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Abstract

Document-level Event Causality Identification
(DECI) aims to identify event-event causal re-
lations in a document. Existing works usu-
ally build an event graph for global reasoning
across multiple sentences. However, the edges
between events have to be carefully designed
through heuristic rules or external tools. In this
paper, we propose a novel Event Relational
Graph TransfOrmer (ERGO) framework' for
DECI, to ease the graph construction and im-
prove it over the noisy edge issue. Different
from conventional event graphs, we define a
pair of events as a node and build a complete
event relational graph without any prior knowl-
edge or tools. This naturally formulates DECI
as a node classification problem, and thus we
capture the causation transitivity among event
pairs via a graph transformer. Furthermore,
we design a criss-cross constraint and an adap-
tive focal loss for the imbalanced classification,
to alleviate the issues of false positives and
false negatives. Extensive experiments on two
benchmark datasets show that ERGO greatly
outperforms previous state-of-the-art (SOTA)
methods (12.8% F1 gains on average).

1 Introduction

Event Causality Identification (ECI) is the task of
identifying if the occurrence of one event causes
another in text. As shown in Figure 1, given the text
“... the outage, was caused by a terrestrial break in
the fiber in Egypt ...”, where “outage,” and “break”
are event triggers, an ECI model should predict
if they have a causal relation or not. Discovering
causal relationships not only helps to deeply un-
derstand how the world progresses, but also is an
important goal of empirical research in various ar-
eas, such as machine reading comprehension (Be-
rant et al., 2014), question answering (Oh et al.,
2016), future event forecasting (Hashimoto, 2019),
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Figure 1: Example of DECI. Solid purple lines denote
target causal relations.

and event knowledge graph construction (Ma et al.,
2022b).

Causality is usually implicit in natural lan-
guage (Copley and Martin, 2014), especially when
events scatter in a document, a.k.a. Document-level
ECI (DECI). Recent methods typically construct
an event graph to assist the global inference across
multiple sentences, where nodes are events and
edges are their relations, such as linguistic depen-
dency or adjacent contexts (Gao et al., 2019; Zhao
et al., 2021). However, there are two major issues.
First, the edges heavily rely on external tools and
heuristic rules, which are not always reliable and
may introduce noise (Tran Phu and Nguyen, 2021).
Second, it is like a chicken-egg problem — to iden-
tify (causal) relations between events, you need to
extract their relations to build the graph first.

In this paper, we propose a novel Event
Relational Graph TransfOrmer (ERGO) frame-
work for DECI, which doesn’t require any external
tools and can effectively alleviate the noise issue.
Different from conventional event graphs, the ba-
sic idea is to build an event relational graph that
naturally converts ECI into a node classification
problem, where each node denotes a pair of events,
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and all edges among nodes are initialized to capture
potential causal chains, following the assumption
"preserving transitivity of causation” (Paul et al.,
2013). If event A causes event B and event B causes
event C, then we have event A causes event C. That
is, if the node of (A, C) receives positive predic-
tions (i.e., causal relation) from nodes (A, B) and
(B, ©), it is positive, too. By contrast, if either/both
of nodes (A, B) and (B, C) are negative (i.e., no
relation), it is not necessary that (A, C) is negative,
either. To this end, we leverage a graph transformer
to model the graph and assign a lower weight to
such uninformative edges, paying more attention
to other paths or its own textual contexts.

Although the proposed graph directly models all
event pairs for causality identification, it poses a
great challenge of false positive and false negative
issues. First, most of the event pairs have no causal
relations. That is, negative nodes are dominant, and
the imbalanced classification will easily confuse
the model into false-negative predictions. Second,
to ease the graph construction, we assume that all
nodes can pass information with each other via the
complete graph structure. While there are many
spurious correlations between events, which can be
incorrectly propagated to neighbor nodes, leading
to severe false positives. For example, “treatment”
and “death” frequently co-occur in the same docu-
ment, but there is no causality between them since
it is not “treatment” that causes “death”.

To address the above issues, we further design
a criss-cross constraint and an adaptive focal loss.
The criss-cross constraint simplifies the paths of
each pair of events for global inference. Instead
of a complete graph, we assume that there is an
edge between two nodes, only if the two pairs of
events share at least one event. Clearly, if they
have no common event, there must be no direct
causal effect between them. The adaptive focal
loss re-weights positive and negative samples to
tackle the imbalance issue. On the one hand, we
leverage a weighting factor to balance two classes’
training. On the other hand, we also introduce a
scaling factor to focus more on difficult samples.

