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Abstract

Lifelong event detection aims to incrementally
update a model with new event types and data
while retaining the capability on previously
learned old types. One critical challenge is
that the model would catastrophically forget
old types when continually trained on new data.
In this paper, we introduce Episodic Memory
Prompts (EMP) to explicitly retain the learned
task-specific knowledge. Our method adopts
continuous prompt for each task and they are
optimized to instruct the model prediction and
learn event-specific representation. The EMPs
learned in previous tasks are carried along with
the model in subsequent tasks, and can serve
as a memory module that keeps the old knowl-
edge and transferring to new tasks. Experi-
ment results demonstrate the effectiveness of
our method. Furthermore, we also conduct
a comprehensive analysis of the new and old
event types in lifelong learning.1

1 Introduction

Class-incremental event detection (Cao et al., 2020;
Yu et al., 2021) is a challenging setting in lifelong
learning, where the model is incrementally updated
on a continual stream of data for new event types
while retaining the event detection capability for all
the previously learned types. The main challenge of
class-incremental event detection lies in the catas-
trophic forgetting problem, where the model’s per-
formance on previously learned types significantly
drops after it is trained on new data. Recent stud-
ies (Lopez-Paz and Ranzato, 2017; Wang et al.,
2019) have revealed that replaying stored samples
of old classes can effectively alleviate the catas-
trophic forgetting issue. However, simply fine-
tuning the entire model on the limited stored sam-
ples may result in overfitting, especially when the
model has a huge set of parameters. How to ef-

1The source code is publicly available at https://
github.com/VT-NLP/Incremental_Prompting.

fectively leverage the limited stored examples still
remains an important question.

Prompt learning, which is to simply tune a
template-based or continuous prompt appended to
the input text while keeping all the other param-
eters freezed, has recently shown comparable or
even better performance than fine-tuning the entire
model in many NLP tasks (Brown et al., 2020; Li
and Liang, 2021; Lester et al., 2021). It is espe-
cially flavored by lifelong learning since it only
tunes a small amount of parameters. However, it is
still non-trivial to equip prompts with the capability
of retaining acquired knowledge and transferring
to new tasks in the class-incremental setting.

In this work, we propose an incremental prompt-
ing framework that introduces Epsodic Memory
Prompts (EMP) to store and transfer the learned
type-specific knowledge. At each training stage,
we adopt a learnable prompt for each new event
type added from the current task. The prompts are
initialized with event type names and fine-tuned
with the annotations from each task. To encour-
age the prompts to always carry and reflect type-
specific information, we entangle the feature rep-
resentation of each event mention with the type-
specific prompts by optimizing its type distribution
over them. After each training stage, we keep the
learned prompts in the model and incorporate new
prompts for next task. In this way, the acquired
task-specific knowledge can be carried into sub-
sequent tasks. Therefore, our EMP can be con-
sidered as a soft episodic memory that preserves
the old knowledge and transfers it to new tasks.
Our method does not require task identifiers at test
time, which enables it to handle the challenging
class-incremental setting. Our contributions can be
summarized as follows:

• We propose Epsodic Memory Prompts
(EMP) which can explicitly carry previously
learned knowledge to subsequent tasks for class-
incremental event detection. Extensive experi-

https://github.com/VT-NLP/Incremental_Prompting
https://github.com/VT-NLP/Incremental_Prompting
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ments validate the effectiveness of our method.
• To the best of our knowledge, we are the first

to adopt prompting methods for class-incremental
event detection. Our framework has the potential
to be applied to other incremental learning tasks.

2 Problem Formulation

Given an input text x1:L and a set of target spans
{(xi, xj)} from it, an event detection model needs
to assign each target span with an event type in
the ontology or label it as Other if the span is not
an event trigger. For class-incremental event de-
tection, we aim to train a single model fθ on a
sequence of T tasks {D1, ...,DT } that consist of
non-overlapping event type sets {C1, ..., CT }2. In
each t-th task, the model needs to classify each
mention to any of the types that have seen so far
Ot = C1

⋃
...
⋃
Ct. The training instances in each

task Dt consist of tuples of an input text xt1:L, a tar-
get span x̄t, and its corresponding label yt where
yt ∈ Ct. For convenience, the notations are for
the t-th training stage by default unless denoted
explicitly in the following parts of the paper.

