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Abstract

Multi-modal named entity recognition (MNER)
aims at identifying entity spans and recognizing
their categories in social media posts with the
aid of images. However, in dominant MNER
approaches, the interaction of different modal-
ities is usually carried out through the alter-
nation of self-attention and cross-attention or
over-reliance on the gating machine, which re-
sults in imprecise and biased correspondence
between fine-grained semantic units of text
and image. To address this issue, we propose
a Flat Multi-modal Interaction Transformer
(FMIT) for MNER. Specifically, we first uti-
lize noun phrases in sentences and general do-
main words to obtain visual cues. Then, we
transform the fine-grained semantic representa-
tion of the vision and text into a unified lattice
structure and design a novel relative position
encoding to match different modalities in Trans-
former. Meanwhile, we propose to leverage
entity boundary detection as an auxiliary task
to alleviate visual bias. Experiments show that
our methods achieve the new state-of-the-art
performance on two benchmark datasets.

1 Introduction

Named entity recognition (NER) is a fundamental
task in the field of information extraction, which in-
volves determining entity boundaries from free text
and classifying them into pre-defined categories,
such as person (PER), location (LOC), and organi-
zation (ORG) (Zhao et al., 2021b). Along with the
rapid development of social media, multi-modal
deep learning is widely applied in the structured
extraction from massive multimedia news and web
product information (Zhang et al., 2020; Ju et al.,
2020). As an important research branch of NER,
multi-modal named entity recognition (MNER) sig-
nificantly extends the text-based NER by taking the
{Sentence, Image} pair as inputs (Lu et al., 2018;
Kruengkrai et al., 2020; Dosovitskiy et al., 2020;
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Figure 1: An example for multi-modal named entity
recognition with different visual cues: (a) the whole
image, (b) averagely segmented visual feature and (c)
targeted visual objects.

Lu and Zhang, 2022). Since the visual context as-
sociated with text content has been confirmed to
help resolve the recognition of ambiguous multi-
sense words and out-of-vocabulary words, MNER
plays an important role in extracting entities from
user-generated content on social media platforms
such as Twitter (Li et al., 2015).

It has been the core issue in MNER to fully ex-
ploit the effective visual information and suppress
the interference information, which directly affects
the model performance. To this end, there are three
lines of methods to integrate visual information
into NER. (1) The first line is to encode the whole
image into a global feature vector (Figure 1(a)) for
augmenting each word representation (Moon et al.,
2018). (2) The second line is to divide the feature
map extracted from the whole image into multiple
regions averagely (Figure 1(b)), which is the most
dominant method currently. The method guides the
word to learn a vision-aware representation through
co-attention and gating mechanism (Lu et al., 2018;
Zhang et al., 2018), or uses a Transformer frame-
work based on the combination of self-modal and
cross-modal attention to interact textual and visual
information (Yu et al., 2020; Sun et al., 2021). (3)
The last line is to use noun phrases to detect the
image bounding boxes (Figure 1(c)) and fuse fine-
grained words and visual objects by graph neural
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networks (GNN) (Zhang et al., 2021).

Despite the success, the above works may not
precisely exploit the fine-grained semantic cor-
respondence between semantic units in an input
sentence-image pair. Specifically, as shown in Fig-
ure 1, we believe that the crux of the issue lies
in two aspects. (1) The global clue provided by
image (a) and regional feature maps provided by
images (b) are both implicit and vague, which are
difficult to fit into fine-grained words. Previous
practice tends to map the visual and textual repre-
sentations into different spaces and then fuse them
adaptively. However, the indirectness of informa-
tion interaction through cross-modal attention and
gating mechanism will lead to asymmetry in in-
formation acquisition (Sun et al., 2021; Yu et al.,
2020). (2) Specific visual objects derived from
noun phrases are overly targeted, which makes
some non-entities embodied in the images iden-
tified as entities incorrectly. Generally speaking,
this kind of explicit information is helpful to iden-
tify some words as the correct entity type, such
as “the Taj Mahal”’. However, the visual objects
prominent in the image may easily misidentified as
entities, such as “sunset”.

