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Abstract

Event extraction (EE) is an essential task of
information extraction, which aims to extract
structured event information from unstructured
text. Most prior work focuses on extracting flat
events while neglecting overlapped or nested
ones. A few models for overlapped and nested
EE includes several successive stages to ex-
tract event triggers and arguments, which suffer
from error propagation. Therefore, we design a
simple yet effective tagging scheme and model
to formulate EE as word-word relation recog-
nition, called OneEE. The relations between
trigger or argument words are simultaneously
recognized in one stage with parallel grid tag-
ging, thus yielding a very fast event extraction
speed. The model is equipped with an adaptive
event fusion module to generate event-aware
representations and a distance-aware predictor
to integrate relative distance information for
word-word relation recognition, which are em-
pirically demonstrated to be effective mecha-
nisms. Experiments on 3 overlapped and nested
EE benchmarks, namely FewFC, Geniall, and
Genial3, show that OneEE achieves the state-
of-the-art (SoTA) results. Moreover, the infer-
ence speed of OneEE is faster than those of
baselines in the same condition, and can be fur-
ther substantially improved since it supports
parallel inference.!

1 Introduction

Event Extraction (EE) is a fundamental yet chal-
lenging task in information extraction research
(Miwa and Bansal, 2016; Katiyar and Cardie, 2016;
Fei et al., 2020b; Li et al., 2021b; Fei et al., 2022a).
EE facilitates the development of practical applica-
tions such as knowledge graph construction (Wei
et al., 2019b; Bosselut et al., 2021), biological pro-
cess analysis (Miwa et al., 2013), and financial mar-
ket surveillance (Nuijj et al., 2013). The goal of EE
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Figure 1: Examples of three kinds of events, including
a flat event (a), overlapped events (b), and nested events
(c). Different event mentions are denoted in distinct
colors. Triggers are marked with red boxes while argu-
ments are underlined.

is to recognize event triggers as well as the associ-
ated arguments from texts. As an example, Figure
1(a) illustrates a Share Reduction event in-
cluding a trigger “reduced” and a subject argument
“Wang Yawei”.

Traditional methods for EE (Li et al., 2013; Chen
et al., 2015; Nguyen et al., 2016; Liu et al., 2018;
Nguyen and Nguyen, 2019) regard event extraction
as a sequence labeling task, assuming that event
mentions do not overlap with each other. How-
ever, they neglect complicated irregular EE sce-
narios (i.e., overlapped and nested EE) (Fei et al.,
2020a, 2021a). As exemplified in Figure 1(b),
there are two overlapped events, Investment,
and Share Transfer, which share the same
trigger word “acquired” and the argument words
“Guangzhou Securities”. Figure 1(c) illustrates an
example of nested events where the event Gene
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Figure 2: Two examples to illustrate our tagging scheme.
We formalize the overlapping and nested EE as word-
word relation recognition, where S-T and S-A denote
the relations between the head and tail boundary words
of a trigger or argument, and R-S, R-O, R-T, and R-
P denote the relations between the trigger word and
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the argument words with the roles “subject”, “object”,
“target” and “proportion”.

Expression is the Theme argument of another
event Positive Regulation.

Prior studies for overlapped and nested EE (Yang
etal., 2019; Li et al., 2020) employ pipeline-based
methods that extract event triggers and arguments
in several successive stages. Recently, the state-of-
the-art model Sheng et al. (2021) also uses such
a method that consecutively performs event type
detection, trigger extraction, and argument extrac-
tion. The main problem with such a method is that
the latter stage relies on the former stage, which
inherently brings the error propagation problem.

To address the above issue, we present a novel
tagging scheme that transforms overlapping and
nested EE into word-word relation recognition. As
shown in Figure 2, we design two types of rela-
tions, including the span relation (S-+) and role
relation (R-«). S-+ handles trigger and argument
identification, denoting whether two words are the
head-tail boundary of a trigger (T) or argument (A).
R-« addresses argument role classification, indicat-
ing whether the argument plays the “+” role in the
event.

