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Abstract

Current text mining models are trained with 0-1
hard label that indicates whether an instance
belongs to a class, ignoring rich information
of the relevance degree. Soft label, which in-
volved each label of more varying degrees than
the hard label, is considered more suitable for
describing instances. The process of generating
soft labels from hard labels is defined as label
smoothing (LS). Classical LS methods focus on
universal data mining tasks so that they ignore
the valuable text features in text mining tasks.
This paper presents a novel keyword-based LS
method to automatically generate soft labels
from hard labels via exploiting the relevance
between labels and text instances. Generated
soft labels are then incorporated into existing
models as auxiliary targets during the training
stage, capable of improving models without
adding any extra parameters. Results of ex-
tensive experiments on text classification and
large-scale text retrieval datasets demonstrate
that soft labels generated by our method con-
tain rich knowledge of text features, improving
the performance of corresponding models un-
der both balanced and unbalanced settings.

1 Introduction

Instances in most text mining datasets are usually
assigned by one label. Such label, called hard label,
reflects the logical relationship between the label
and the instance. In most cases, hard labels are uti-
lized for training models that learn to discriminate
between classes with training objectives to maxi-
mize the log probability of the correct class. How-
ever, there are various real-world text mining tasks
where there are not just two possibilities whether an
instance belongs to a specific class since instances
may be involved with multiple labels of varying
degrees. In such scenarios, soft label (Bahri and
Jiang, 2021; Hong et al., 2022), which involves
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S1: It was nice. The cashier was chipper. Wish they wo-
uld crank the A/C a little more though. Restroom was a
little dirty.
Hard Label (1, 0)
Soft Label (0.6, 0.4)

Table 1: An instance of sentiment classification with
hard label and soft label. X denotes the label of being
positive, while Y denotes negative in (X, Y). Positive
and negative expressions are marked in red and blue,
respectively.

the explicit relative importance of each label, is a
more reasonable description of an instance. For
example, in the sentence S1 shown in the Table 1,1

though both positive and negative expressions exist
in the sentence and sentiment slightly inclines to
be positive, annotators must give a solid positive as
a hard label. The soft label (0.6,0.4) describes the
instance more comprehensively than hard labels.

Few works are investigating soft labels for text
data in the text mining community, although the
issue demonstrated in the above example is very
common. Existing works all focus on analyzing
the effectiveness of classical soft labels in universal
data mining tasks (Müller et al., 2019; Wu et al.,
2021; Nguyen et al., 2022). However, classical soft
labels cannot leverage useful text features in text
mining datasets. Meanwhile, in most text datasets,
soft labels are not explicitly available. Therefore,
automatically generating soft labels from hard la-
bels based on text data characteristics is a funda-
mental problem worth exploring.

The key to generate informative soft labels for
text instances is to exploit the semantic relevance
between instances and labels accurately. We are in-
spired by the fact that a set of highly representative
words can represent semantic information of labels
and instances (e.g., S1 in Table 1) (Spärck Jones,
1972, 2004), we present a Keyword-based Label
Smoothing method (KWLS), which primarily in-

1A sentence from Yelp Review dataset.
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volves four steps: (1) Keyword detection for labels,
which computes correlations between words and
labels; (2) Keyword detection for instances, which
calculates the saliency of a word to represent a
given instance; (3) Instance-label relevance detec-
tion, which determines the correlations between in-
stances and labels; (4) Soft label generation, which
generates soft labels for instances based on the
instance-label relevance. The generated soft labels
can be utilized as complementary targets during
the training stage, containing knowledge of label
correlation and introducing auxiliary supervision
information to improve models.

To verify the effectiveness of our method, we
conduct extensive experiments on the two most
typical application scenarios in text mining: text
classification and large-scale text retrieval. Experi-
mental results demonstrate that models equipped
with KWLS gain significant improvements over
the original models, especially in the highly un-
balanced large-scale text retrieval task (Liu et al.,
2021c). To further analyze the ability of KWLS to
deal with unbalanced problems, we construct var-
ious unbalanced datasets to simulate multifarious
unbalanced problems in text mining. Experimen-
tal results on different unbalanced settings show
that KWLS may bring extra supervised signals to
facilitate model learning.