To handle the aforementioned issues, we pro-
pose a novel Flat Multi-model Interaction Trans-
former for MNER. The key insight comes from
the lattice structure in Chinese NER (Zhang and
Yang, 2018; Li et al., 2020), where word sequence
is used as additional information to enhance the
character representation. To fully exploit the avail-
able visual information, we use a combination of
two visual objects, extracted from the whole im-
age and derived from the noun phrases. We first
represent the input sentence and image with a uni-
fied flat lattice structure consisting of fine-grained
semantic units. Each unit corresponds to a word
or visual object and its position. Meanwhile, in-
spired by the strategies of position representation,
we design an ingenious position encoding for our
flat lattice structure (Shaw et al., 2018; Dai et al.,
2019). In detail, we assign two positional indices
for a unit: head position and tail position, by which
we can correspond the visual object to the associ-
ated words span. Based on the flat lattice structure,
we then resort to the fully-connected self-attention
structure and long-distance dependencies modeling
capability in Transformer (Vaswani et al., 2017) to
build bridges in the interaction between self-modal
and cross-modal units. Finally, we utilize the CRF

decoder to obtain the predicted labels. To largely
eliminate the bias of visual context, we further in-
troduce the entity boundary detection (EBD) as an
auxiliary task.

We conduct extensive experiments on Twitter
2015 and Twitter 2017 benchmark datasets. The
state-of-the-art performance and efficiency demon-
strate the effectiveness of our methods.

2 Related Work

Multi-modal NER. As an important role in many
downstream NLP tasks, including information re-
trieval (Chen et al., 2015), relation extraction
(Miwa and Bansal, 2016) and question answering
system (Diefenbach et al., 2018), the text-based
NER task has attracted much attention in the jour-
nalistic and social fields. Deep learning approaches
such as CNN, LSTM, attention mechanism and pre-
trained models have achieved significant success
in NER, by which we can effectively uncover and
combine the character, word and sentence informa-
tion in text sequence (Ma and Hovy, 2016; Akbik
et al., 2019; Luo et al., 2020). Influenced by the
extensive applications of multi-modal learning in
neural machine translation, visual question answer-
ing and emotion detection (Zhang et al., 2020; Yin
etal., 2020; Gao et al., 2019), many researches have
focused on constructing multi-modal NER datasets
and exploring the methods to guide entity recog-
nition using images. The main idea of these early
methods is encoding the text through LSTM and
the image through pre-trained CNN, then implicitly
interacting the information of two modalities (Lu
et al., 2018; Moon et al., 2018; Zhang et al., 2018).
Recently, (Yuetal., 2020) leverage BERT to model
text sequence and creatively design a multi-modal
interaction module based on Transformer and gat-
ing mechanism to perform self-modal and cross-
modal information interaction alternately. (Zhang
et al., 2021) further represent the input sentence-
image pair as a unified graph to capture the various
semantic relationships and introduce an extended
GNN to conduct graph encoding via multi-modal
semantic interactions. Different from above studies,
our approach aims at representing the fine-grained
semantic units of the text and image as a unified
flat lattice structure. We further design a novel
relative position encoding strategy to directly cap-
ture the interaction between different modalities in
Transformer.
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Lattice Structure. Since word information is po-
tentially useful for character-based Chinese NER
task, the lattice structure is proposed for injecting
the word information into the associated characters.
Specifically, (Zhang and Yang, 2018) first proposes
Lattice-LSTM to explicitly exploit word boundary
information, in which the matched lexical words
are integrated into characters via a directed acyclic
graph. Later, to overcome the limitations of the
lattice structure so that it can be flexibly exploited,
(Sui et al., 2019) converts the lattice into graph and
designs a collaborative graph network for encod-
ing. (Zhao et al., 2021a) proposes a dynamic cross-
and self-lattice attention network to model dense
interactions over word-character pairs.

3 Method

Figure 2 illustrates the overall architecture of our
FMIT, which contains three main components: (1)
Unified flat lattice structure for representing the
input sentence-image pairs. (2) Transformer En-
coder with relative position encoding method for
interacting multi-modal information. (3) Training
with entity boundary detection as an auxiliary task.