Based on this scheme, we further propose a one-
stage event extraction model, OneEE, which mainly
includes three parts. First, it adopts BERT (Devlin
et al., 2019) as the encoder to get contextualized
word representations. Afterward, an adaptive event
fusion layer composed of an attention module and
two gate fusion modules are used to obtain event-
aware contextual representations for each event
type. In the prediction layer, we parallelly predict
the span and role relations between each pair of

words by calculating distance-aware scores. Fi-
nally, event triggers, arguments, and their roles can
be decoded out using these relation labels in one
stage without error propagation.

We evaluate OneEE on 3 overlapped and nested
EE datasets (FewFC (Zhou et al., 2021), Geniall
(Kim et al., 2011), and Genial3 (Kim et al., 2013)),
and conduct extensive experiments and analyses.
Our contributions can be summarized as follows:

e We design a new tagging scheme that casts
event extraction as a word-word relation recogni-
tion task, providing a novel and simple solution for
overlapped and nested EE.

e We propose OneEE, a one-stage model that
effectively extracts word-word relations in parallel
for overlapped and nested EE.

e We further present an adaptive event fusion
layer to obtain event-aware contextual representa-
tions and effectively integrate event information.

e OneEE outperforms the SoTA model with re-
gard to both the performance and inference speed.

2 Related Work

2.1 Event Extraction

Information extraction is one of the key research
track in natural language processing (Miwa and
Bansal, 2016; Fei et al., 2021¢), among which the
event extraction is the most complicated task (Chen
et al., 2015; Fei et al., 2022¢). Traditional EE (i.e.,
flat or regular EE) (Li et al., 2013; Nguyen et al.,
2016; Liu et al., 2018; Sha et al., 2018; Nguyen
and Nguyen, 2019) formulates EE into a sequence
labeling task, assigning each token with a label
(e.g., BIO tagging scheme). For example, Nguyen
et al. (2016) uses two bidirectional RNNs to get
richer representation which is then utilized to pre-
dict event triggers and argument roles jointly. Liu
et al. (2018) jointly extracts multiple event trig-
gers and arguments by introducing attention-based
GCN to model the dependency graph information
(Feietal., 2021b; Li et al., 2021a; Fei et al., 2022b).
However, their underlying assumption that event
mentions do not overlap with each other is not
always valid. Irregular EE (i.e., overlapped and
nested EE) has not received much attention, which
is more challenging and realistic.

Existing methods for overlapped and nested EE
(Yang et al., 2019; Li et al., 2020) perform event
extraction in a pipeline manner with several steps.
To solve the argument overlap, Yang et al. (2019)
adopts multiple sets of binary classifiers where
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Figure 3: The architecture of our framework. Given a target event type embedding e; of type ¢ (e.g., transfer share),
the goal of our framework is to identify its triggers, arguments, and corresponding roles in the input sentence.

each severs for a role to detect the role-specific
argument spans but fails in solving trigger over-
lap. Except for pipeline methods, the latest attempt
dealing with overlapped EE is Sheng et al. (2021)
in a joint framework with cascade decoding. They
are the first to simultaneously tackle all the over-
lapping patterns. Sheng et al. (2021) sequentially
performs type detection, trigger extraction, and ar-
gument extraction, where the overlapped targets
are extracted separately conditioned on the specific
former prediction. Nevertheless, most of the multi-
stage methods suffer from error propagation.