Our main contributions are listed as follows:
1. Previous studies focus on leveraging label

smoothing on universal data mining tasks so that
they ignore the valuable text features in text min-
ing tasks. We propose a novel keyword-based LS
method (KWLS) that automatically generates soft
labels with rich knowledge of label correlation
from hard labels in text data.

2. Generated soft labels can be incorporated as
complementary targets, introducing auxiliary super-
vision information, capable of improving models
without adding any extra parameters.

3.Experimental results show that the knowledge
of label correlation characterized by KWLS is prac-
tical under balanced and unbalanced settings and
more suitable for text mining tasks than classical
label smoothing methods.

2 Related Work

Label smoothing, a form of output distribution reg-
ularization, prevents overfitting of a neural network
by softening the ground-truth labels to penalize
overconfident outputs (Li et al., 2020), has made

tremendous achievements in many data mining
fields. For example:

Müller et al. (2019) reveal that label smoothing
improves model calibration and summarize sev-
eral behaviors observed while training deep neural
networks with label smoothing.

Chelombiev et al. (2019) propose an improved
mutual information estimator based on binning
and show the correlation between compression of
softmax layer representations and generalization,
which may explain why networks trained with label
smoothing generalize so well.

The above works analyze the effectiveness of
classical label smoothing methods in various fields.
The two most classical label smoothing methods
are follows:

Szegedy et al. (2016) first introduced label
smoothing that improves accuracy by computing
cross-entropy not with the “hard" targets from the
dataset, but with a weighted mixture of these targets
with the uniform distribution, and many state-of-
the-art image classification models have incorpo-
rated label smoothing into training procedures ever
since.

Zhang and Sabuncu (2020) regard self-
distillation as a label smoothing method and pro-
pose a novel instance-specific label smoothing tech-
nique that promotes predictive diversity without the
need for a separately trained teacher model.

However, these two methods mentioned above
are proposed for universal data mining tasks so that
they cannot leverage the valuable text features in
text mining datasets. This paper proposes a KWLS
method explicitly designed for text mining, which
incorporates semantic relevance between labels and
instances into soft labels. Experimental results
demonstrate that our method is more suitable for
text data.

It is worth noting that the primary purpose of LS
is incorporating the possibility (or uncertainty) into
the original hard label to facilitate model perfor-
mances rather than generating the ground truth soft
labels.

3 Task Description and Formulation

Given a training set D = {(xi, li)|1 ≤ i ≤ N}
with N instances, xi is a sequence of words xi =
{w1, w2, ..., wn} where w1, w2, and wn are words
in the sentence and n is the length of the sequence.
The hard label vector of xi is denoted by li =
(l1i , l

2
i , ..., l

p
i ), where lji ∈ {0, 1} denotes whether
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label lj describes xi, where p is the total number
of labels. Our task is to generate the soft label di

of xi where di = (d1i , d
2
i , ..., d

p
i ) is a distribution

vector. The training set D is thus transformed into
E = {(xi,di)|1 ≤ i ≤ N} which is available for
further exploration.

The proposed KWLS method is introduced in
the following section.

4 Keyword-Based Label Smoothing

To represent labels and instances by a set of highly
representative words, we propose to first determine
keywords for instances and labels then calculate
correlations between them. Our method mainly
involves the following four components.

4.1 Keyword Detection for Labels
This section illustrates how to detect keywords
for each label. We propose to use Word-
Label Relevance (WLR) based on TF-IDF
(Term Frequency–Inverse Document Frequency)
(Spärck Jones, 1972, 2004) and BM25 (Robertson
et al., 2009) to estimate the importance of a word
to a label, which is decided by two factors: Word-
Label Weight and Word-Label Correlation.

Word-Label Correlation (WLC) based on TF
(Term Frequency) reflects the saliency of a word to
represent a given label. In traditional TF, if a word
frequently appears in instances of a given label, the
word will own a larger WLC to the label. However,
if a label contains 200 occurrences of “COLING”,
is it twice as relevant as a label containing 100
occurrences? We could argue that if “COLING”
occurs a large enough number of times, say 100, the
label is almost certainly relevant, and any further
mentions do not increase the likelihood of rele-
vance. According to the observation by Robertson
et al. (2009), when the word frequency becomes
larger, the WLC will grow slower. We define WLC
as follows:

WLCwj ,m =
fwj ,Xm ∗ k1
fwj ,Xm +K

,wj ∈ C,

K = k1 ∗ (1− b+ b ∗ Sm

Savg
)