Task Formulation. Given a sentence S and its
associated image O as input, the goal of MNER
is to extract a set of entities from S and classify
each extracted entity into one of the pre-defined
categories. As with most existing work in MNER,
we formulate the task as a sequence labelling prob-
lem. Let S = (w1, wy, ..., wy) denote a sequence
of input words, where w; with ¢ = 1,2, ...n de-
notes the ith word in the sentence and n represents
the length of the sentence, and Y = (y1,y2, ..., Yn)
be the corresponding entity labels for all words,
where y; € ) and ) is the pre-defined label set
with standard BIO schema (Sang and Veenstra,
1999). We also use O = (01, 02, ..., 0, ) to denote
a set of input visual objects of number m.

3.1 Unified Flat Lattice Structure

In this section, we take the sentence and image
shown in Figure 1 as an example to describe how
to extract features from them and represent them
with a flat lattice structure.

Word Representations. Due to the capability of
providing different representations for the same
word in different contexts, we utilize pre-trained
language model BERT (Devlin et al., 2019) as
our sentence encoder. Following BERT, the in-

put sentence is preprocessed by inserting the spe-
cial token [CLS] and [SEP] at the beginning and
the end positions, respectively. S is then fed to
BERT encoder to obtain the vectorized representa-
tion H, = (z1, 2, ...x,), where z; € R% is the
generated contextualized vector for w;.

Visual Representations. To capture the visual
objects in O, except for employing the whole im-
age, we also need to derive additional visual objects
from the text. Similar to (Yin et al., 2020), we use
the constituency parsing tool in the Stanford parser
to identity all noun phrases in the input sentence,
and then apply a visual grounding toolkit (Yang
et al., 2019) to detect bounding boxes (visual ob-
jects) for each noun phrase. Since it is difficult
to use noun phrases merely to completely detect
all potential visual objects in the image, according
to the property of NER, we further introduce four
general words of the pre-defined categories (i.e.,
miscellaneous, person, location and organization)
to discover more relevant objects.

To extract meaningful feature representations
from images, we leverage a pre-trained 152-layer
ResNet (He et al., 2016) as a feature detector. We
feed each visual object in O to the ResNet and take
the last hidden layer output as vectorized represen-
tation H, = (v1,v2, ..., Un, ), where v; € R% is the
generated visual representation for o;.

Flat Lattice Construction. The flat lattice struc-
ture aims to integrate the intra-modal and inter-
modal information in a unified space, and enhances
information coupling through a unique positioning
scheme. Before representing the words and visual
objects in a uniform lattice cell, we introduce two
non-linear transformations with ReLLU activation
function to project different representations onto
the same dimension:

§ = Wo(ReLU(Wi; + b1)) + bo M
v = Wo(ReLU(W2v; + b2)) + bo, 2

where W, € R%dw 1}, ¢ R¥*dv T}, ¢ RI*d
are weight matrices, and b1, bo, by are scaler bias.
d is the dimension of unified representations of two
modalities in the flat lattice.

To convert two independent sets of modalities to
a flat lattice structure, we concatenate the aligned
word representation and visual representation, and
then flatten them into a unified sequence £ =
([CLS], zy, ..., x5, [SEP], vy, ...,v5,). As shown
in Figure 2, the flat lattice can be defined as a set
of cells, and a cell corresponds to a fine-grained
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Figure 2: The overall architecture of our Flat Multi-modal Interaction Transformer (FMIT). On the right part, the
blue-frame demonstrates the auxiliary task of entity boundary detection, and the red-frame demonstrates the main

task of MNER.

semantic unit, a head and a tail. Specifically, for
the word, its head and tail are equal, both indexes
of the absolute position in E. For the visual object,
when it is derived from a noun phrase, its head and
tail are indexes of the first and last words of the
corresponding noun phrase; in particular, when it
is the whole image or derived from general words,
we denote its head and tail as indexes of the first
and last words of the sequence.

3.2 Flat Multi-modal Interaction Transformer

Relative Position Encoding for Flat Lattice
Structure. The flat lattice structure consists of
cells with different modalities and different posi-
tion intervals in the visual modality. As illustrated
on the red-frame of Figure 2, to leverage the Trans-
former framework to encode interactions among
cells, we design a relative position encoding for
the cells. Specifically, for two cells ¢; and ¢; in
the lattice, we consider two kinds of relations be-
tween them: intra-modal and inter-modal. Instead
of directly encoding input with absolute position
as vanilla Transformer, we calculate a dense vector
to represent relative position by continuous trans-
formation of the head and tail information. In this
way, we can not only capture the distance between
arbitrary cells, but also model the relationship be-
tween different modalities. Let head]i] and tail[i]
denote the head and tail position of cell ¢;. We
use four kinds of relative distance to indicate the
position information between c¢; and c¢;. They can
be calculated as:

dg.”h) = head[i] — head|j] ©)
dg,”) = head[i] — tail[j] @
dg;.h) = tail[i] — head][j] ®)
Y = tailli] - tail[j), ©)
where d" denotes the distance between the head