2.2 Tagging-based Information Extraction

Tagging scheme in the field of information extrac-
tion has been extensively investigated. Traditional
sequence labeling approaches tagging each token
once (e.g., BIO) is hard to tackle irregular infor-
mation extraction (e.g., overlapped NER). Several
researchers (Zheng et al., 2017) extend the BIO
label scheme to adapt to more complex scenarios.
However, they suffer from the label ambiguity prob-
lem due to limited flexibility. Recently, the grid
tagging scheme is used in a lot of information ex-
traction tasks, such as opinion mining (Wu et al.,
2020), relation extraction (Wang et al., 2020), and
named entity recognition (Wang et al., 2021), due
to its characteristic of presenting relations between
word pairs. For example, TPLinker (Wang et al.,
2020) realizes one-stage joint relation extraction
without a gap between training and inference by
tagging token pairs with link labels. Inspired by
these works, we design our tagging scheme to ad-
dress overlapping and nested EE, which predicts
relations between trigger or argument words paral-
lelly in one stage.

Also it is noteworthy explicitly that this work

inherits the recent success of the idea of word-
word relation detection, as in Li et al. (2022). Li
et al. (2022) propose to unify all the NER (includ-
ing the flat, nested and discontinuous mentions)
with a word-word modeling based on the grid tag-
ging scheme. This work however differs from Li
et al. (2022) in two folds. First, we extend the idea
of the word-word tagging from NER to EE success-
fully, where we re-design two relation types for the
nested and overlapped events. Second, from the
modeling perspective, we devise an adaptive event
fusion layer to fully support the one-stage (end-to-
end) complex event detection, which greatly helps
avoid error propagation.

3 Problem Formulation

The goal of event extraction includes extracting
event triggers and their arguments. We can formal-
ize overlapping and nested EE as follows: given
an input sentence consisting of N tokens or words
X = {x1,x9,...,zN} and event type e € &, the
task aims to extract the span relations S and the
role relations R between each token pair (z;, x;),
where £ denotes the event type collection, S and
‘R are pre-defined tags. These relations can be
explained below, and we also give an example as
demonstrated in Figure 2 for better understanding.

* S: the span relation indicates that z; and x;
are the starting and ending token of the ex-
tracted trigger span S—T or argument span
S-A,wherel <7< j < N.

* R: the role relation indicates that the argu-
ment with x; acts the certain role R—~ of the
event with the trigger containing x;, where
1 <4,7 < N. « indicates the role type.

* NONE, indicating that the word pair does not
have any relation defined in this paper.
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4 Framework

The architecture of our model is illustrated in Fig-
ure 3, which mainly consists of three components.
First, the widely-used pre-trained language model,
BERT (Devlin et al., 2019), is used as the encoder
to yield contextualized word representations from
the input sentences. Then, an adaptive event fu-
sion layer consisting of an attention module and
two gate modules is used to integrate the target
event type embedding into contextual representa-
tions. Afterward, a prediction layer is employed
to jointly extract the span relations and the role
relations between word pairs.

4.1 Encoder Layer

We leverage BERT as the encoder for our model
since it has been demonstrated to be one of the
SoTA models for representation learning in EE.
Given an input sentence X = {x1,z9,..., 2N},
we convert each token z; into word pieces and then
feed them into a pre-trained BERT module. After
the BERT calculation, each sentential word may
involve vectorial representations of several pieces.
Here we employ max pooling to produce word
representations H = {hy, ha,...,hy} € RV*d
based on the word piece representations.

4.2 Adaptive Event Fusion Layer

Since the goal of our framework is to predict the
relations between word pairs for the target event
type e, it is important to generate event-aware
representations. Therefore, to fuse the event infor-
mation and contextual information provided by the
encoder, we design an adaptive fusion layer. As
shown in Figure 3, it consists of an attention mod-
ule, modeling the interaction among events and
obtaining the global event information, and two
gate fusion modules for integrating the global and
target event information with contextualized word
representations.

Attention Mechanism Motivated by the self-
attention in Transformer (Vaswani et al., 2017; Wei
et al., 2019a), we first introduce an attention mech-
anism, of which input consists of queries, keys, and
values. The output is computed as a weighted sum
of the values, where the weight assigned to each
value is the dot product of the query with the cor-
responding key. The attention mechanism can be

formulated as:
QKT
Attention(Q, K,V') = softmax Vo,
(Q.K.V) Cor ’

where +/dp, is a scaling factor, Q, K and V are
query, key and value tensors, represented by Eq. 4.