Our contributions can be summarized as follows:

* We propose to build an event relational graph
without using any external tools to capture
causal transitivity.

* We propose a novel framework ERGO that
further alleviates false positive and false nega-
tive issues for DECI.

* Extensive experiments on two benchmark
datasets indicate that ERGO greatly outper-
forms previous SOTA methods (12.8% F1
gains on average). We have also conducted
both quantitative and qualitative analysis to
better understand key components of ERGO.
Furthermore, detailed error analysis provides
insights into our approach and the task.

2 Related Work

ECI has attracted much attention in recent years.
In terms of text corpus, there are mainly two types
of methods: Sentence-level ECI (SECI) and DECI.
In the first research line, early methods usu-
ally design various features tailored for causal ex-
pressions, such as lexical and syntactic patterns
(Riaz and Girju, 2013, 2014a,b), causality cues
or markers (Riaz and Girju, 2010; Do et al., 2011;
Hidey and McKeown, 2016), statistical information
(Beamer and Girju, 2009; Hashimoto et al., 2014),
and temporal patterns (Riaz and Girju, 2014a; Ning
et al., 2018). Then, researchers resort to a large
amount of labeled data to mitigate the efforts of
feature engineering and to learn diverse causal
expressions (Hu et al., 2017; Hashimoto, 2019).
To alleviate the annotation cost, recent methods
leverage Pre-trained Language Models (PLMs, e.g.,
BERT (Devlin et al., 2019)) for the ECI task and
have achieved SOTA performance (Kadowaki et al.,
2019; Liu et al., 2020; Zuo et al., 2020). To deal
with implicit causal relations, Cao et al. (2021) in-
corporate the external knowledge from ConceptNet
(Speer et al., 2017) for reasoning, which achieves
promising results. Zuo et al. (2021a) learn context-
specific causal patterns from external causal state-
ments and incorporate them into a target ECI model.
Zuo et al. (2021b) propose a data augmentation
method to further solve the data lacking problem.
Along with the success of sentence-level natural
language understanding, many tasks are extended
to the entire document, such as relation extraction
(Yao et al., 2019), natural language inference (Yin
et al., 2021), and event argument extraction (Ma
et al., 2022a). A concurrent and relevant work is
(Tan et al., 2022), which also leverages focal loss
for entity relation extraction. The difference is that
the focal loss in (Tan et al., 2022) is used to make
long-tail (positive) classes contribute more to the
overall loss, while the focal loss in our ERGO tack-
les the imbalance issue of DECI task by focusing
more on difficult samples. We further leverage a
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weighting factor in the focal loss to balance two
classes’ training, which is not considered in (Tan
et al., 2022). Moreover, in Section 4.6, we have
given a more detailed analysis of the impact of
adaptive focal loss on the DECI task.

Compared with SECI, DECI not only aggra-
vates the lack of clear causal indicators but also
poses a new challenge of cross-sentence inference.
Gao et al. (2019) use Integer Linear Programming
(ILP) to model the global causal structures; Zhao
et al. (2021) proposes a document-level context-
based graph inference mechanism to capture in-
teraction among events; RichGCN (Tran Phu and
Nguyen, 2021) constructs document-level interac-
tion graphs and uses Graph Convolutional Network
(GCN, Kipf and Welling (2017)) to capture rele-
vant connections. However, the construction of the
aforementioned global structure or graph requires
sophisticated feature extraction or tools, which may
introduce noise and mislead the model (Tran Phu
and Nguyen, 2021). Compared with them, we for-
mulate DECI as an efficient node classification
framework, which could capture the global interac-
tions among event pairs automatically, as well as
alleviate the imbalanced and noisy issues.

3 Methodology

The goal of our proposed framework ERGO is
to capture potential causal chains for document-
level reasoning. There are three main components:
(1) Document Encoder to encode the document
and obtain contextualized representations of events
as the inputs for the following components; (2)
Event Relational Graph Transformer that mod-
els causal chain for global inference by building
a handy event relational graph, where node fea-
tures are from the Document Encoder and enhanced
through propagation over the graph; and (3) Clas-
sification with Adaptive Focal Loss to predict if a
node of event pair has causal relation or not based
on their enhanced node features, with considering
the imbalance issue.