(%]
of ¢; and tail of ¢;, and d{/", d"), d{*") have simi-

lar meanings. To obtain the position encoding Py
from distance value, we adopt sine and cosine func-
tions of different frequencies as in (Vaswani et al.,
2017):

P2 — sin(pos/100002"/%) (7
Pﬁffjl = cos(pos/lOOOO%/UZ)7 ®)
where pos is dz(-?h), dl(-;h’), dg-w) or dgt), and k is

the index of dimension of position encoding. The
Transformer has the same dimension d as flat lat-
tice embeddings. Then, we concatenate the four
distance position encodings and feed them into a
non-linear transformation layer to get the final rela-
tive position encoding of cells:

Ri; = ReLU(WT(PdE?h’) ®Pd5?’t) GBPdE;h) @Pdg;w)), (&)
where W, € R%*“? i a learnable parameter, and
@ denotes the concatenation operation.

As mentioned in (Shaw et al., 2018), we think
that commutativity of the vector inner dot will
cause the loss of directionality in Transformer.
Therefore, we further use a variant of self-attention
(Dai et al., 2019) to leverage the relative position
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encoding of different cells, and the attention score
between the query ¢; and key vector k; of two se-
mantic units can be calculated as following:

Aij =E W, Wi gEe, + EL,W, Wi rRij
+u" Wi gEe, +v" Wi,rRij, (10)

where E., represents the flat lattice embedding of
i-th cell from 2§ and v, or the output of last Trans-
former layer. We collect the attention values and
embeddings of all indexes, and denote them as A*
and E7. Then, we perform self-attention over the
sequence by h = 8 parallel heads individually and
dheaq = d/h is the dimension of each head. We
concatenate the results and transform them into the
original dimension by a linear projection. The out-
put of the Transformer is calculated as following:

A * T
Att; = softmax(————)[E. W, (11)
( T ) ]
MH-ATT = W,[Atty; ...; Att.], (12)

where Wq, Wk,R’ Wk,E’ w, € R4*dhead gnd
u,v € R%ecad gre learnable parameters of each
head, and they keep individual from different heads.
W; € R%9 denotes the weight matrices for the
multi-head attention. For simplicity, we omit the
subsequent layers, which are the same as vanilla
Transformer.

CRF Decoding. To increase model capacity and
interaction frequency, we stack [ Transformer lay-
ers to form a cascaded architecture. Finally, we
only take the word presentation of the encoding
output as Hyy € R™*?, which is sent to the decod-
ing layer for sequence labelling. Considering the
dependency between successive labels, we model
Hyy jointly using a standard CRF layer. Let Y~
denotes the set of all possible label sequences for
input sentence X, the probability of the label se-
quence Y can be calculated as:

Hﬁ;l wn(ynfh Yn, HW)
Zy’eY’ Hi:;l w’ﬂ (y;—lvy;u HW)

p(Y]S,0) = , (13)

where ¥, (Yn—1, Yn, Hw) = exp(Wer s Hw +ber f)
is the scoring function, and W, s and b, ; are the
weight vector and bias.

3.3 Training with Entity Boundary Detection

Since the pre-trained ResNet is intended for the
image classification task, its high-level represen-
tation may overemphasize the visual objects that
are prominent in the image and misidentify them
as named entities. To alleviate the bias, we propose
to leverage a flat text-based Transformer for entity

Table 1: The statistics summary of two Twitter datasets.

Entity Tyoe Twitter-2015 Twitter-2017
1y Lyp Train Dev  Test | Train Dev  Test
Person 2217 552 1816 | 2943 626 621

Location 2091 522 1697 | 731 173 178
Organization 928 247 839 | 1674 375 395
Miscellaneous 940 225 726 701 150 157
Total 6176 1546 5078 | 6049 1324 1351
Num of Tweets | 4000 1000 3257 | 3373 723 723

boundary detection based on the properties of po-
sitioning scheme in the flat lattice structure. The
EBD task aims to detect the position of the head
and tail of entities in the input sentence, which can
eliminate the types guidance from visual objects
and enhance the perception of boundary words. As
illustrated on the blue-frame of Figure 2, the flat
text-based Transformer is the same structure as
FMIT, but only takes the words representation as
input.