3 Approach

3.1 Span-based Event Detection
Given an input sentence xt1:L from task Dt, we first
encode it with BERT (Devlin et al., 2019) to obtain
the contextual representations xt

1:L = BERT(xt1:L).
Note that we freeze BERT’s parameters in our
method and all baselines. For each span x̄t, we
concatenate its starting and ending token represen-
tations and feed them into a multilayer perceptron
(MLP) to get the span representation ht

span. Then,
we apply a linear layer on ht

span to predict the type
distribution of the span pt = linear(ht

span). We
use cross-entropy loss to train the model on Dt:

LC = −
∑

(x̄t,yt)∈Dt

log pt. (1)

3.2 Episodic Memory Prompting
To overcome the catastrophic forgetting and exem-
plar memory overfitting issues, we design an incre-
mental prompting approach with Episodic Memory
Prompts (EMPs) to preserve the knowledge learned
from each task and transfer to new tasks.

Given an incoming task Dt and its correspond-
ing new event type set Ct = {ct1, ..., ctnt

}, we

2Though the type sets from all tasks contain Other, they
have distinct meanings given different seen types.

first initialize a sequence of new prompts Ct =
[ct1, ..., c

t
nt
] where cti ∈ R1×e is a type-specific

prompt for type cti, nt is the number of event types
in the t-th task. e is the embedding dimension
size. In our experiments, we use the event type
name to initialize each event type prompt cti (see
Appendix A for details). Note that we always pre-
serve the prompts learned from previous tasks, thus
the accumulated prompts until the t-th task are
represented as It = [C1, ...,Ct]. Given a particu-
lar sentence xt1:L from Dt, we concatenate it with
the accumulated prompts It, encode the whole se-
quence with BERT, and obtain the sequence of con-
textual representations [x̃t

1:L; Ĩ
t], where x̃t

1:L and
Ĩt denote the sequence of contextual embeddings
of xt1:L and It respectively. [; ] is concatenation
operation. Then, similar as Section 3.1, we obtain
a representation h̃t

span for each span based on x̃t
i,

and predict the logits over all target event types
p̃t = linear(h̃t

span).
We expect the EMPs to be specific to the cor-

responding event types and preserve the knowl-
edge of each event type from previous tasks. So
we design an entangled prompt optimization strat-
egy to entangle the feature representation of each
span with the event type-specific prompts by com-
puting an event type probability distribution over
them. Specifically, given a span representation
h̃t
span and EMP representations Ĩt, we compute

the probability distribution over all prompts as
p̃tc = MLP(Ĩt) · h̃t

span, where · is the dot prod-
uct. Finally, we combine the original logits p̃t and
p̃tc to predict the event type label for each span:

L̃C = −
∑

(x̄t,yt)∈Dt

log (p̃t + p̃tc). (2)

At the end of each training stage, we keep the
learned prompts from the current task Ct in the
model, and then initialize a new prompt Ct+1 for
the next task and concatenate it with the previous
accumulated prompts It incrementally: It+1 =
[It;Ct+1].

3.3 Lifelong Learning with Experience Replay
and Knowledge Distillation

To alleviate the catastrophic forgetting issue, two
strategies have been widely applied in many life-
long learning works (Rebuffi et al., 2017; Sun et al.,
2020; Cao et al., 2020; Yu et al., 2021): (1) Ex-
perience Replay which is to repeatedly optimize
the model on the stored previous data in subse-
quent tasks; and (2) Knowledge Distillation (KD)
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that is to ensure the output probabilities and/or
features from the current and previous models to
be matched, respectively. We also adopt these
two baselines to validate the compatibility of our
method with other lifelong learning techniques.