Sm =
∑

xi∈Xm

|xi|

Savg =
1

p
∗

p∑
i

Si

Xm = {xi|xi ∈ X, lmi = 1}

(1)

where fwj ,Xm equals the number of times wj ap-
pears in Xm, Xm is the set where xi ∈ X and
lmi = 1, and C is the corpus. k1 is a positive hyper-
parameter, which is used to scale and control the
fwj ,Xm . If k1 is set to close to 0, then fwj ,Xm will
be ignored. If k1 is set to a large value, then the
WLCwj ,m is equal to fwj ,Xm . |xi| is the number
of words in xi, and Sm is the number of words
in Xm. Savg is the average number of words in
all labels. b is another hyperparameter to control
Sm to normalize word frequency, and 0 ≤ b ≤ 1.
When b is set to 1, the fwj ,Xm will be fully scaled
based on Sm. When b is set to 0, Sm is not taken
into account in normalization. WLCwj ,m is the
Word-Label Correlation between wj and the m-th
label.

Word-Label Weight (WLW) based on IDF (In-
verse Document Frequency) reflects the ability in
which a word can be used to discriminate different
labels. If a word occurs in every label, the word
will have a low WLW. In traditional IDF, if a word
occurs once in every label, the WLW of the word
will be set to 0. However, words can easily occur
in every label at least once, which will make most
of the words’ WLW be set to 0 unreasonably. So
that we modified the traditional IDF, and our WLW
can be calculated as follows:

WLWwj = log
p

sum(Fwj,L)
+ 1

Fwj,L = {Fwj ,l1 , ..., Fwj ,lm , ..., Fwj ,lp}

Fwj ,lm =


1, fwj ,Xm ≥ 1

0, fwj ,Xm < 1

(2)

where L = {l1, l2, ..., lp} denote the finite set
of labels and p is the number of possible labels.
WLWwj is the weight of wj to labels. Fwj,L is
a vector to represent whether wj occurs in labels,
where Fwj ,lm = 1 means the word wj occurs in the
m-th label. Finally, WLR is computed as follows:

WLRwj ,m = WLWwj ∗WLCwj ,m (3)

where WLRwj ,m is the Word-Label Relevance be-
tween wj and the m-th label.

4.2 Keyword Detection for Instances
This section illustrates how to detect keywords for
each instance. We propose to use Word-Instance
Relevance (WIR) to estimate the importance of
a word to an instance, which is decided by two
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factors: Word-Instance Weight and Word-Instance
Correlation.

Word-Instance Correlation (WIC) based on
TF reflects the saliency of a word to represent a
given instance. Similar to WLC, if a word fre-
quently appears in a given instance, the word will
own a larger WIC to the instance, and the corre-
lation between word frequency and WIC is also
nonlinear. We define WIC as follows:

WICwj ,i =
fwj ,xi ∗ k2
fwj ,xi + k2

, wj ∈ xi (4)

where fwj ,xi is the number of times wj appears
in xi. k2 is a positive hyperparameter, which is
used to scale and control the word frequency of
xi. WICwj ,i is the Word-Instance Correlation be-
tween wj and the xi.

Word-Instance Weight (WIW) based on IDF
reflects the ability in which a word can be used to
discriminate different instances. Similar to WLW,
WIW can be calculated as follows:

WIWwj = log
N

sum(Fwj,X)
+ 1

Fwj,X = {Fwj ,x1 , ..., Fwj ,xi , ..., Fwj ,xN }

Fwj ,xi =


1, fwj ,xi ≥ 1

0, fwj ,xi < 1

(5)

where X = {x1, x2, ..., xN} denote the set of in-
stances and N is the size of X . WIWwj is the
weight of wj to instances. Fwj,X is a vector to
represent whether wj occurs in instances, where
Fwj ,xi = 1 means the word wj occurs in the i-th
instance. Finally, WIR is computed as follows:

WIRwj ,i = WIWwj ∗WICwj ,i (6)

where WIRwj ,i is the Word-Instance Relevance
between wj and the i-th instance.

4.3 Instance-Label Relevance Detection
We propose Instance-Label Relevance (ILR) to
represent correlations between instances and labels,
which is calculated as follows:

ILRi,m =
1

Xavg

∑
wj∈xi

WLRwj ,m ∗WIRwj ,i

Xavg =
1

N

∑
xi∈X

|xi|

(7)

where Xavg is the average length of all instances.
ILRi,m is the relevance between the i-th instance
and the m-th label.