We remove the type information and decompose
the subsequence Z = (z1, 22, ..., z,) from the la-
belling sequence Y, where z; € {B, E,O} indi-
cates whether the i-th position is the head, tail or
neither of an entity. We employ the flat text-based
Transformer to obtain its specific hidden represen-
tations as Ty € R™*?, followed by feeding it to
another CRF layer to predict the probability of the
label sequence Z given S as Eqn. (13):

ITae ¥n(zn—1, 20, Tw)
Zz/ez’ Hi\/:1 ¥ (3;71: Zn, Tw)

In training phase, we linearly combine the loss
function of the main MNER task and auxiliary
EBD task, making the final training objective func-
tion by minimizing negative log-likelihood estima-
tion as follows:

L£=-> (logp(Y|S,0) + Alogp(Z|S)), (15)

4 Experiments

p(Z|5) =

, o (14)

We conduct experiments on two MNER datasets,
comparing our Flat Multi-modal Interaction Trans-
former (FMIT) approach with a number of uni-
modal and multi-modal approaches.

4.1 Datasets

We take two publicly benchmark Twitter datasets
(Twitter-2015 and Twitter-2017) for MNER, which
are provided by (Zhang et al., 2018) and (Lu
et al., 2018), respectively. Each sample consists of
a {Sentence, Image} pair. Since some samples lack
image modality, we replace the missing images
with a uniform empty image. Tablel shows the
number of entities for each type and the size of
train/dev/test data split.
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Table 2: Performance of different competitive text-based and multi-modal approaches on two Twitter datasets.

Twitter-2015 Twitter-2017

Modality Approaches Single Type (F1) Overall Single Type (F1) Overall
PER LOC ORG MISC| P R Fl |PER LOC ORG MISC| P R Fl
CNN-BIiLSTM-CRF | 80.86 75.39 47.77 32.61 |66.24 68.09 67.15|87.99 77.44 74.02 60.82 [80.00 78.76 79.37
Text HBiLSTM-CRF |82.34 76.83 51.59 32.52{70.32 68.05 69.17|87.91 78.57 76.67 59.32|82.69 78.16 80.37
BERT 84.72 79.91 58.26 38.81|68.30 74.61 71.32|90.88 84.00 79.25 61.63 |82.19 83.72 82.95
BERT-CRF 84.74 80.51 60.27 37.29 [69.22 74.59 71.81]90.25 83.05 81.13 62.21 |83.32 83.57 83.44
VG-ATT 82.66 77.21 55.06 35.25|73.96 67.90 70.80|89.34 78.53 79.12 62.21 |83.41 80.38 81.87
Ada-Co-ATT 81.98 78.95 53.07 34.02 (72.75 68.74 70.69(89.63 77.46 79.24 62.77 |84.16 80.24 82.15
UMT 85.24 81.58 63.03 39.45|71.67 75.23 73.41|91.56 84.73 82.24 70.10|85.28 85.34 85.31
Text + UMGF 84.26 83.17 62.45 424217449 75.21 74.85]91.92 85.22 83.13 69.83 [86.54 84.50 85.51
Image FMIT (I = 1) 84.83 83.19 62.64 41.13 |74.18 75.03 74.60|91.75 85.06 82.38 69.84 |85.55 85.29 85.42
FMIT (I = 3) 86.77 83.93 64.88 42.97|75.11 77.43 76.25|93.14 86.52 83.93 70.90 |87.51 86.08 86.79
FMIT (I = 6) 86.45 84.19 64.35 43.68 [76.28 75.67 75.97|93.04 85.94 84.56 71.20 |86.80 86.26 86.53
FMIT (I =12) [85.79 83.91 62.87 41.55|74.92 75.63 75.27|92.61 86.03 83.34 70.78 |86.32 85.50 85.91

Table 3: The relative inference-time speed and param-
eters of different models in the information interaction
phrase.