Specifically, after training on Dt, we apply the
herding algorithm (Welling, 2009) to select 20 train-
ing samples for each type into the memory buffer,
denoted as M. Similar as Equation 2, the objective
for experience replay is:

LER = −
∑

(x̄r,yr)∈M

log (p̃t + p̃tc). (3)

For knowledge distillation, following (Cao et al.,
2020), we apply both prediction-level and feature-
level distillation. The objectives for prediction-
level KD and feature-level KD are computed as:

LPD = −
∑

(x̄r,yr)∈M

(p̃t−1+ p̃t−1
c ) log ((p̃t+ p̃tc)),

LFD =
∑

(xr,(xr
i ,x

r
j ),y

r)∈M

1− g(h̄t−1
span, h̄

t
span),

where g is the cosine similarity function. h̄t−1
span and

h̄t
span are l2-normalized features from the model at

t− 1 and t stages, respectively.

Optimization We combine the multiple objec-
tives with weighting factors α and β as follows:

L = L̃C + αLER + β(LPD + LFD).

4 Experiments and Discussions

Experiment Settings We conduct experiments
on two benchmark datasets: ACE05-EN (Dodding-
ton et al., 2004) and MAVEN (Wang et al., 2020),
and construct the class-incremental datasets follow-
ing the oracle negative setting in (Yu et al., 2021).
We divided the ontology into 5 subsets with dis-
tinct event types, and then use them to constitute
a sequence of 5 tasks denoted as D1:5. We use the
same partition and task order permutations in (Yu
et al., 2021). During the learning process from D1

to D5, we constantly test the model on the entire
test set (which contains the whole ontology) and
take the mentions of unseen event types as negative
instances. More implementation details, includ-
ing parameters, initialization of prompts as well as
baselines are shown in Appendix A.

Baselines We consider the following baselines
for comparison: (1) BERT-ED: simply trains the
BERT based event detection model on new tasks
without prompts, experience replay or knowledge
distillation. It’s the same as the span-based event
detection baseline in Section 3.1. (2) KCN (Cao
et al., 2020): use a prototype-based example sam-
pling strategy and hierarchical distillation. As the
original approach studied a different setting, we
adapt their prediction-level and feature-level distil-
lation as the baseline. (3) KT (Yu et al., 2021):
transfer knowledge between old types and new
types in two directions. (4) iCaRL* (Rebuffi et al.,
2017): use nearest-mean-of-exemplars rules to per-
form classification combined with knowledge distil-
lation. iCaRL adopts different strategies for classifi-
cation, experience replay, and distillation. We thus
directly report the result in (Yu et al., 2021) for ref-
erence. (5) EEIL (Castro et al., 2018): use an addi-
tional finetuning stage on the balanced dataset. (6)
BIC (Wu et al., 2019): use a bias correction layer
after the classification layer. (7) Upperbound:
trains the same model on all types in the datasets
jointly. For iCaRL, EEIL, and BIC, we use the
same implementation in (Yu et al., 2021). For fair
comparison, our approach and all baselines (except
for the Upperbound baseline) are built upon KCN
and use the same experience replay and knowledge
distillation strategies described in Section 3.2. We
set the exemplar buffer size as 20, and allow one
exemplar instance to be used in each training batch
instead of the whole memory set. Note that this
replay setting is different from the one in (Yu et al.,
2021), where we allow much less frequent exem-
plar replay, and thus our setting is more efficient,
challenging, and realistic.

Results We present the main results in Table 1.
We have following observations: (1) by compar-
ing the performance of various approaches on Task
1 which are not affected by any catastrophic for-
getting, our approach improves 4.1% F-score on
MAVEN and 1.3% F-score on ACE05, demon-
strating that by incorporating task-specific prompts,
event detection itself can be significantly improved.
EMPs even provide more improvement on MAVEN
which contains a lot more event types than ACE05,
suggesting the potential of incorporating EMPs
for fine-grained event detection; (2) KCN can be
viewed as an ablated version of our approach with-
out EMPs. Our approach consistently outperforms
KCN on almost all tasks on both datasets, demon-
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MAVEN ACE05-EN