Gate Fusion Mechanism We design a gate fu-
sion mechanism to integrate two kinds of features
and filter the unnecessary information. The gate
vector g is produced by a fully-connection layer
with the sigmoid function, which can adaptively
control the flow of the input:

Gate(p,q) =gop+(1-9)©q, (2

g =0c(Wylpiq] +by) , 3)

where p and q are input vectors, represented by

Eq. 5 and Eq. 6. o(:) is a sigmoid activation

function, ® and [;] denote element-wise product

and concatenation operations, respectively. W,
and by, are trainable parameters.

We leverage the attention mechanism to obtain
the global event embeddings for each contextu-
alized word representation. Given a set of ran-
domly initialized event type embeddings E =
{e1,ea,... ey} € RMXdr where M is the num-
ber of event types, the calculation can be formu-
lated as:

E9 = Attention(W,H, W,E,W,E) , (4)

where EY is the output of the attention mechanism,
W,, W), and W, are learnable parameters.

To encode global event information into word
representations, we adopt a gate module to fuse the
contextual word representations and global event
representations. After that, we employ another
gate mechanism to integrate the target event type
embedding and the output of the last gate module.
the overall process can be formulated as:

HY = Gate(H, EY) , (5)
V! = Gate(H?, e;) , (6)
where e; € E denotes the target event type embed-

ding, V** = {v1, v9,...,vn} € RN is the final
event-aware word representations.

4.3 Joint Prediction Layer

After the adaptive event fusion layer, we obtain the
event-aware word representations V!, which are
used to jointly predict the span and role relations
between each pair of words. For each word pair
(ws, w;), we calculate a score to measure the possi-
bility of them for the relation s € S and r € R.
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Distance-aware Score To integrate relative dis-
tance information and word pair representations,
we introduce a distance-aware score function. For
two vectors p; and p; from a sequence of repre-
sentations, we combine them with corresponding
position embeddings from Su et al. (2021), and
then calculate the score by the dot product of them:

Score(pi, p;) = (Ripi) " (R;p;)
=p/ R;_ip; ,
where R; and R; are position embeddings of p;
and p;, Rj_; = R;—Rj. Thus, we can obtain the
span score ¢;; and the role score ¢;; of the word
pair (w;, w;) for target event type ¢:

(7

ij = Score(WsﬂJf, Wﬂ”;‘) ) ®)
iy = Score(W,1 v}, WT2U§') ) €]

where W1, Wyo, W1 and W5 denote parame-
ters. v} and v}, are from Eq. 6.

4.4 Training Details

For the score c;fj, where x denotes the relation s
or r, our training target is to minimize a variant of
circle loss (Sun et al., 2020) which extends soft-
max cross-entropy loss to figure out multi-label
classification problem. In addition, we introduce a
threshold score ¢, noting that the scores of the pairs
with relation are larger than d, and the other pairs
are less than it. The loss function can be formulated
as:

£* = log(e’+ Z el +log (e’ + Z i)

(6,) € (6,5) g
(10)

where 2* denotes the pair set of relation x, J is set
to zero.

Finally, we enumerate all event types in the se-
lected event type set £’ and get the total loss:

L=>"0_co+> L,
te&’ seS reR

where S’ is a subset sampled from S, we detail the
sampling strategy in the appendix.

an

4.5 Inference

During the inference period, our model is able to
extract all events by parallelly injecting their event
type embeddings to the adaptive event fusion layer.
As shown in Figure 4, once all the tags of a certain
event type are predicted by our model in one stage,
the overall decoding process can be summarized
as four steps: First, we get starting and ending
indices of the trigger or argument. Second, we

Transfer Share

SR ST SA, S A
Citic  Securities 100% equity of Guangzhou Securities
1 3 3 4 5 6 7
3 3| (17 Citic Event Type:
ot b A 1112 Securities 1 Transfer Share
N Trigger:
~AArgument:

14 100% jeRPA3 Subject: Citic Securities
Proportion: 100%
Target: Guangzhou
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18 Securities |

Figure 4: A decoding case of our system with four steps.