Approaches | Speedup | Parameters
UMT 1.93x% 403M
UMGF 1% 231M
FMIT (I =1) | 27.73% 12M
FMIT (I =3) | 10.17x 35M
FMIT (I =6) | 6.12x 6OM

4.2 Baselines

For a comprehensive comparison, we mainly com-
pare two groups of baselines with our approach.

The first group is the representative text-based
approaches for NER: (1) CNN-BiLSTM-CRF (Ma
and Hovy, 2016) and HBiLSTM-CRF (Lample
et al., 2016), leverage both character-level informa-
tion and BiLSTM-based word-level information.
(2) BERT (Devlin et al., 2019) and BERT-CREF, a
pre-trained multi-layer bidirectional Transformer
encoder.

The second group is several competitive multi-
modal approaches for MNER: (3) VG-ATT (Lu
et al., 2018), based on HBiLSTM-CRF with the
visual context, utilizes a visual attention model and
a gate mechanism to mine implicit the word-aware
visual information. (4) Ada-Co-ATT (Zhang et al.,
2018), a multi-modal approach based on CNN-
BiLSTM-CREF, designs an adaptive co-attention
network to fuse word-guided visual representations
and image-guided textual representations by a fil-
tration gate. (5) UMT (Yu et al., 2020) empowers
Transformer with a multi-modal interaction module
to capture the inter-modality dynamics and incor-
porates the auxiliary entity span detection mod-
ule. (6) UMGF (Zhang et al., 2021), the existing
state-of-the-art approach for MNER, uses a unified

multi-modal graph to capture the semantic relation-
ships between the words and visual objects and
stack multiple fusion layers to perform semantic
interactions to learn node representations.

4.3 Experiment Results

We mainly adopt standard Precision (P), Recall (R)
and Fl1-score (F1) to evaluate the overall perfor-
mance on two Twitter MNER datasets and report
the metric F1 for each single type. To demonstrate
the effectiveness and robustness of FMIT, we con-
duct extensive experiments from self-domain and
cross-domain scenarios.

Self-domain Scenario. Table 2 shows the per-
formance comparison of our FMIT approach with
different competitive text-based and multi-modal
approaches in a self-domain scenario for MNER.

(1) Compared with the text-based approaches,
the multi-modal approaches can generally achieve
better performance than their corresponding uni-
modal baselines, which demonstrates that incorpo-
rating the visual information is motivating for NER
in social media. For example, in the overall F1 on
both datasets, VG-ATT outperforms HBiLSTM-
CRF by 1.63% and 1.50%, respectively. Moreover,
recent multi-modal approaches UMT and UMGF
show significant performance improvements when
replacing the sentence encoder with BERT and us-
ing the Transformer framework to interact textual
and visual information. It further demonstrates that
the self-attention in Transformer is more beneficial
for feature fusion and filtering.

(2) Compared with UMT and UMGF, which
utilize Transformer to model intra-modal and inter-
modal information interactions and dynamically
control the contribution of visual features through

2060



Table 4: Performance comparison of FMIT and two existing state-of-the-art multi-modal approaches in cross-

domain scenarios for generalization analysis.

Twitter-2017—Twitter-2015 Twitter-2015—Twitter-2017
Approaches Single Type (F1) Overall Single Type (F1) Overall
PER LOC ORG MISC| P R F1 | PER LOC ORG MISC| P R F1
UMT 80.34 71.30 4797 20.13 | 64.67 6359 64.13 | 81.24 6789 39.52 31.87 | 67.80 5523 60.87
UMGF 79.62 7194 4948 2024 | 67.00 62.81 6621 | 81.83 72.25 41.20 32.00 | 69.88 56.92 62.74
EMIT(l = 3) | 82.05 72.33 50.82 21.28 | 66.72 69.73 68.19 | 83.51 71.96 42.93 33.46 | 70.65 59.22 64.43
Table 5: Ablation study of our FMIT.
Twitter-2015 Twitter-2017
Approaches Single Type (F1) Overall Single Type (F1) Overall
PER LOC ORG MISC| P R F1 | PER LOC ORG MISC| P R F1
FMIT (I = 3) | 86.77 8393 64.88 4297 | 7511 7743 76.25 | 93.14 86.52 83.93 70.90 | 87.51 86.08 86.79
w/o Obj 8555 80.73 63.37 38.61 | 73.44 7425 73.84|92.16 8523 81.57 6897 | 8536 84.69 85.02
w/o Rel 84.13 7995 62.64 3886 | 72.87 7338 73.12|91.06 8536 8124 67.83 | 8429 84.76 84.52
w/oEBD | 8621 8326 64.05 4221 |73.38 77.95 75.60 | 92.73 86.14 8255 69.47 | 85.55 86.67 86.11

