its centroid ck for k ∈ {1, ...,K} in the latent
space H. Following the approach developed in
Van der Maaten and Hinton (2008); Zhang et al.
(2021), we calculate the probability of assigning
the i-th input text xi to the k-th cluster based on
the Student’s t-distribution as follows:

oik =
(1 + ∥hi − ck∥22 /α)

−α+1
2∑K

k′=1
(1 +

∥∥hi − ck′
∥∥2
2
/α)−

α+1
2

, (5)

where α is the degree of freedom of the Student’s
t-distribution, and hi is the latent representation of
xi generated by the instance-level encoding module
using Eq (1). A softmax layer is then used to
normalize oik as:

si = softmax([oi,1; ...; oi,K ]), (6)
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from which the cluster assignment of the i-th text
sample can be sampled.

To optimize the estimation of the centroid ck for
each cluster, we utilize an auxiliary probability tik
as discussed in Xie et al. (2016):

tik =
o2ik/fk∑
k′o

2
ik/fk′

, (7)

where fk =
∑M

i=1oik is the soft cluster frequency.
To make the cluster assignment probability close
to the auxiliary probability, we will minimize the
KL divergence between them, which is defined as:

lCi =
K∑
k=1

tiklog
tik
oik

, (8)

The cluster-oriented loss averaged across M sam-
ples is:

LCluster =
M∑
i=1

lCi /M. (9)

3.3 The Cluster-level Representation
Learning Module

In order to optimise the cluster-level representa-
tions by reconstructing, the cluster-level represen-
tation learning module (CRL) extend the idea of
the embedded topic modelling (ETM) to recon-
struct words from cluster center representations.
The representations of cluster centroids ck for
k ∈ {1, ...,K} obatined from the cluster selection
module are used to generate latent representations
of topics, from which the text data can be recon-
structed. As shown in the right part of Figure 1, the
CRL has two main parts: the generative part and
the inference part, which will be explained in detail
in the following paragraphs.

3.3.1 The Generative Part
Suppose L is the embedding length of vectors in
the latent space H. Let us denote the embeddings
of words obtained from Word2Vec (Mikolov et al.,
2013) as ρ = [ρ1, ...,ρV ], where ρv ∈ R2L is for
the v-th word and V is the vocabulary size. The
embedding of each topic t from the cluster k is
represented as αt

k ∈ R2L. In our model, the em-
beddings of topics from each cluster k are related
to the cluster centroid ck as follows:

αt
k = FCg(ck ⊕ ut) for t ∈ {1, .., T}, (10)

where T is the total number of topics, FCg is a
fully connected neural network, ut ∈ RL is a train-
able vector, and ⊕ is the concatenation operator.
Using αk = [α1

k, ...,α
T
k ] and ρ, the distribution

over the vocabulary for topics within the k-th clus-
ter can be obtained from:

βk = softmax((ρ)′αk), (11)

where (.)′ is the matrix transpose operator, and
βk ∈ RV×T is a collection of simplexes achieved
by computing the semantic similarity between top-
ics and words.

For the i-th text, its topic proportions θi, indicating
the prevalence of different topics in the text. Let
wi,n denote the n-th word in the i-th text, whose
topic assignment zi,n is assumed to be drawn from
zi,n ∼ Cat(θi), where Cat(.) denotes the categor-
ical distribution. With zi,n and βk, the probability
of observing wi,n is then:

p(wi,n|βk, zi,n) = Multi(β
zi,n
k ), (12)

where Multi(.) is the Multinomial distribution and
β
zi,n
k is the zi,n-th column of βk. Then, the log

marginal likelihood of observing the i-th text can
be represented as:

log p(wi,n|x̂i) =
∑
zi,n

log p(wi,n|β
zi,n
k )p(zi,n|x̂i)

= logβkθi,
(13)

where θi = softmax(x̂i), and x̂i will be approxi-
mated from the BoW form of original text xi as to
be explained in the following paragraphs.