#Ovlp. #Nest. #Sent. #Events

train 1,560 - 7,185 10,227

FewFC  dev 205 - 899 1,281
test 210 - 898 1,332

train 954 1,628 8,730 6,401

Geniall dev 121 199 1,091 824
test 125 197 1,092 775

train 347 784 4,000 2,743
Genial3 dev 44 100 500 352
test 42 88 500 320

Table 1: Statistics of the datasets. “Ovlp.” and “Nest.”
denote the sentences with overlapped and nested events,
respectively.

obtain the trigger and argument spans.” Third, we
match the trigger and arguments according to the
R-« relations. Finally, the event type is assigned to
this event structure. Specially, we repeat the above
four steps for each event type.

S Experiments Settings

5.1 Datasets

As shown in Table 1, we follow previous work
(Sheng et al., 2021), adopting FewFC (Zhou et al.,
2021), a Chinese financial event extraction bench-
mark for overlapped EE. FewFC annotates 10 event
types and 18 argument role classes with about 22%
sentences containing overlapped events. We also
experiment on two biomedical datasets for nested
EE, namely Geniall (Kim et al., 2011) and Ge-
nial3 (Kim et al., 2013), with around 18% sen-
tences containing nested events. Genial 1 annotates
9 event types and 10 argument role classes while
the figures for Genial3 are 13 and 7. We split the
train/dev/test as 8.0:1.0:1.0 for both of them.

5.2 Implementation Details

We employ the Chinese Bert-base model for
FewFC and BioBERT (Lee et al., 2020) for Ge-

Note that if two pairs with the same span relation clash in
the boundaries, the pair with higher score will be selected.
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TI(%) TC(%) Al(%) AC(%)

P R  Fl P R Fl P R Fl P R Fl
BERT-softmax ~ 89.8 79.0 84.0 802 61.8 698 746 628 682 725 602 658
FlatEE BERT-CRF 90.8 808 855 817 636 715 751 643 693 729 618 669
BERT-CRF-joint 89.5 79.8 844 80.7 630 708 761 635 692 742 612 67.1
ovlo. &  PLMEE 837 858 847 756 745 751 743 673 706 725 655 68.8
Nestp'EE MQAEE 89.1 855 874 797 761 778 703 683 693 682 665 673
. CasEE 894 877 886 779 785 782 728 731 729 713 715 714
Ours  OneEE 88.7 887 887 79.1 803 797 754 770 762 740 729 734

Table 2: Results for extracting all kinds of events on FewFC, where TI, TC, Al, AC denote trigger identification,
trigger classification, argument identification, and argument classification, respectively. We run our model for 5
times with different random seeds and report the median values.

niall and Genial3. We adopt AdamW (Loshchilov
and Hutter, 2019) optimizer with the learning rate
of 2e — 5 for BERT and le — 3 for the other mod-
ules. The batch size is 8 and the hidden size dj, is
768. We train our model with 20 epochs on FewFC
and Geniall and 30 epochs on Genial3. All the
hyper-parameters are tuned on the development set.
All the event type embeddings are trained from
scratch.

5.3 Evaluation Metrics

For evaluation, we follow the traditional criteria of
previous work (Chen et al., 2015; Du and Cardie,
2020; Sheng et al., 2021). 1) Trigger Identification
(TD): A trigger is correctly identified if the pre-
dicted trigger span matches with a golden label; 2)
Trigger Classification (TC): A trigger is correctly
classified if it is correctly identified and assigned
to the right type; 3) Argument Identification (Al):
An argument is correctly identified if its event type
is correctly recognized and the predicted argument
span matches with a golden label; 4) Argument
Classification (AC): An argument is correctly clas-
sified if it is correctly identified and the predicted
role matches any of the golden labels. We report
Precision (P), Recall (R), and F measure (F1) for
each of the four metrics.