4.4 Soft Label Generation
After the ILR is computed, we generate the soft la-
bel by the softmax function (Elfadel and Jr., 1993):

di = Softmax(ILRi) (8)

4.5 Incorporating Soft Label
After soft labels are generated for each instance, we
incorporate soft labels as auxiliary fitting targets,
and the loss function can be defined as:

Loss = −
∑N

i=1

∑p
j=1[l

j
i log(o

j
i )−

α
p (d

j
i − oji )

2]

2N(1 + α)2

(9)
where oji is j-th dimension of i-th instance’s out-
put probability predicted by the model. α denotes
the loss weight of soft label during the training
stage. We use Mean Squared Error (MSE) as the
loss function for soft labels, where α denotes the
loss weight of soft label during the training stage.
When α is set to 0, the model degenerates into the
standard classifier.

5 Experiments and Results

5.1 Datasets
For text classification, the following four real-world
datasets are used in the experiment.

AG News consists of news articles from the
AG’s corpus of news articles on the web about the
four largest classes (Technology, Sports, Business,
and World). The dataset contains 30,000 training
and 1,900 testing examples for each class (Gulli,
2005; Del Corso et al., 2005).

DBpedia is a project aiming to extract struc-
tured content from the information created in the
Wikipedia project (Lehmann et al., 2015). The DB-
pedia ontology dataset contains 560,000 training
samples and 70,000 testing samples for each of 14
non-overlapping classes from DBpedia (Lehmann
et al., 2015).

IMDb is a binary sentiment analysis dataset con-
sisting of 50,000 reviews from the Internet Movie
Database (IMDb) labeled positive or negative. The
dataset contains an even number of positive and
negative reviews (Maas et al., 2011).

Yelp is a subset of businesses, reviews, and user
data for use in personal, educational, and academic
purposes (Zhang et al., 2015).
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DataSet Model Accuracy Model Accuracy Model Accuracy

AG News

BERT 94.08 TextCNN 88.88 LSTM 87.02
+ LS-Classic 94.17 + LS-Classic 89.37 + LS-Classic 87.93
+ LS-Distill 94.37 + LS-Distill 89.56 + LS-Distill 88.17
+ LS-TFIDF 94.42 + LS-TFIDF 90.11 + LS-TFIDF 90.13
+ KWLS 95.13 + KWLS 91.07 + KWLS 90.85

DBpedia

BERT 99.30 TextCNN 98.48 LSTM 98.71
+ LS-Classic 99.35 + LS-Classic 98.52 + LS-Classic 98.77
+ LS-Distill 99.40 + LS-Distill 98.63 + LS-Distill 98.80
+ LS-TFIDF 99.41 + LS-TFIDF 98.86 + LS-TFIDF 98.84
+ KWLS 99.65 + KWLS 99.12 + KWLS 99.13

IMDb

BERT 93.21 TextCNN 91.62 LSTM 91.03
+ LS-Classic 93.29 + LS-Classic 91.70 + LS-Classic 91.26
+ LS-Distill 93.47 + LS-Distill 91.76 + LS-Distill 91.36
+ LS-TFIDF 93.65 + LS-TFIDF 92.10 + LS-TFIDF 91.73
+ KWLS 94.26 + KWLS 92.43 + KWLS 92.55

Yelp

BERT 69.54 TextCNN 64.38 LSTM 64.03
+ LS-Classic 69.68 + LS-Classic 64.53 + LS-Classic 64.12
+ LS-Distill 69.70 + LS-Distill 64.76 + LS-Distill 64.27
+ LS-TFIDF 69.81 + LS-TFIDF 65.02 + LS-TFIDF 64.92
+ KWLS 70.08 + KWLS 65.89 + KWLS 65.68

Table 2: Experimental results of models with different targets in text classification datasets.