3.1 Document Encoder

Given a document D = [z4]; (can be of any
length L), the document encoder aims to output the
contextualized document and event representations.
We leverage a Pre-trained Language Model (PLM)
as a base encoder to obtain the contextualized em-
beddings. Following conventions, we add special
tokens at the start and end of D (e.g., “[CLS]” and

“[SEP]” of BERT (Devlin et al., 2019)), and insert
additional special tokens “<t>" and “</t>" at the
start and end of all the events to mark event posi-
tions. Then, we have:
H = [hy, hg, ...,hr] = Encoder([x1, x2, ...,xL]),
ey
where h; € R? is the embedding of token x;. We
use the embedding of token “[CLS]” to represent
the document and the embeddings of token “<t>"
to represent the events.

In this paper, we choose pre-trained BERT (De-
vlin et al., 2019) and Longformer (Beltagy et al.,
2020) as encoders for comparison. We handle doc-
uments longer than the limits of PLMs as follows.

BERT for Document Encoder To handle doc-
uments that are longer than 512 (BERT’s original
limit), we leverage a dynamic window to encode
the entire document. Specifically, we divide D into
several overlapping spans according to a specific
step size and input them into BERT separately (de-
tails can be found in Section 4.2). Then, we find
and average all the embeddings of token “[CLS]”
or “<t>" of different spans to represent the whole
document or each event, respectively.

Longformer for Document Encoder Long-
former introduces a localized sliding window based
attention mechanism (the default window size is
512) with little global attention to reduce compu-
tation and extend BERT for long documents. In
our implementation, we apply its efficient local and
global attention pattern. Specifically, we use global
attention on the “<s>" token (Longformer uses
“<s>" and “</s>” as the special start and end tokens,
corresponding to BERT’s “[CLS]” and “[SEP]”),
and local attention on other tokens, which could
build full sequence representations. The maximum
document length allowed by Longformer is 4096,
which is suitable for most documents. Therefore,
we directly take the embedding of token “<s>" as
document representation and embedding of token
“<t>” as event representation.

3.2 Event Relational Graph Transformer

In this section, we first introduce how to construct
the event relational graph, including the criss-cross
constraint. Then, based on it, we leverage a Re-
lational Graph Transformer (RGT) to capture the
high-order interaction among event pairs and ob-
tain enhanced event pair representations for the
final classification.
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3.2.1 Event Relational Graph Construction

Given all the events of document D, we construct
an event relational graph G = {V, £}, where V is
the set of nodes, & is the set of edges. We highlight
the following differences of G from previous event
graphs. First, for each node in V), it refers to a
different pair of events in D, instead of a single
event. Our motivation is to learn the relation of
relations between events, i.e., the logic of causal
transitivity, for higher-order reasoning. Second,
for edges £, we do not require any prior relations
between events. Instead, we add all edges between
any two nodes into £. Thus, G is initialized as a
complete graph.

Criss-cross Constraint. To simplify the graph
structure and alleviate the negative impacts of false
positives propagation, we introduce a criss-cross
constraint. It assumes that there is an edge be-
tween two nodes, only if the two corresponding
event pairs share at least one event. The basic idea
behind this is that if two pairs of events have no
common event, there must be no direct causal effect
between them. Still, they can have causal interac-
tions if there are some mediator events, and such
causality takes effects conditioned on the mediator.
For example in Figure 1, (1) the causality infor-
mation of (restore, service) has no effect on pre-
dicting the causal relation of (outage,, break). (2)
the causality of (outage,, restored) has a transitive
effect on predicting the causal relation of (outage,,
break) if we know that (restored, causes, break) and
(outage,, outage,) is coreference?. Note that the
criss-cross constraint is not posed over the graph
directly, which is different for each event pair. In
Section 4.5, we show that such a simple and intu-
itive constraint brings considerable performance
gains compared with using a complete graph.

3.2.2 Relational Graph Transformer

Node Embedding Initialization For global in-
ference, we first initialize node feature vectors with
event pair node embedding, which is based on the
contextualized event embeddings by Equation (1).
Formally, for event pair (e, e2) and the correspond-
ing contextual embeddings (h.,, he,), their event
pair node embedding is initialized by:

U(O) = [h‘el”h62]’ (2)

€1,2

*In the datasets, coreference events have similar surface
forms and thus can be implicitly captured by PLMs. We leave
further coreference modeling in the future work.

where || denotes concatenation, 0 indicates the ini-
tial state for the following neural layers.