3.3.2 The Inference Part
Let us define the approximated distribution of x̂i as
q(x̂i|xbow∗

i ), where xbow∗
i is the normalized repre-

sentation of BoWs data xbow
i . In the inference part,

xbow∗
i is first passed through a fully connected neu-

ral network to get its latent representation, which
is then fed into two parallel fully connected neural
networks to get two vectors: µi and σi. By treating
µi and σi as the mean and standard deviation, x̂i

can be sampled from:

x̂i = µi + ϵ · σi, (14)

where ϵ ∈ N (0, I). In our CRL, we choose the
negative evidence lower bound as the cluster-level
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representation loss:

LRC = −Eq(x̂i|xbow∗
i )[

Ni∑
n=1

log p(wi,n|x̂i)]

+DKL[q(x̂i|xbow∗
i )||p(x̂i)],

(15)
where Ni is the number of words in the ith text,
and p(x̂i) is the prior distribution of x̂i, assumed
to be normally distributed.

To train our model, the overall optimization objec-
tive is defined as:

L = LCL + λc ∗ LCluster + λr ∗ LRC , (16)

where λc and λr are the weights of LCluster and
LRC , respectively.

4 Experimental Setup

4.1 Dataset

We evaluate our model using three benchmark
datasets. Table 1 briefly summarizes them with
some details elaborated as follows.

• AgNews is a collection of news titles (Zhang
and LeCun, 2015). In our experiment, we
use a subset version from (Rakib et al., 2020),
which contains 8,000 documents from four
different categories. For performance evalu-
ation, 6,400 documents are used for training
while 1,600 documents are used for testing.

• StackOverflow is a subset of the challenge
data released by Kaggle1. This dataset con-
tains 20,000 documents, which can fall into
20 different categories (Xu et al., 2017). For
model training and testing, 15,084 and 4,916
documents are used respectively.

• Biomedical is the challenge data published in
BioASQ2. The version provided by Xu et al.
(2017) is used in our experiment, which con-
tains 20,000 paper titles from 20 categories.

4.2 Baseline

• BoW & TF-IDF (Zhang et al., 2021) together
with the K-means clustering is used as a base-
line method, where the length of BoW or TF-
IDF vectors is set to 1,500.

1https://www.kaggle.com/c/predict-closed-questions-on-
stackoverflow/download/train.zip

2http://participants-area.bioasq.org/

• STCC (Xu et al., 2017) is a typical two-
step deep clustering method. It first used
Word2Vec (Mikolov et al., 2013) to embed
words in the original text. The resulting word
embeddings are fed into convolutional neural
networks to get latent representations. Then,
K-means is used to detect clusters using rep-
resentations obtained from the previous step.

• HAC-SD (Rakib et al., 2020) introduces iter-
ative classification to boost the performance
of clustering. It considers outlier removal to
generate outlier-free clusters for short texts.
The outlier removed data is used to train a
classification algorithm based on the cluster
assignments.

• SCCL (Zhang et al., 2021) is a state-of-the-art
deep embedded clustering method for short
texts, which leverages the power of contrastive
learning to improve clustering.

4.3 Settings

In our approach, we use the Adam optimizer
(Kingma and Ba, 2014) with the batch size of 200.
We choose distilbert-base-nli-stsb-mean-tokens for
SentenceBERT and set the maximum input length
to 32. Same as Zhang et al. (2021), we set α =
10.0 for the Biomedical dataset and α = 1.0 for the
other datasets. The temperature parameter used in
the contrasting module is 0.5. As used in the re-
cent works for short text clustering (Xu et al., 2017;
Rakib et al., 2020; Zhang et al., 2021), we adopt the
clustering accuracy (ACC) (Xie et al., 2016) and
the normalized mutual information (NMI) (Strehl
and Ghosh, 2002) to show the performance of clus-
tering models. For fair comparison, supervised
pre-trained models are not applied. Since most ex-
isting works have pre-defined cluster numbers and
reported results, we adopt this practice and follow
their training/test protocols stated in their paper.

5 Experimental Result

5.1 Clustering performance compared with
baselines

Table 2 shows the results of baseline methods along
with our model on 3 benchmark datasets. The ob-
servations can be summarized as follows. First, the
deep clustering methods, including STCC, SCCL
and DECCRL, outperform conventional clustering
methods which are based on BoW or TF-IDF for
feature extraction and k-means for cluster detec-
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Table 1: Summary statistics of three benchmark datasets.