Task 1 2 3 4 5 1 2 3 4 5

BERT-ED 63.51 39.99 33.36 23.83 22.69 58.30 43.96 38.02 21.53 25.71
iCaRL* (Rebuffi et al., 2017) 18.08 27.03 30.78 31.26 29.77 4.05 5.41 7.25 6.94 8.94
EEIL (Castro et al., 2018) 63.51 50.62 45.16 41.39 38.34 58.30 54.93 52.72 45.18 41.95
BIC (Wu et al., 2019) 63.51 46.69 39.15 31.69 30.47 58.30 45.73 43.28 35.70 30.80
KCN (Cao et al., 2020) 63.51 51.17 46.80 38.72 38.58 58.30 54.71 52.88 44.93 41.10
KT (Yu et al., 2021) 63.51 52.36 47.24 39.51 39.34 58.30 55.41 53.95 45.00 42.62

EMP (Ours) 67.86 60.26 58.61 54.81 50.12 59.60 53.19 55.20 45.64 43.28

Upperbound (Ours) / / / / 68.42 / / / / 67.22

Table 1: Comparison between our approach and baselines in terms of micro F-1 (%) on 5 class-incremental tasks.
We report the averaged results on 5 permutations of tasks so that the results are independent of randomness.

strating the effectiveness of EMPs on improving
class-incremental event detection; (3) Comparing
with BERT-ED, KCN adopts experience replay
and knowledge distillation. Their performance gap
verifies that these two strategies can dramatically
alleviate catastrophic forgetting; (4) There is still a
large gap between the current approaches and the
upperbound, indicating that catastrophic forgetting
still remains a very challenging problem. Note that
the only difference in EEIL, BIC, KCN, and KT is
the lifelong learning techniques they applied, thus
these models have identical F-score on Task 1. We
also analyze failed examples in Appendix B.

Analysis of New and Old Types in Lifelong
Learning Figure 1 shows the F-score on old and
new event types in each training stage for our ap-
proach and KT (Yu et al., 2021) on MAVEN. Our
approach consistently outperforms KT by a large
margin on both old types and new types, demon-
strating that our EMPs effectively preserve learned
knowledge from old event types and improve event
detection when annotations are sufficient. Interest-
ingly, comparing the F-score on new types in Task
1 and old types in Task 2, both methods improve
the performance on the types of Task 1, indicating
that both methods have the potential of leveraging
indirect supervision to improve event detection.

Ablation Study We consider four ablated mod-
els based on our EMPs: (1) change the prompt
initialization3 from using event type name repre-
sentations to using random distribution; (2) remove
the entangled prompt optimization but still append
the event type prompts to the end of each input
sentence and apply Equation 1 only to detect the
events; (3) remove the knowledge distillation loss
LPD and LFD; (4) use completely fixed prompts

3Appendix A shows the details of prompt initialization.
We use the same initialization for the discrete prompt ablation.

Figure 1: Per-type F1 on old types and new types in each
lifelong task on one randomly selected permutation of
the MAVEN dataset. The F-scores on old and new types
reflect the ability to retain acquired knowledge and to
learn new types, respectively. Best viewed in color.

to replace the trainable soft prompts. From Table 2,
we observes that: (1) using event type names to ini-
tialize the prompts is helpful in most tasks; (2) both
entangled prompt optimization and knowledge dis-
tillation can help alleviate catastrophic forgetting;
(3) switching the continuous prompts to discrete
prompts degrades the performance significantly,
suggesting that the continuous prompts are gener-
ally more promising than discrete prompts.

Task 1 2 3 4 5

EMP (Ours) 67.86 60.26 58.61 54.81 50.12
- w/o EInit 66.73 58.99 57.63 53.98 49.33
- w/o EPO 67.04 59.02 57.79 53.72 49.05
- w/o KD 67.86 57.57 55.83 53.02 48.65
- Discrete 60.13 51.98 50.60 48.97 43.68

Table 2: Ablation study on event-specific prompt initial-
ization (EInit), entangled prompt optimization (EPO),
knowledge distillation (KD), and trainable soft prompts
(Discrete) on MAVEN. We report the averaged results
on 5 permutations of tasks.