The event pair node embeddings represent the
implicit relational information between two events,
which enables us to integrate event pair representa-
tion learning and causal chain inference seamlessly,
without any prior knowledge or tools. Clearly, bet-
ter initial features of nodes will provide more dis-
criminative signals from local textual contexts for
classification. On the other hand, structural reason-
ing further improves the discriminative ability of
node features by considering all event pairs glob-
ally, such that confident prediction shall help others
via causality transitivity.

Each RGT layer [ is closed to the transformer
architecture proposed in (Vaswani et al., 2017). It
takes a set of node embeddings v({=1) € RN *din
as input, and outputs a new set of node embeddings:
v e RN Xdout where N is the number of event
pairs, di, and dyy are the dimensions of input and
output embeddings.

To better exploit the relational information from
each neighbor to predict the causal relation of
an event pair node ¢, we perform a shared self-
attention mechanism to measure the importance of
neighbor j to i:

(viW o) (0, W)"
NG :

where dj, is the hidden size, W,, W, € R%inXdx
are parameter weight matrices, /dj, is a scaling
factor (Vaswani et al., 2017). Thus, negative and
uninformative nodes are expected to assign lower
attention weights.

Then we normalize att;; across all choices of j
using a softmax function to make the importance
more comparable:

3)

atty; =

exp (atti Y )
ZzENi exp(att;,)’
“)
where N; are all the first order neighbors of node .
To aggregate relational knowledge from the
neighborhood information, we compute a weighted
linear combination of the embeddings :

Q5 = SOftHlan (attij) =

ol = 3" (0, Wa), (5)
jEN;

where W, € R%»xd is the parameter weight
matrix. We also perform multi-head attention to
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jointly attend to information from different repre-
sentation subspaces. Finally, the output embedding
of node 7 can be represented as:

NO ( ﬁ 3 aij(vjwv))wo, (6)

c=1j€EN;

where || denotes concatenation, C' is the number of
heads. W, € R¢Xdout ig the parameter weight
matrix. By simultaneously computing embeddings
for all the event pair nodes, a node embedding
matrix v() € RN*dout ig obtained. By stacking
multiple layers, RGT could reach high-order con-
nectivity and capture complex interactions.

Note that our framework is flexible to almost
arbitrary Graph Neural Networks (GNNs). Here
we leverage RGT for its powerful expressiveness.
We also report results with GCN in Section 4.5.

3.3 Classification with Adaptive Focal Loss
Remember that we formulate DECI as a node clas-
sification task, which predicts the label of each
node as either a positive or negative class. However,
the number of negative samples during training far
exceeds that of positives, leading to an imbalanced
classification problem. What is worse, the domi-
nant negatives contain many spurious correlations
between events (“treatment” and “death" example
in Section 1). How can we know the difficulties of
sample prediction, so that ERGO can penalize them
to alleviate false negatives for better performance?

To address this problem, we leverage an adap-
tive loss function for training, following focal loss
(Lin et al., 2017). Specifically, we reshape the loss
function to down-weight easy samples and thus fo-
cus on hard ones. Formally, a modulating factor
is added to Cross-Entropy (CE) loss, with a pre-
defined focusing hyper-parameter v > 0, which is
defined as:

Lon=— Y (1=pe,) log(pe,). (D

ei,e;€D

where pe, ; is the predicted probability of whether
there is a causal relation between events e; and e;.
De; ; is defined as follows:

Pe;,; = softmax ([ve, ,[|hicrs)] Wp),  (8)

where W), is the parameter weight matrix, || de-
notes concatenation. Here we concatenate em-
beddings of hicpg) (of BERT) or Aicss (of Long-
former) to each node in order to incorporate the
global document representation for classification.

This scaling factor, (1 — pe, ;)”, allows us to
efficiently train on all event pairs by encouraging
the model to focus on difficult samples, reducing
false-negative predictions. For example, when a
sample is misclassified and pe, ; 1s small, the mod-
ulating factor is near 1, and the loss is unaffected.
As pe, ; — 1, the factor goes to 0 and the loss for
well-classified examples is down-weighted. There-
fore, the focusing parameter v smoothly adjusts the
rate at which easy examples are down-weighted.
When v = 0, Lpy, is equivalent to CE loss, and
with the increase of v, the influence of the modu-
lating factor also increases. We will give further
discussion in Section 4.6.