a gating mechanism, Our FMIT makes radical
promotion in model structure and representations
of different modalities. In the overall F1 on both
datasets, our best model achieves state-of-the-art
performance by obtaining 76.25% and 86.79% re-
sults, outperforming UMT by 2.84% and 1.48%,
and outperforming UMGF by 1.40% and 1.28%,
respectively.

(3) We compare the impact of the number of
Transformer layers. It can be observed that when
I = 1, FMIT achieves performance comparable to
UMT and UMGTF, both of which use the 12-layers
Transformer framework. When ! = 3 or [ = 6, we
reach state-of-the-art F1-score in all single types
and overall F1-score, precision and recall metrics
on both datasets. As shown in Table 3, our ap-
proach can achieve better performance with fewer
parameters and higher efficiency. With only 12M
parameters, the 1-layer FMIT is 14.37 times and
27.73 times faster than UMT and UMGF in infor-
mation interaction phases, respectively. It demon-
strates that flat lattice structure can more fully and
directly establish interactions in both intra-modal
and inter-modal simultaneously, making it possible
to incorporate important visual information into
entity recognition with only a few Transformer lay-
ers. Meanwhile, we speculate that the reason for
the performance declines at 12-layer FMIT is the
redundancy of unnecessary information.

Cross-domain Scenario. Due to the obvious dif-
ferences in type distribution and data characteristics
between the two Twitter datasets, we compare our
FMIT approach and two existing state-of-the-art
multi-modal approaches in cross-domain scenarios
for generalization analysis. Twitter-2017—Twitter-

2015 indicates that the model trained on Twitter-
2017 is used to test Twitter-2015, and Twitter-
2015—Twitter-2017 has similar meaning. As
shown in Table 4, our approach outperforms UMT
and UMGF by a large margin in most metrics. The
potential reason for the excellent generalization
may be that with the tight information coupling
structure enables FMIT to learn the underlying
features better.

4.4 Ablation Study

To investigate the influence of different factors of
our proposed approach, we perform comparison
between the 3-layer FMIT and its ablation ap-
proaches, concerning the entity boundary detection
task and several critical components of the model.
The results are reported in Table 5.

w/o Obj. Firstly, we replace the targeted visual
object guidance with 7 x 7 average-segmented vi-
sual blocks, which can be obtained by feeding the
whole image to ResNet (He et al., 2016) and tak-
ing the output of the last convolution layer. This
approach completely ignores the correspondence
of fine-grained units between different modalities,
bringing in significant performance degradation.

w/o Rel. Secondly, we remove the relative po-
sition encoding for flat lattice structure and the
positioning scheme of each cell. In this case, we
only use self-attention in vanilla Transformer to
conduct intra-modal and inter-modal fusions. We
find that the overall F1 on both datasets decreases
substantially by 3.13% and 2.27%, respectively,
which indicates a critical role for coupling interac-
tions between different modalities through position
strategy.
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I've committed to play soccer at [Daemen
College ORG]" in [New York LOC]?

BERT-CRF 1-None x, 2-LOC v/
UMT 1-ORG v/(0.362), 2-LOC v/
UMGF 1-ORG v/(0.575), 2-LOC v/
FMIT 1-ORG v/(0.867), 2-LOC v

[The Soviet War Memorial MISC]* at
[Treptower Park LOCY?, [Berlin LOC]?