Effect of Exemplar Buffer Size We conduct an
analysis on the effect of exemplar buffer size. We
explore the buffer size for each type in {0, 10, 20}.
We use KT as the baseline when buffer size is 20
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Figure 2: Performance with different buffer size in each
task on one randomly selected permutation of MAVEN.
Best viewed in color.

and 10. Note that when buffer size is 0, we do not
adopt either experience replay or knowledge distil-
lation and thus use BERT-ED as the baseline. We
plot the results on Figure 2. We observed that: (1)
Decreasing the buffer size for each type from 20 to
10 degrades the performance of both models. This
indicates that reducing data diversity may result
in the overfitting on example data, and thus dete-
riorates the performance; (2) Our method still out-
performs the KT baseline when storing only half
of history examples, which indicates our method
is able to utilize the stored examples more effec-
tively. (3) When the buffer size decreases to 0, the
performance of both methods drops significantly.
This shows that both approaches highly rely on the
stored data to overcome the catastrophic forgetting
problem. This calls for developing more advance
techniques to reduce the dependence on stored ex-
amples, as storing past data could result in data
leakage in real-world applications.

5 Related Work

Lifelong Event Detection Deep neural networks
have shown state-of-the-art performance on super-
vised event detection (Nguyen et al., 2016; Feng
et al., 2016; Zhang et al., 2017; Huang and Ji, 2020;
Wang et al., 2021b). However, when moving to
lifelong learning setting, their performance signif-
icantly drops (Kirkpatrick et al., 2017; Aljundi
et al., 2019; Biesialska et al., 2020; Cui et al.,
2021; Ke et al., 2021b; Madotto et al., 2021; Ke
et al., 2021a; Feng et al., 2022). Though experi-
ence replay (Lopez-Paz and Ranzato, 2017; de Mas-
son d’Autume et al., 2019; Guo et al., 2020; Han
et al., 2020; Zhao et al., 2022) and knowledge dis-
tillation (Chuang et al., 2020; Cao et al., 2020) have
shown to be effective in overcoming catastrophic
forgetting, they highly rely on the stored data from

old tasks, which is not the most realistic setting for
lifelong learning.

Prompt Learning Conditioning on large-scale
pre-trained language models, prompt learn-
ing (Brown et al., 2020; Lester et al., 2021; Liu
et al., 2021; Wang et al., 2021a,c, 2022) has shown
comparable performance as language model fine-
tuning. Specific to lifelong learning, Qin and Joty
(2021) use prompt tuning to train the model as
a task solver and data generator for lifelong few-
shot problem. Zhu et al. (2022) propose continual
prompt tuning for dialogue state tracking. To the
best of our knowledge, we are the first work to
adopt prompt learning for class-incremental event
detection.

6 Conclusion

We propose a novel Episodic Memory Prompting
(EMP) framework for class-incremental event de-
tection. During each training stage, EMP learns
type-specific knowledge via a continuous prompt
for each event type. The EMPs trained in previous
tasks are kept in the model, such that the acquired
task-specific knowledge can be transferred into the
following new tasks. Experimental results vali-
date the effectiveness of our method comparing
with competitive baselines. Our extensive analysis
shows that by employing EMPs, both event detec-
tion itself and the incremental learning capability
of our approach are significantly improved.
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A Experimental Details

Implementation Details During training, we use
AdamW (Loshchilov and Hutter, 2019) optimizer
with the learning rate set to 1e−4 and weight decay
set to 1e − 2. Different from previous work (Yu
et al., 2021), we set the batch size to 1 as we en-
code each sentence once and consider all target
spans in the sentence at the same time. We adopt
gradient accumulation with the step set to 8. As
the number of batches is large, we apply a periodic
replay and distillation strategy with the interval
set to 10 to reduce computational cost. For each
lifelong task Dt, we set the maximum number of
training epochs to 20. We adopt the early stopping
strategy with patience 5, i.e., the training stops if
the performance on the development set does not
increase for 5 epochs. The temperature parameter
used in prediction-level distillation is set to 2. The
weighted factors for the loss function α and β are
computed based on the number of learned event
types and new types.