Besides, we use an «a-balanced variant of the
focal loss, which introduces a weighting factor «
in [0, 1] for class “positive” and 1 — « for class
“negative”. The value of « is related to the ratio of
positive and negative samples. The final adaptive
focal loss Ly, can be written as:

Z aei,j(l_pei,j)7 log(pei,j)' )

ei,e;€D

Lrr, = —

4 Experiments

4.1 Datasets and Evaluation Metrics

We evaluate our proposed method on two
widely used datasets, EventStoryLine (version 0.9)
(Caselli and Vossen, 2017) and Causal-TimeBank
(Mirza, 2014).

EventStoryLine contains 22 topics, 258 doc-
uments, 5,334 events, 7,805 intra-sentence and
62,774 inter-sentence event pairs (1,770 and 3,885
of them are annotated with causal relations respec-
tively). Following Gao et al. (2019) and (Tran Phu
and Nguyen, 2021), we group documents accord-
ing to their topics. Documents in the last two topics
are used as the development data, and documents in
the remaining 20 topics are employed for a 5-fold
cross-validation.

Causal-TimeBank contains 184 documents,
6,813 events, and 318 of 7,608 event pairs are
annotated with causal relations. Following (Liu
et al., 2020), we employ a 10-fold cross-validation
evaluation. Note that the number of inter-sentence
event pairs in Causal-TimeBank is quite small (i.e.,
only 18 pairs), following (Tran Phu and Nguyen,
2021), we only evaluate ECI performance for intra-
sentence event pairs on Causal-TimeBank.
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Evaluation Metrics For evaluation, we adopt
Precision (P), Recall (R), and F1-score (F1) as eval-
uation metrics, same as previous methods to ensure
comparability.

4.2 Implementation Details

We implement our method based on Pytorch. We
use uncased BERT-base (Devlin et al., 2019) or
Longformser-base (Beltagy et al., 2020) as the doc-
ument encoder. For the BERT-base document en-
coder, we set the dynamic window size to 256,
and divide documents into several overlapping win-
dows with a step size 32. We optimize our model
with AdamW (Loshchilov and Hutter, 2019) using
a learning rate of 0.00002 with a linear warm-up
for the first 8% steps. We apply dropout (Srivastava
et al., 2014) between layers and clip the gradients
of model parameters to a max norm of 1.0. We
perform early stopping based on the F1 score on
the development set. We tune the hyper-parameters
by grid search based on the development set per-
formance: heads C €{1, 2, 4, 8} for the relational
graph transformer model, dropout rate € {0.1, 0.2,
0.3}, focusing parameter v € {0, 1, 2, 3}, and
weighting factor o €{0.65, 0.75, 0.85}.

4.3 Baselines

We compare our proposed ERGO with various
state-of-the-art SECI and DECI methods.

SECI Baselines (1) KMMG (Liu et al., 2020),
which proposes a mention masking generalization
method and use extenal knowledge databases. (2)
KnowDis (Zuo et al., 2020), a knowledge enhanced
distant data augmentation method to alleviate the
data lacking problem. (3) LSIN (Cao et al., 2021),
which constructs a descriptive graph to leverage
external knowledge and has the current SOTA per-
formance for intra-sentence ECI. (4) LearnDA
(Zuo et al., 2021b), which uses knowledge bases to
augment training data. (5) CauSeRL (Zuo et al.,
2021a), which learns context-specific causal pat-
terns from external causal statements for ECI.

DECI Baselines (1) OP (Caselli and Vossen,
2017), a dummy model that assigns causal relations
to event pairs. (2) LR+ and LIP (Gao et al., 2019),
feature-based methods that construct document-
level structures and use various types of resources.
(3) BERT (our implement) a baseline method
that leverages dynamic window and event marker
techniques. (4) RichGCN (Tran Phu and Nguyen,
2021), which constructs document-level interaction

| EventStoryLine | Causal-TimeBank

Model

| P R Fl| P R Fl
OP 225 98.6 36.6| - - -
LR+ 37.0 452 40.7| - - -
LIP 38.8 524 446| - - -
KMMGo] 419 625 50.1]36.6 55.6 44.1
KnowDis[o] | 39.7 66.5 49.7|42.3 60.5 49.8
LSIN[o] 479 58.1 525|515 562 537
LearnDA[o] | 42.2 69.8 52.6|41.9 68.0 51.9
CauSeRL[o] | 419 69.0 52.1|43.6 68.1 53.2
BERT]|o] 47.8 572 52.1]47.6 551 51.1
RichGCN[o] | 49.2 63.0 552[39.7 56.5 46.7
ERGO[o] | 49.7 72.6 59.0|584 60.5 59.4
ERGOI[] 575 72.0 63.9|62.1 613 61.7