Dataset # Docs # Training # Test # Words # Classes # Average Length
AgNews 8,000 6,400 1,600 21,063 4 23
StackOverflow 20,000 15,084 4,916 10,941 20 8
Biomedical 20,000 15,583 4,417 18,244 20 13

Table 2: The short text clustering results for three benchmark text datasets. Our result are averaged over five random
runs. The ACC and NMI values for baseline methods are directly obtained from (Zhang et al., 2021).

Models AgNews Dataset StackOverflow Dataset Biomedical Dataset
ACC NMI ACC NMI ACC NMI

BoW 27.6 2.6 18.5 14.0 14.3 9.2
TF-IDF 34.5 11.9 58.4 58.7 28.3 23.2
STCC - - 51.1 49.0 43.6 38.1
HAC-SD 81.8 54.6 64.8 59.5 40.1 33.5
SCCL(Zhang et al., 2021) 88.2 68.2 75.5 74.5 46.2 41.5
DECCRL 88.9 69.2 82.3 76.7 47.0 41.5

tion. HAC-SD, considering outlier removal, shows
better performance than conventional k-means clus-
tering approaches. Secondly, SCCL has shown
better performance than the other baseline models,
reflecting the need of introducing contrastive learn-
ing into the clustering models. More importantly,
our model outperforms all other baseline models
for all datasets, especially for the StackOverflow
Dataset. Compared with SCCL, our model has
achieved higher ACC and NMI values.

(a) (b)

Figure 2: The TSNE visualization of the latent represen-
tations for the StackOverflow dataset, where (a) is from-
SCCL and (b) is from DECCRL. Each color indicates a
ground-truth cluster category.

To further demonstrate the importance of introduc-
ing the CRL into the clustering model, we visualize
the distribution of samples from a random sub-
set of StackOverflow (n=4,916) using the t-SNE
(Van der Maaten and Hinton, 2008) visualization
algorithm. In Figure 2, samples are assigned to
different colours based on their ground-truth cate-

Table 3: The results of different representation guidance
strategies. AGN, SO and BIO refer to the AgNews,
StackOverflow and Biomedical datasets respectively.

Metric Model AGN SO BIO

NMI
Ours w/o CRL 59.2 74.0 28.0

Ours w/o CRL w LSR 62.3 74.5 31.2
Ours 69.1 76.7 41.5

ACC
Ours w/o CRL 81.5 78.8 29.4

Ours w/o CRL w LSR 83.9 81.2 31.3
Ours 88.9 82.3 47.0

gories, where the total number of categories is 20.
By comparing the results from SCCL and DEC-
CRL under the same settings as shown in Figure
2(a) and Figure 2(b) respectively, we can find that
our model were able to learn representations that
are more separable in the latent space. With this ob-
servation, it is more confident to predicate that the
representations generated from our model would
lead a better clustering results.

5.2 The influence of cluster-level
representation learning module

In this section, we investigate the performance of
different cluster-level representation learning strate-
gies, which are designed as follows:

• Ours w/o CRL – DECCRL without CRL.
The model learns cluster-level representation
without imposing any direct contraints.
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• Ours w/o CRL w LSR – Replacing the CRL
of DECCRL with a latent space reconstruc-
tion module (LSR). The L-dimensional la-
tent representations are fed into a deep neural
network, where an encoder generates L/2-
dimensional vectors and a decoder returns L-
dimensional vectors. The difference between
the inputs and outputs of this network is con-
sidered as an extra loss for model training.

Figure 3: Silhouette scores from different cluster-level
representation learning strategies during training pro-
cess.

Table 3 shows the ACC and NMI values from
modes with different cluster-level representation
learning strategies. By comparing the performance
of DECCRL with DECCRL w/o CRL, we find
that the CRL has greatly improved for all three
datasets. DECCRL w/o CRL w lSR, which con-
strains features at the latent level, has shown better
performance than DECCRL w/o CRL but no better
than DECCRL.