The parameters of each prompt in EMPs are ini-
tialized with the corresponding event type name.
Specifically, there are three cases in the initializa-
tion: (1) If the type name is single-token and it is
contained in BERT’s vocabulary, we directly use
the pre-trained embedding of this token to initialize
the prompt; (2) If the type name is multiple-token
and the tokens are contained in BERT’s vocabu-
lary, we take the average of the pre-trained em-
beddings of these tokens to initialize the prompt;
(3) If the type name contains Out-of-Vocabulary
(OOV) tokens, we replace the OOV tokens with the
synonyms that are contained in BERT’s vocabu-
lary. It is worth noting that we randomly initialize
the prompt for the Other type and keep updating
it throughout all lifelong tasks. We leave how to
incorporate more effective prior knowledge into
prompts for future work.

B Failure Cases

We show some of typical failure cases in Table 3.
We have following observations: (1) the first three
examples illustrate the catastrophic forgetting prob-
lem in class-incremental event detection. While
the model predicted correct event types right after
it was trained on those types, it starts to predict
wrong types in subsequent tasks. Interestingly, we
observed that the model typically predicts the Other
type or the types relevant to triggers (e.g., Creat-
ing) when forgetting occurs; (2) the 4th and 5th
examples showed that the model sometimes keeps
predicting the old types while it is supposed to
predict new types in subsequent tasks. (3) the 7th
example showed that the model can sometimes cor-
rect itself in subsequent tasks, which indicates the
experience replay and knowledge distillation have
the potentials of improving old types; (4) the last
example indicates that in some cases, the model is
interfered after trained on a task contained ambigu-
ous types even though it predicts the correct type
in all other tasks.
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Text Gold Event Type(s) Predicted Event Type(s)
The Minnesota Territory itself was formed
only in 1849 but the area had a rich history
well before this.

Coming_to_be (D2)
f2: Coming_to_be; f3:4: Other;

f5: Creating (D5)

He informed the Air France chief execu-
tive in writing "I did not believe the captain
capable of qualifying in the 707."

Telling (D3) f3: Telling; f4: Other; f5: Request (D5)

Unprepared for the attack, the Swedish
attempted to save[1] their ships by cutting
their anchor ropes and to flee[2].

[1] Rescuing (D2)
[2] Escaping (D3)

[1] f2:4: Rescuing; f5: Other
[2] f3:4: Escaping; f5: Other

After the uprising in Germany was sup-
pressed, it flared briefly in several Swiss
Cantons.

Control (D3) f3:5: Hindering (D2)

Brazilians and Chinese living in the region
have been evacuated.

Escaping (D3) f3:5: Removing (D1)

A surveillance video of the incident was
released by police four days after the
shooting, on 26 November.

Releasing (D3) f3:4: Other; f5: Publishing (D5)

Giral agreed to arm the trade unionists
in defence of the Republic, and had 60,
000 rifles delivered to the CNT and UGT
headquarters, although only 5, 000 were
in working order.

Agree_or_refuse_to_act
(D4)

f4: Other;
f5: Agree_or_refuse_to_act

Meanwhile, in the city, the Republican
government had reformed under the lead-
ership of socialist leader Francisco Largo
Caballero.

Reforming_a_system
(D1)

f1,2,4,5: Reforming_a_system;
f3: Change_of_leadership (D3)

Table 3: Failure analysis of our EMP on the first permutation of MAVEN. The targeted triggers are highlighted
in bold. Di after the event types indicate the type is introduced at i-th task. fi indicates the model trained after
i-th task. We highlight the models predicted the correct types with underline. For example, "Coming_to_be (D2)"
indicates the Coming_to_be type is introduced at the 2nd task. "f3:4: Other" indicates the models trained after the
3rd and 4th task both predict the Other type.