5.4 Baselines

Sequence Labeling Methods for Flat EE  These
methods cast the EE task into a sequence label-
ing task by assigning each token a label. BERT-
softmax uses BERT to get feature representations
for classifying triggers and arguments. BERT-CRF
adds the CRF layer on BERT to capture label de-
pendencies. BERT-CRF-joint extends the BIO
tagging scheme to joint labels of type and role as
B/I/0-type-role, inspired by joint extraction

of entity and relation (Zheng et al., 2017). All
these methods are incapable to solve the overlap-
ping problem due to label conflicts.

Multi-stage Methods for Overlapped and Nested
EE These methods perform EE in several
stages. PLMEE (Yang et al., 2019) solves the
argument overlap problem by extracting role-
specific argument according to the trigger pre-
dicted by the trigger extractor in a pipeline man-
ner. CasEE (Sheng et al., 2021) sequentially per-
forms type&trigger&argument extractions, where
the overlapped targets are separately extracted con-
ditioned on former predictions and all subtasks are
jointly learned.

6 Experimental Results

6.1 Results of All EE

Table 2 reports the result of all methods on the over-
lapped EE dataset, FewFC, while Table 3 reports
the results of the nested EE datasets, Genial 1 and
Genial3. We can observe that:

1) Our method significantly outperforms all
other methods and achieves the state-of-the-art F1
score on all three datasets.

2) In comparison with sequence labeling meth-
ods, our model achieves better recall and F1 scores.
Specifically, our model outperforms BERT-CRF-
joint by 11.7% and 6.3% in recall and the F1 score
of AC on the FewFC dataset and achieves a sub-
stantial improvement of 4.4% in F1 score of AC
on two Genia datasets averagely. It shows the ef-
fectiveness of our model on overlapped and nested
EE since the sequence labeling methods can only
solve flat EE.

3) In comparison with multi-stage methods, our
model also improves the performance on the F1
score considerably. Our model outperforms the
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TI(%) TC(%) Al(%) AC(%) TI(%) TC(%) Al(%) AC(%)
e Geniall OneEE 88.7 79.7 76.2 734
BERT-softmax 67.8 64.4 57.4 56.0 w/o Attention 88.3 79.5 759 72.8
BERT-CRF 68.3 64.8 58.3 56.9 w/o Gate 88.4 79.3 75.3 72.6
BERT-CRF-joint  67.0 64.1 60.2 58.1 w/o Fusion Layer 88.0 78.7 75.2 72.2
PLMEE 67.3 65.5 60.7 59.4 w/o Position Emb. 88.1 78.7 74.1 71.8
CasEE 70.0 67.0 62.0 60.4
OneEE 71.5 69.5 65.9 62.5 Table 4: Ablation studies using FewFC.
e Genial3
BERT-softmax 774759 699 677 and sentences containing at least one nested event
BERT-CRF 78.8 77.4 70.1 68.2 in Genial 1 tivel
BERT-CRF-joint 77.6 757 719 682 meniall, respectively.
PLMEE 793 733 721 707 Figure 5 }llustrates the results of TC an.d AC
CasEE 80.5 78.5 73.7 71.9 on overlapping and nested sentences in testing. It
OneEE 819 808 768 727 shows that our method outperforms other meth-

Table 3: F1 scores for extracting all events on Genial 1
and Genial3.
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Figure 5: Results for overlapped trigger (a) and argu-
ment (b) extraction on FewFC, and nested trigger (c),
and argument (d) extraction on Genial 1. Note that only
the sentences that contain at least one such event are
used.

state-of-the-art model, CasEE, by 2.1% in the F1
score of TC on three datasets averagely. We con-
sider this is because that the event feature is well
learned by our adaptive event fusion module. Espe-
cially, our model improves 3.4% on Al and 1.6%
on AC over CasEE on an average of three datasets.
The results reveal the superiority of our one-stage
framework which elegantly realizes overlapped and
nested event extraction without error propagation.