Table 1: Model’s intra-sentence performance on

EventStoryLine and Causal-TimeBank, the best results
are in bold and the second-best results are underlined.
[o] and [¢] denote models that use pre-trained BERT-
base and Longformer-base encoders, respectively. Over-
all, our ERGO outperforms previous SOTA models
(with a significant test at the level of 0.05).

graph and uses GCN to capture relevant connec-
tions. RichGCN has the current SOTA performance
for inter-sentence ECL.

4.4 Overall Results

Since some baselines are evaluated only on
EventStoryLine, the baselines used for EventSto-
ryLine and Causal-TimeBank are different. Some
baselines can not handle the inter-sentence scenar-
ios in EventStoryLine. Thus we report the results
of intra- and inter- sentence settings separately.

4.4.1 Intra-sentence Evaluation

From Table 1, we can observe that:

(1) ERGO outperforms all the baselines by a
large margin on both datasets. Compared with
SOTA methods, ERGO-BERTgasE achieves 6.9%
improvements of F1-score on EventStoryLine, and
10.6% on Causal-TimeBank. This demonstrates
the effectiveness of ERGO.

(2) The feature-based method OP achieves the
highest Recall on EventStoryLine, which may be
due to simply assigning causal relations by mim-
icking the textual order of presentation. This leads
to many false positives and thus a low Precision.

(3) The usage of PLMs boosts performance.
Using Longformerg,gg as the encoder, ERGO
achieves better results than ERGO-BERTgAsE,
which also achieves new SOTA results. The rea-
son may be: 1) Longformer continues pre-training
from RoBERTa (Liu et al., 2019), which has been
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| Inter-sentence | Intra+ Inter

Model

\ P R Fl \ P R Fl
OP 84 99.5 156|105 99.2 19.0
LR+ 252 48.1 33.1|27.9 472 35.1
LIP 35.1 48.2 40.6|36.2 49.5 41.9

BERT|o] 36.8 29.2 32.6|41.3 383 39.7
RichGCNJo] | 39.2 457 422 |42.6 51.3 46.6

ERGO|0] 43.2 48.8 45.846.3 50.1 48.1
ERGO[<)] 51.6 433 47.1|48.6 534 50.9

Table 2: Model’s inter and (intra+inter)-sentence per-
formance on EventStoryLine.

Model | Intra | Inter | Intra+ Inter
ERGO[o] | 590 | 458 | 481
ERGO; [o] 56.6 43.5 45.6
ERGO2 o] 56.2 41.8 44.6
ERGO3]o] 58.3 43.6 473
ERGO[¢] | 639 | 471 | 509
ERGO1[{] 61.3 44.7 47.1
ERGO;[$] 60.7 43.1 46.3
ERGO3[] 62.6 459 49.1

Table 3: F1 Results of Ablation study on EventSto-
ryLine, where ERGO; denotes ERGO w/ a complete
graph, ERGO, denotes ERGO w/ GCN, ERGO3 de-
notes ERGO w/o the focal factor.

found to outperform BERT on many tasks; 2) Long-
former leverages an efficient local and global atten-
tion pattern, which is beneficial to capture longer
contextual information for inference.

4.4.2 Inter-sentence Evaluation

From Table 2, we can observe that:

(1) ERGO greatly outperforms all the baselines
under both inter- and (intra+inter)-sentence set-
tings, especially in terms of Precision. This demon-
strates that our ERGO can make better document-
level inference via the event relational graph, while
alleviating the negative impacts of false positives.

(2) The overall F1-score of inter-sentence setting
is much lower than that of intra-sentence, which
indicates the challenge of document-level ECIL.

(3) The BERT baseline performs well on intra-
sentence event pairs. However, it performs much
worse than LIP, RichGCN, and ERGO under inter-
sentence settings, which indicates that a document-
level structure or graph is helpful to capture the
global interactions for prediction.