1-None %, 2-LOC v/, 3-LOC v
1-PER x, 2-LOC v/, 3-LOC v
1-MISC v'(0.623), 2-LOC v/, 3-LOC v
1-MISC v/(0.883), 2-LOC v/, 3-LOC v

[David Gilmour PER]*and [Roger
Waters PER]? playing [table football]®

1-PER v/, 2-PER v/, 3-None v'(0.495)
1-PER v/, 2-None x, 3-None v'(0.386)
1-PER v/, 2-PER v/, 3-MISC x

1-PER v/, 2-PER v/, 3-None v'(0.713)

Figure 3: The first row shows several representative samples together with their manually labeled entities in the test
set of two Twitter datasets, and the bottom four rows show predicted entities of different approaches on these test
samples. The values in parentheses represent the confidence of the predicted label.
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Twitter-2017 Twitter-2015
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Figure 4: Predicted results statistics: (a) The number of
entities (shown in y-axis) that are incorrectly predicted
by BERT-CREF, but get corrected by each multi-modal
approach; (b) The number of entities (shown in y-axis)
that are correctly predicted by BERT-CRF, but wrongly
predicted by each multi-modal approach.

w/o EBD. Discarding the entity boundary detec-
tion task and only retaining the main MNER task
will lead to significant performance degradation in
overall precision, while a slight increase in overall
recall. The result is consistent with our hypothe-
sis that the guidance of visual objects drives the
corresponding words to be misjudged as entities,
while the EBD auxiliary task can balance the play
of visual objects and text itself.

4.5 Further Analysis

Case Study. To better understand the effective of
our approach in incorporating visual information
into the MNER task, we select a representative set
of test samples to compare the prediction results of
the 3-layer FMIT and other approaches.

First, from Figure 3(a), we can observe that the
BERT-CREF fails to identify Daemen College due
to the lack of guidance from visual context such as
the plaque, while all the multi-modal approaches
can accurately determine the entities by referring
to specific visual regions.

Second, we can see from Figure 3(b) that UMT
gives a wrong identification of the entity The Soviet
War Memorial, probably because the segmented

visual feature is fragmented, bringing in interfer-
ence to type classification. On the contrary, UMGF
and FMIT can accurately classify the entities into
corresponding types with the guidance of targeted
visual objects.

Third, as shown in Figure 3(c), UMGF erro-
neously identifies table football as an entity of
MISC, which indicates that over-reliance on visual
information will lead to emphasis bias. Therefore,
FMIT corrects this bias by balancing the impor-
tance of text and vision with EBD task.

Finally, we find that compared with other ap-
proaches, FMIT can obtain higher confidence in
predicted results. For example, for entity Dae-
men College in Figure 3(a), FMIT achieves a la-
bel confident of 0.867, substantially outperforming
UMGF(0.575) and UMT(0.362). It indicates that
our relative position encoding strategy and flat lat-
tice structure can extract important information and
couple different modalities more directly.

Statistic Study. To better appreciate the impor-
tance of the EBD auxiliary task, we count the num-
ber of entities that are correctly/wrongly predicted
by BERT-CREF, but wrongly/correctly predicted
by each multi-modal approach.

As shown in Figure 4, compared with other
multi-modal methods, our FMIT can correctly
identify more entities due to the powerful image-
ware word representations. Moreover, it is clear
that FMIT introduces fewer wrong entities with the
help of EBD auxiliary task. It demonstrates that the
well-designed EBD auxiliary task can greatly elim-
inate the visual bias brought by visual context and
perform more efficiently than the span detection
module proposed in UMT.
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5 Conclusion

In this paper, we propose a novel Flat Multi-modal
Interaction Transformer for MNER, which exploits
flat lattice structure and relative position encod-
ing to directly interact fine-grained semantic units
between different modalities. Moreover, we put for-
ward entity boundary detection as an auxiliary task
to alleviate visual bias. We conduct extensive exper-
iments on two MNER datasets, and experimental
results demonstrate that our approach outperforms
other text-based and multi-modal approaches.
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A Implementation Details

For each uni-modal and multi-modal approach, the
maximum length of the sequence input and batch
size are respectively set to 128 and 16. For our
FMIT approach, we utilize the pre-trained cased
BFERTy,s. model with dimension of 768 to initial
word representations H,;, and employ a pre-trained
152-layer ResNet with dimension of 2048 to ini-
tial the visual representations H,,. The parameters
of both pre-trained models keep fine-tuned during
training. After dimension aligned, the dimension d
of both modalities are transformed into 512. The
dropout rate and tradeoff rate A are respectively
set to 0.2 and 0.25. To train our model, we use
Adam optimizer with a learning rate of 5e-5 for
pre-trained models and 2e-4 for other parameters.
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