6.2 Results of Overlapped and Nested EE

To evaluate the effectiveness of our proposed model
in recognizing overlapping and nested event men-
tions, we further report the results on sentences
containing at least one overlapping event in FewFC

ods on overlapping and nested sentences. The
reasons are mainly two-fold: 1) We solve all the
overlapping patterns while BERT-CRF-joint could
not handle overlapped and nested EE and PLMEE
only solve the argument overlap. 2) Our one-stage
model outperforms CasEE because we effectively
learn event-aware representations and extract word-
word relations in parallel, while CasEE performs
in three sequential steps with error propagation.

6.3 Effects of the Modules in the Fusion Layer

To verify the effectiveness of each component, we
conduct ablation studies on the FewFC dataset, as
shown in Table 4. First, without the attention mech-
anism, we observe slight performance drops. By
replacing the gate mechanism with an addition op-
eration, the performance also decreases to a small
degree. Furthermore, a significant drop can be
found when the adaptive event fusion layer is sub-
stituted by addition, which indicates the usefulness
of event representation and context. Finally, remov-
ing the position embeddings results in a remarkable
drop on all F1 scores, especially 1.6% in the F1
score of AC, which suggests that the information
of positions is essential to recognize word-word
relations.

6.4 Effect of the Distance-aware Tag
Prediction

In this section, we investigate the effect of position
embeddings for the prediction layer of OneEE. We
divide the arguments in the test set of FewFC into
6 groups according to their distance from corre-
sponding triggers and report the recall scores of
the model with and without position embeddings.
As shown in Figure 6, the AC recall declines as
the distance between trigger and argument in an
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Figure 6: FewFC results of extracting triggers and argu-
ments with different distances. The red line denotes that
position embeddings are used while the blue line not.

Model Stage #Param. Speed (sent/s) Ratio
PLMEE Two  204.6M 19.8 x1.0
CasEE Three 120.7M 62.3 x3.1
OneEE One 114.2M 79.4 x4.0
OneEE"  One  1142M 186.5 x9.4

Table 5: Parameter number and inference speed com-
parisons on FewFC. All models are tested with batch
size 1, T denotes that the model is tested with batch size
8. The ratio denotes the multiple of the speed increase
with regard to PLMEE.

event go up. This indicates that it is more difficult
for the model to detect roles correctly if the dis-
tance is longer in an event. Furthermore, the model
with position embeddings outperforms another one
without position embeddings, revealing that the rel-
ative distance information is beneficial for event
extraction.

6.5 Parameter Number & Efficiency
Comparisons

Table 5 lists the stage numbers, parameter num-
bers, and inference speeds of two baselines and our
model. For a fair comparison, all of these models
are implemented using PyTorch and tested using
the NVIDIA RTX 3090 GPU, where the batch size
is set as 1. As seen, PLMEE has 2 times as many
parameters as the other two models, due to the
utilization of two BERT-based modules for each
stage. Moreover, the inference speed of our model
is about 3 times faster than that of PLMEE (Yang
etal., 2019) and 0.3 times faster than that of CasEE
(Sheng et al., 2021), which verifies the efficiency
of our model. Last but not least, when the batch
size is set as 8, the inference speed of our model
is 9.4 times as fast as that of PLMEE, which also
demonstrates the advantage of our model, that is, it
supports parallel inference. In one word, our model
leverages fewer parameters but achieves better per-
formance and faster inference speed.

X1 X2 X5 Xe X1 Xz Xs Xe
X1 X1
X2 X2
Xs Xs
Xe Xe
(a) TH-AH (b) TW-AH
X1 X2 X5 Xe X1 Xz Xs Xe
X1 X1
X2 X
Xs Xs
Xe Xe
(c) TH-AW (d) TW-AW

Figure 7: Four kinds of role label strategies. The goal
is to predict the relation between trigger head and ar-
gument head (a), trigger word and argument head (b),
trigger head and argument word (c), and trigger word
and argument word (d).