4.5 Ablation Study

To analyze the main components of ERGO, we
have the following variants, as shown in Table 3:
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Figure 2: Distribution histogram of predicted probabili-
ties of positive and negative event pairs and the visual-
ized loss with focal parameter v = {0, 1,2, 3}.

(1) w/ a complete graph, which connects all
the nodes in the event relational graph (with-
out the criss-cross constraint mentioned in Sec-
tion 3.2.1). Compared with the full ERGO model
(both BERTgAsg and Lonformergasg), ERGO (w/
a complete graph) clearly decreases the perfor-
mance, which demonstrates the effectiveness of
the handy design of criss-cross constraints.

(2) w/ GCN, which replaces the RGT in Sec-
tion 3.2.2 with a well-known GNN model, GCN.
It can be seen that (i) ERGO (w/ GCN) also per-
forms better or competitive than other baselines.
This indicates that our framework is flexible to
other GNNs, and the main improvement comes
from our new formulation of the ECI task. (ii)
the full ERGO model clearly outperforms ERGO
(w/ GCN), which validates the effectiveness of our
RGT model.

(3) w/o focal factor, which sets the focusing pa-
rameter v = 0 (in Section 3.3) and thus makes the
focal loss degenerate into standard CE loss. Com-
pared with the full ERGO model, ERGO (w/o focal
factor) also decreases performance. This highlights
the effectiveness of penalizing hard samples via an
adaptive focal loss in the ECI task.

4.6 Dealing with the Imbalance Issue

In Figure 2, we show the distribution histogram
of the predicted probability after the first training
epoch for positive and negative samples, respec-
tively (denoted by the bars). The predicted prob-
ability of x-axis reflects the difficulty of samples
(i.e., the lower, the harder), and the curves denote
loss — how much penalization on the correspond-
ing samples during learning. From the histogram,
we can find: (1) the model is less confident about

2124



Teen in of Hero Brooklyn Mom
Posted Oct 26, 2011 8:57 AM CDT
An 18-year-old gang member has confessed to

police his dozen rounds were intended for members of a rival gang.

a pregnant mom , who died on Friday as she shielded a group of children from bullets, but
insisted he "did not mean to shoot the ladies," sources tell the New York Daily News.
In addition to Zurana Horton-who was a mother of 12-another mom and an 11-year-old girl were wounded by rooftop sniper Andrew Lopez, who told

Lopez has been charged with murder; his two half-brothers, 17 and 22, were also

No. | Event Pair GT | BERT | ERGO
1 | ( , ) Yes No
2 | ( , ) Yes | No
3 ( s ) | Yes
4 | ( , )| No Yes
5 |( , wounded) Yes No

(wounded, ) No
( s ) Yes No
( 9 ) ( 2 )
’ ) 011/ ( , )
/ 0.104
( ) )Y 0.07
0.003 VY 0.01
( , wounded) (wounded, )

Figure 3: The case study of BERT baseline and our proposed ERGO, where “GT” denotes the ground truth class,
and the right two columns are the output of BERT and ERGO (italic red color means wrong prediction). The
thickness of arrows represents the size of attention values, and the bold green arrows show a possible reasoning path.

positives than negatives, i.e., the left-of-center dis-
tributed bars of positives. This matches our intu-
ition that the imbalance issue brings a great chal-
lenge of false-negative predictions to ECI. (2) we
visualize focal loss with « values € {0, 1,2, 3}.
The top solid blue curve (v = 0) can be seen as
the standard CE loss. As -y increases, the shape of
focal loss moves to the bottom left corner. That is,
the learning of ERGO pays more attention to hard
samples. In practice, we find v = 2 works best
on both datasets, indicating that there is a balance
between the focus on simple and difficult samples.

4.7 Case Study

In this section, we conduct a case study to fur-
ther illustrate an intuitive impression of our pro-
posed ERGO. As shown in Figure 3, We notice
that: (1) BERT is good at sentence-level ECI
(e.g., No.3 event pair), but fails at more com-
plex cross-sentence cases (e.g., No.1, 2, 4, 5, 7).
(2) By contrast, ERGO can make correct predic-
tions by modeling the global interactions among
event pairs. (3) Figure 3 shows 3 causal pat-
terns that ERGO could cover: (i) Transitivity
(No.1, 2, 7 event pairs): knowing both (Shoot-
ing, killing) and (killing, arresteds) have causal
relations, we could infer that (Shooting, arresteds)
has a causal relation; (ii) Implicit Coreference
Assistance (No.3, 4, 7 event pairs) : Given that
(Shooting, Arrested;) has a causal relation and
(Arrested,, arresteds) is coreference, we could in-
fer that (Shooting, arresteds) has a causal relation,
even if the causal relation of (Arrested;, arresteds)
is implicitly modeled. We attribute this to PLMs