Metric BERT TextCNN LSTM
O C D T K O C D T K O C D T K

R@1 35.27 37.46 37.62 41.03 43.87 33.12 33.18 34.97 36.42 37.25 32.43 33.12 34.13 35.41 36.96
R@10 48.48 52.62 55.89 61.29 62.32 41.99 43.50 43.87 47.81 52.62 40.27 41.06 41.28 45.89 50.63
R@50 68.21 71.11 72.54 78.45 79.72 62.56 62.74 67.46 71.61 76.56 60.42 63.09 64.44 69.35 74.15
R@100 78.85 79.52 80.50 83.89 85.28 71.41 72.01 73.71 76.50 79.13 70.26 72.05 72.91 75.32 77.56

Table 3: Recall@k on the large-scale retrieval dataset. Numbers are in percentage (%). O, C, D, T, and K represent
the original model, LS-Classic, LS-Distill, LS-TFIDF, and KWLS separately.

For large-scale retrieval, we consider the Re-
trieval Question-Answering (ReQA) benchmark
proposed by Ahmad et al. (2019). The dataset we
selected is SQuAD, which is a reading compre-
hension dataset, consisting of questions posed by
crowd workers on a set of Wikipedia articles, where
the answer to every question is a segment of text,
or span, from the corresponding reading passage,
or the question might be unanswerable (Rajpurkar
et al., 2016). Each entry of this dataset is a tuple
(q, a, p), where q is the question, a is the answer
span, and p is the evidence passage containing a.
Following Ahmad et al. (2019), we split a passage
into sentences p = s1s2...sn. For a query q, we
need to retrieve the correct sentence from a candi-
date set consisting of sentences of all passages. A
query-sentence pair (q, s) is labeled as 1 if s is the
sentence containing the corresponding answer span
and labeled as 0 otherwise. This problem is more
challenging than retrieving the evidence passage
only since the larger number of candidates to be
retrieved.

For each dataset, we randomly split the train
sets into train/dev sets at the ratio of 3:1. The test

sets remain unchanged.2 We apply four-fold cross-
validation to do significance tests.

5.2 Baselines

Considering current text mining models can be split
into three types, RNN-, CNN-, and Transformer-
based models. We incorporate our method with the
following three models, which are existing repre-
sentative models widely used.

LSTM is the most widely used RNN-based deep
neural network in text mining tasks (Liu et al.,
2016).

TextCNN is the most famous CNN-based text
mining baseline proposed by Kim (2014).

BERT is the most representative Transformer-
based model in the text mining community (Devlin
et al., 2018).

We also compare our methods with three alter-
native label smoothing methods.

LS-TFIDF is a variant of our method in which
the soft label is generated based on TF-IDF.

LS-Classic is the most classical label smoothing
method proposed by Szegedy et al. (2016), widely

2Note that all LS methods are only used in the training set.
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DataSet Model Accuracy Model Accuracy Model Accuracy

AG News *

BERT 76.34 TextCNN 72.62 LSTM 72.06
+ LS-Classic 76.82 + LS-Classic 72.76 + LS-Classic 72.38
+ LS-Distill 76.92 + LS-Distill 72.84 + LS-Distill 72.81
+ LS-TFIDF 78.12 + LS-TFIDF 73.61 + LS-TFIDF 73.87
+ KWLS 79.94 + KWLS 74.45 + KWLS 74.04

DBpedia *

BERT 97.27 TextCNN 95.30 LSTM 95.28
+ LS-Classic 97.60 + LS-Classic 95.85 + LS-Classic 95.44
+ LS-Distill 98.14 + LS-Distill 96.04 + LS-Distill 95.53
+ LS-TFIDF 98.25 + LS-TFIDF 97.09 + LS-TFIDF 96.85
+ KWLS 98.41 + KWLS 97.21 + KWLS 97.35

IMDb *

BERT 50.02 TextCNN 48.73 LSTM 48.31
+ LS-Classic 54.10 + LS-Classic 50.59 + LS-Classic 50.89
+ LS-Distill 54.60 + LS-Distill 52.86 + LS-Distill 52.92
+ LS-TFIDF 56.31 + LS-TFIDF 55.49 + LS-TFIDF 55.14
+ KWLS 60.62 + KWLS 57.93 + KWLS 57.81

Yelp *

BERT 51.69 TextCNN 49.04 LSTM 48.19
+ LS-Classic 52.40 + LS-Classic 52.18 + LS-Classic 51.36
+ LS-Distill 54.52 + LS-Distill 53.07 + LS-Distill 52.48
+ LS-TFIDF 56.54 + LS-TFIDF 54.10 + LS-TFIDF 53.14
+ KWLS 58.81 + KWLS 56.91 + KWLS 56.43

Table 4: Experimental results of models with different targets in unbalanced text classification datasets. “*” denotes
the under-sampled thus unbalanced datasets.

used in computer vision and natural language pro-
cessing.