00 TH-AH 00 T™W-AH [0 TH-AW [0 TW-AW
74T 63 [ ]

62
61

(a) FewFC (b) Geniall

Figure 8: Results of AC with different role label strate-
gies on FewFC (a) and Geniall (b) datasets.

6.6 Analysis of 4 Role Label Strategies

In this section, we investigate the effect of the role
strategies for AC performance. As shown in Figure
7, we introduce 4 different strategies to predict the
role relation between trigger and argument: the role
labels only exist in 1) trigger and argument head
pairs (TH-AH), 2) trigger word and argument head
pairs (TW-AH), 3) trigger head and argument word
pairs (TH-AW), and 4) trigger and argument word
pairs (TW-AW). The results of our model with 4
strategies are demonstrated in Figure 8. We can
learn that TW-AW achieves the best results against
all other strategies on both FewFC and Geniall
datasets. It is largely due to that its labels are denser
than other strategies.
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Figure 9: Results of different event numbers on FewFC.

6.7 Analysis of the Event Number

We further investigate the effect of the event num-
ber for EE, and the results are shown in Figure
9. We can observe that BERT-CRF-joint, PLMEE,
and CasEE achieve similar performances on single-
event sentences, while CasEE outperforms PLMEE
and BERT-CRF-joint on the sentences with multi-
ple events. Most importantly, our system achieves
the best results against all other baselines for differ-
ent event numbers, indicating the advances of our
proposed method.

7 Conclusion

In this paper, we propose a novel one-stage frame-
work based on word-word relation recognition to
address overlapped and nested EE concurrently.
The relations between word pairs are pre-defined
as the word-word relations within a trigger or argu-
ment and cross a trigger-argument pair. Moreover,
we propose an efficient model that consists of an
adaptive event fusion layer for integrating the tar-
get event representation, and a distance-aware pre-
diction layer for identifying all kinds of relations
jointly. Experimental results show that our pro-
posed model achieves new SoTA results on three
datasets and faster speed than the SoTA model.
Through ablation studies, we find that the adaptive
event fusion layer and distance-aware prediction
layer are effective in improving the model perfor-
mance. In future work, we will extend our method
to other structured prediction tasks, such as struc-
tured sentiment analysis and overlapped entity re-
lation extraction.
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A Parallel Training with Sampling

We parallelly inject multiple target event type em-
beddings at the adaptive event fusion layer during
training period, which results in huge computation
resources. To this end, we use a subset &£’ to replace
& for each sample, where the number of £’ is K. Tt
consists of one positive event type (the event type
annotated in the sample) and K — 1 negative event
types selected randomly from the event types that
does not appear in the sample. In other words, we
inject K different event type embeddings into the
gate module of Eq. 6 simultaneously. If there is no
positive event type in the sample, we will select K
negative event types.

B Decoding for Nested EE
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(b) Nested EE Decoding

Figure 10: Example of nested event (a) and its decoding
process (b).

In the manuscript, we have already shown the
decoding process of our model for overlapped EE
in Section 4.5. Due to page limitation, we show
an example of nested in Figure 10(a). We also
demonstrate its decoding process in Figure 10(b),
which is the same as the overlapped EE decoding.

C Analysis of the Event Sampling
Number

To further analyze the effect of sampling number
K and the sampling strategy, we also evaluate our
model with positive and negative sampling and
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Figure 11: Results on different sampling numbers of
random sampling, and positive and negative sampling.

random sampling and compare them with differ-
ent sampling numbers. Figure 11 shows the TC
F1 change trend as the number of sampling in-
creases. As seen, both two models with 6 event
type samplings achieve the best performance, com-
pared with the other sampling numbers. Specifi-
cally, our model with one positive sampling and
K — 1 negative samplings outperforms the model
with K randomly selected samplings when K is
less than 7, which demonstrates that our sampling
strategy is helpful for the model training.

1964