Others  Similar Events
11.8% __ _53%

Annotation Error @
5.9% "

Insufficient
Ambiguous Fine-Grained
Annotation Distinction
14.0% 33.0%
Implicit Causal
Relations

30.0%

Figure 4: Statistics of Error Types.

that tend to capture coreference relations, such as
similar tokens. A piece of supporting evidence is
that BERT incorrectly predicts the coreferenced
No.4 event pair with a causal relation. (iii) De-
confounding Negatives (No.5, 6, 7 event pairs):
Knowing (Shooting, wounded) has a causal rela-
tion, although (wounded, arresteds) does not has
a causal relation, it is still possible that (Shoot-
ing, arresteds) has a causal relation through other
paths. Correspondingly, as shown in the bottom
right, both (Shooting, wounded) and (wounded,
arresteds) are assigned with very low attention
weights, blocking the propagation over these unin-
formative paths, to avoid the negative confounders
contaminating causal transitivity.

4.8 Remaining Challenges

We randomly sample 20 documents of different
topics from EventStoryLine, which contains 170
event pairs whose causal relations cannot be cor-
rectly predicted by our model. As shown in Figure
4, we manually categorize these pairs into different
types and discuss the remaining challenges:
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Insufficient Fine-Grained Distinction and Need
to Extract Temporal Information (33%) For
example, in the following document:

“...Dubai experienced a slight ‘tremor’ today,
after a more serious earthquake in Southern Iran,
resulting in the evacuation of Emirates Towers and
a few other scrapers...”

The “tremor’” happens in “Dubai” and the “earth-
quake” happens in “Southern Iran”, they are two
different events identified by the temporal indicator
“after”. ERGO incorrectly predicts that there is a
causal relation in (earthquake, evacuation). Future
work could consider joint extraction of causal and
temporal relations within the document.

Events with Similar Semantics (5.3%) Take the
following document as an example:

"...Kenneth Dorsey says the woman accused of
killing two co-workers and critically injuring a
third at the Kraft plant in Northeast Philly is a
good person. And so were the two women she’s
accused of gunning down with a .357 Magnum, just
minutes after she’d been suspended and escorted
from the building..."

ERGO incorrectly predicts that there is a causal
relation between “killing” and “gunning down”.
The reason is that “killing” and “gunning down”
are actually coreference, which suggests a future
direction in exploring related tasks.

Implicit Causal Relations (30%) ERGO still
fails at many implicit causal relations. For exam-
ple, the causal relation between “killing” and “sus-
pended” in the aforementioned document. This
is mainly because there are insufficient events for
global reasoning and hard negatives bring noise.
Clearly, commonsense reasoning will be helpful
in this case, since “suspended” is an unexpected
change that may bring some negative emotions.

Ambiguous Annotation (14%) This type de-
notes that ambiguous causality within some event
pairs. For example, in the following document:
"... A Texas inmate escaped from a prison van
near Houston after pulling a gun on two guards
who were transporting him between prisons..."
We can think there is a causal relation between
“escaped” and “transporting” because if there is no
“transporting”, the “inmate” will have no chance to
“escape”. However, we can also think that there is
no causal relation between them because it is not
“transporting” that directly causes “escape”.
Finally, as shown in Figure 4, our statistics show

that the other errors have to do with annotation
errors (5.9%) and more complicated issues that
cannot be categorized clearly (“Others”, 11.8%).

5 Conclusion

In this paper, we regard DECI as a node classi-
fication task by constructing an event relational
graph. We propose a novel Event Relational Graph
Transformer (ERGO) framework that could cap-
ture potential causal chains and mitigate the false
positive and false negative issues for DECI. Ex-
tensive experiments show great improvements of
ERGO under both intra- and inter-sentence settings
on two widely used benchmarks. Further analysis
provides insights into our approach and the DECI
task. In the future, we will consider introducing
commonsense reasoning and auxiliary tasks to dis-
cover more reliable causality.
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