LS-Distill is another widely used label smooth-
ing method in which the soft label set as predicting
scores of the original model (Zhang and Sabuncu,
2020). This method is similar to self-distillation
process in born-again networks (Furlanello et al.,
2018) and widely used in knowledge distillation
(Hinton et al., 2015; Liu et al., 2021b).

5.3 Effectiveness in Text Classification

To explore the effectiveness of our LS method,
we conduct experiments to explore whether
our method can improve the CNN-based model
TextCNN, RNN-based model LSTM, and
Transformer-based model BERT. For all of the
above text classification tasks, we report the
classification accuracy over the test set. Table 2
demonstrates the results,3 from which we have
following five observations:

1. All CNN-, RNN-, and Transformer-based
models incorporating soft labels generated by all
LS methods as auxiliary targets gain improvements
over the original models in all tasks, which verifies
the intuition of label smoothing.

2. LS-Classic only gains minor improvements
over original models. The reason is that LS-Classic
generates soft labels from the hard label in a brute
way, which ignores rich knowledge from the in-
stances.

3The experiment results in this paper are statistically sig-
nificant with p < 0.05.

DataSet Business Technology Sports World
c=0 30000 30000 30000 30000
c=1 30000 30000 30000 300
c=2 30000 30000 300 300
c=3 30000 300 300 300
m=300 30000 300 300 300
m=200 30000 200 200 200
m=100 30000 100 100 100
m=50 30000 50 50 50
m=10 30000 10 10 10
m=1 30000 1 1 1
Test Set 1900 1900 1900 1900

Table 5: The experimental setting for investigation on
effects of different degrees of unbalance.

3. The improvement of LS-TFIDF over original
models shows that TF-IDF weights serve as benefi-
cial prior knowledge to characterize soft labels.

4. LS-Distill also achieves notable enhance-
ments. This observation is consistent with other
knowledge distillation works (Hinton et al., 2015).
The self-distillation process brings valuable “dark”
knowledge (Furlanello et al., 2018) via the gener-
ated soft predicting scores even without utilizing
term weights information.

5. Our KWLS has clear superiority over LS-
Distill and LS-TFIDF among all datasets. Rather
than predicting relevance score directly as LS-
Distill, KWLS incorporates improved TF-IDF in-
formation into supervised signals. Therefore, the
final generated soft label integrates explicit prior
term weight knowledge, and some “dark” knowl-
edge is produced during training. We believe that
is the main reason behind this superiority.
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Figure 1: Experimental results of the investigation on the effect of different degrees of unbalance. The x-axis
denotes the different settings of unbalance degrees. The y-axis denotes improvements (Accuracy) LS methods gain
over the original model.

5.4 Effectiveness in Large-Scale Retrieval

As described in the above section, all LS methods
improve the original model on common text classi-
fication tasks. To further explore the ability of LS
to deal with text datasets, we evaluate LS methods
on the more challenging large-scale retrieval task.
Since the goal of retrieval is to capture the positives
in the top-k results (Liu et al., 2021a), we select
Recall@k as the evaluation metric.

The experimental results are shown in Table 3,
from which we can observe that all LS methods
perform exceptionally well for the large-scale re-
trieval task (especially the LS-TFIDF and KWLS).
We can quickly guess the following two reasons
for this phenomenon:

1. Note that the data collection process and hu-
man annotations of SQuAD are biased towards
question-answer pairs with overlapping tokens (Ra-
jpurkar et al., 2016). We can naturally expect that
the generated soft label could better characterize
query-document relevance degree in the SQuAD
dataset due to the capability of term weight-
ing LS methods to identify overlapped highly-
representative tokens.

2. Another straightforward guess is that the
large-scale retrieval task is highly unbalanced (Re-
trieve one result in large-scale candidates). For
a class without adequate training instances, soft
labels generated by LS methods will provide auxil-
iary supervision information from other categories,
which may help the model identify the specific
class better.