Without referring to the ground-truth labels of clus-
ters, we use a pure clustering metric, Silhouette
score (Rousseeuw, 1987), to investigate the per-
formance of different cluster-level representation
learning strategies during the training process as
shown in Figure 3. The results from Figure 3 and
Table 3 show that representations from all models
seem to return clusters of similar characteristics
(e.g., compactness and separation indicated by the
Silhouette score). However, without adopting the
proposed CRL, the learned representations cannot
well preserve semantic information contained in
the original text data such that the ACC and NMI
scores generated using other methods are not as
high as ours. Given the above observations, we

Table 4: Selected clusters and their corresponding rep-
resentative hidden topics.

Cluster Representative TopicsLabel
Topic1: [’terminal’, ’mac’, ’command’, ’stdin’]

osx Topic2: [’max’, ’os’, ’osx’, ’console’]
Topic3: [’file’, ’application’, ’set’, ’create’]
Topic1: [’data’, ’xml’, ’cell’, ’table’]

excel Topic2: [’excel’, ’list’, ’files’, ’worksheet’]
Topic3: [’file’, ’create’, ’application’, ’xml’]
Topic1: [’oracle’, ’db’, ’view’, ’connection’]

oracle Topic2: [’sql’, ’table’, ’data’, ’database’]
Topic3: [’file’, ’application’, ’data’, ’multiple’]

find that using embedded topic modelling to guide
the latent representation is a promising strategy.

5.3 Understanding clusters

This subsection shows that our embedded topic
modelling based CRL does not only improve the
clustering performance but can also be used to char-
acterize each cluster using learned topics. Table 4
shows topics learned from three representative clus-
ters from the StackOverflow Dataset whose cluster
labels are: ‘osx’, ‘excel’ and ‘oracle’. These labels
are the ground-truth labels provided by the dataset,
and indicate the meaning of each cluster at a coarse-
grained level. To check whether the learned topics
generated from our CRL are consistent with these
cluster labels, Table 4 shows some selected top-
ics (characterized by the top four key words) from
each cluster. We can find that the class labels can
be found as key words of topics. The learned topics
can provide more detailed understanding of clus-
ters. For example, for cluster ‘oracle’, its first topic
indicates that ‘oracle’ might be a ‘db’ (database)
having operations like ‘view’, ‘connection’ and
‘access’. Apart from these observations, different
clusters are also found to have topics with similar
meaning. For example, the third topics from three
clusters are all about ‘file’.

5.4 Clustering performance with different
topic numbers

We investigate the impacts of T (i.e. the total num-
ber of topics) on the clustering performance. Figure
4 (a) and (b) show the values of NMI and ACC for
the three benchmark datasets with the topic num-
ber T chosen from {1, 5, 10, 15, 20, 25, 30}. For
the BioMedical Dataset, we can see that the NMI
and ACC values become stable when T exceeds
20. Therefore, in the experiment for this dataset,
we set the topic number T = 20. For the AgNews
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(a)

(b)

Figure 4: The clustering performance in terms of (a)
NMI and (b) ACC with different topic number T .

and StackOverflow datasets, the highest NMI and
ACC values are obtained at T = 5. Thus, we set
the number of topics to 5 for these two datasets.

6 Conclusion

This paper proposes a deep embedded clustering
method for short text clustering by developing a
cluster-level representation learning module (CRL)
to capture the overall structure of data and hence
improve the clustering performance. Our model
comprises three main parts: the instance-level en-
coding, the cluster selection, and CRL. To show
the performance of our model, we utilize three
benchmark datasets. The clustering performance
has not only been quantitatively evaluated by ACC
and NMI values but are also qualitatively assessed
by case studies and visualization. The comparison
of different cluster-level representation strategies
shows the effectiveness of our CRL. The proposed

model is expected to be generalizable to meet vari-
ous text clustering challenges, not only limited to
short texts. In the future, we will extend our model
to capture dynamics changes of cluster centers that
might evolve over time, where dynamic ETM learn-
ing smooth trajectories of topic embeddings can
be considered. Another future research direction
is to adopt non-parametric Bayesian approaches
(e.g., Dirichlet process mixture model) to improve
our clustering model so that the exact number of
clusters does not need to be predefined.
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