5.5 Effectiveness on unbalanced Datasets

As shown in the above section, LS methods per-
form exceptionally well in highly unbalanced large-
scale retrieval tasks. To evaluate the effectiveness

of LS methods on unbalanced datasets, for each
task of text classification mentioned above, we
manually remove some samples to simulate the
unbalanced scenario. More specially, we under-
sample each class in the training set with the ratio
of 1:100 and keep other classes unchanged. Then
we can get n unbalanced training sets where n is
the number of classes in the task. The test set re-
mains unchanged (balanced). The average scores
across the test set of models trained on n unbal-
anced training sets are used to evaluate each task.
From the evaluation results in Table 4, we can see:

1. The inadequacy and unbalance of training
data will significantly hinder the performance, es-
pecially for the IMDb dataset with binary labels.

2. Models with LS methods gain significant im-
provements over the original model on unbalanced
datasets. For example, for the unbalanced IMDb
dataset, the BERT with KWLS achieves 10.60 im-
provements in terms of accuracy.

Compared with balanced datasets, LS methods
achieve more performance enhancement on unbal-
anced datasets, which verifies our assumption. For
a data-lacking category, soft labels may provide
auxiliary supervision information from other cate-
gories.

5.6 Effects of Different Degrees of Unbalance

To further explore the ability of LS methods to
deal with various unbalance scenarios, we eval-
uate BERT equipped with LS methods on news
classification datasets with multiple unbalanced
settings. AG News, composed of 4 classes (Tech-
nology, Sports, Business, and World), is selected as
the dataset for the experiment. As shown in Table
5, we set the training set unbalanced in two ways
as follows:
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(a) Loss during the training step (b) Accuracy in validate set during the training step

Figure 2: Loss and Accuracy during the training step in unbalanced IMDb∗ dataset.

1. To explore the effect of the number of unbal-
anced classes, we keep the instances of Business
news unchanged and under-sample other c classes
into the ratio of 1:100, where c is set to 0, 1, 2, and
3 respectively.

2. To explore the effect of the sizes of unbal-
anced classes, we keep the instances of Business
news unchanged and under-sample sizes of other
classes in training set to m, which is set to 300,
200, 100, 50, 10, and 1 respectively.

From the evaluation results in Figure 1, we can
see that with the increment of c, the models with LS
methods gain more improvements over the original
models. Since bigger c means a more unbalanced
training set, it is not strange for the improvements
increment. The trends of relative improvement re-
veal that soft labels generated by LS methods play
a more critical role in a more unbalanced situation.
The reason is that the knowledge of label correla-
tion in soft labels helps to discriminate classes with
fewer instances.

Based on the most unbalanced setting (c = 3),
we decrease m to further intensify the degree of
unbalance. We can see that the relative improve-
ment in performance brought by LS gradually in-
creases as m becomes smaller until m is less than
50. The reason is that although LS methods can pro-
vide auxiliary supervision information from other
classes to help models identify the data-lacking
class, the supervised signal from the original class
is still important, which may degrade dramatically
in an extreme case with very few instances.

5.7 Effectiveness of KWLS

To further explore why KWLS can improve models’
performances in unbalanced scenarios, we record
losses of the hard label and our KWLS during
the training step in the unbalanced IMDb∗ dataset,
which is a binary sentiment classification task (pos-
itive or negative). We under-sample the positive
instances in the training set with the ratio of 1:100
and keep negative instances unchanged. As shown
in Figure 2, we first train our model only with the
hard label. The loss decreases dramatically since
there are few instances in the data-lacking cate-
gory, and models will easy to fitting supervisory
signals of instances in a mini-batch and predict all
instances as positive. In the 4000-th step, we incor-
porate KWLS into the model training. We can see
that models with KWLS will obtain extra supervi-
sory signals from other categories, which will help
models identify data-lacking categories.

6 Conclusion

We have presented our Keyword-based Label
Smoothing method (KWLS) for text mining tasks
and demonstrated it’s usage and effect on model
training. Unlike previous works that focus on uni-
versal data mining tasks, our method is explicitly
designed for text mining, which incorporates se-
mantic relevance between labels and instances into
soft labels. Like other widely-used tricks of text
mining, the technical design of KWLS is simple
yet effective, making it extremely easy to be ap-
plied in different text mining tasks, as shown in
experiments. Despite its simplicity, using soft la-
bels generated by KWLS as an auxiliary training



2218

target shows significant superiority in improving
model performance, whether the data is balanced or
unbalanced. Our codes are released on the Github.4
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