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Abstract
An efficient assessment of the health related-
ness of text passages is important to mine the
web at scale to conduct health sociological anal-
yses or to develop a health search engine. We
propose a new efficient and effective termhood
score for predicting the health relatedness of
phrases and sentences, which achieves 69% re-
call at over 90% precision on a web dataset with
cause–effect statements. It is more effective
than state-of-the-art medical entity linkers and
as effective but much faster than BERT-based
approaches. Using our method, we compile the
Webis Medical CauseNet 2022, a new resource
of 7.8 million health-related cause–effect state-
ments such as “Studies show that stress induces
insomnia” in which the cause (‘stress’) and ef-
fect (‘insomnia’) are labeled.

1 Introduction

Health sociology studies the interaction of soci-
ety with health. An important subject is how
consumers obtain and perceive health information.
Since the web and search engines are among the
most important sources, the quality of online health
information has been studied so frequently in re-
cent decades that three systematic reviews have
been conducted (see Table 1). However, many of
the individual studies address only a single medical
condition and almost all were conducted manually.
On average, only about 50–100 web pages were
analyzed per study, sometimes only a single hand-
picked one, and never more than 1,524 pages.

Studying larger portions of the online health do-
main requires the automation of various acquisition
tasks: (1) the discovery of health-related websites
and web pages, (2) the identification and extraction
of health-related statements from these pages, and
(3) the attribution of health-related statements to au-
thoritative sources (e.g., for fact-checking). While
the first and third steps have been and continue to
be the subject of ongoing research, the second step
has received much less attention.

Systematic Review Studies Websites / Web Pages

Min Max Mean Stddev Total

Eysenbach et al. (2002) 79 3 1,147 100.5 157.7 7,836
Zhang et al. (2015) 165 3 388 78.5 73.4 12,870
Daraz et al. (2018) 157 1 1,524 50.3 133.9 7,891

Table 1: Sizes of systematic reviews of online health in-
formation studies. Some studies are part of multiple re-
views; most do not distinguish websites and web pages.

To minimize manual data cleansing, we view
the extraction of health-related statements as a
precision-oriented task. And since a significant por-
tion of consumers’ health information needs ask
about causes and effects (Bondarenko et al., 2022),
we focus on health-related cause–effect statements
(e.g., ‘smoking causes cancer’). Extracting cause–
effect statements in general has been thoroughly
investigated in the past and several approaches ex-
tract them from web text efficiently and effectively
(Yang et al., 2022). However, the extracted state-
ments are usually not assigned to a specific domain.

Our contributions are: (1) A new approach for
a high-precision assessment of a phrase’s health
relatedness (Section 3), which is more effective
than state-of-the-art medical entity linkers and on
par with BERT-based models but far more efficient
(Section 4). (2) The Webis Medical CauseNet 2022,
a web-scale resource of health-related cause–effect
statements (Section 5).1

2 Related Work

The impact of online health information on con-
sumers has attracted the interest of the health so-
ciology research community. For example, user
surveys examine how consumers perceive online
health information (Diaz et al., 2002), e-health ser-
vices (Andreassen et al., 2007), or the quality of
online health information (Sun et al., 2019).
1All our code and data to reproduce the experiments as well as
the resource are publicly available under a permissive license:
https://github.com/webis-de/COLING-22

https://github.com/webis-de/COLING-22
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Information quality appears to be the most stud-
ied characteristic from a health sociology perspec-
tive. Numerous studies systematically analyzed
the quality of websites related to specific topics
such as orthodontics (Jiang, 2000) or performance-
enhancing drugs (Brennan et al., 2013), but more
general studies with limitations to specific parts
of the web are also common. Examples include
studies of dietary advice (Cooper et al., 2012) or
the misinterpretation (Yavchitz et al., 2012) and
exaggeration (Sumner et al., 2014) of clinical trial
results in online news. Recent studies also targeted
web search snippets (Bondarenko et al., 2021) and
social media (Suarez-Lledo and Alvarez-Galvez,
2021), particularly health misinformation on Twit-
ter (Broniatowski et al., 2018; Bal et al., 2020).

To identify health-related web content, most pre-
vious work has focused on whole-page classifica-
tion, e.g., using medical vocabularies to classify
news articles (Watters et al., 2002; Zheng et al.,
2002) or using convolutional neural networks for
Reddit posts (Gkotsis et al., 2017). But there has
been little work on classifying shorter passages of
text as health-related (e.g., phrases), although this
would allow for more fine-grained analyses at the
statement level rather than at the whole-page level.
Keyword extraction and automatic ontology cre-
ation with the goal of extracting prototypical words
for a given domain are perhaps the most closely
related tasks. For example, the C-value/NC-value
method uses term frequencies to extract multi-word
domain terms from a corpus (Frantzi et al., 2000).
Its reliance on syntactic sentence structure, how-
ever, renders it inapplicable at the phrase level.

Contrastive termhood scores, which relate term
frequencies from a domain corpus to frequencies
from one or more out-of-domain corpora, can be ap-
plied more straightforwardly. These include tf ·idf -
inspired measures (Basili et al., 2001; Kim et al.,
2009), measures estimating how exclusive a term is
for a domain (Ahmad et al., 1999; Park et al., 2008),
and combinations or extensions thereof (Wong
et al., 2007; Bonin et al., 2010). We transfer con-
trastive termhood scoring to measuring health relat-
edness of phrases (but also sentences) and compare
it with the medical entity linkers cTakes (Savova
et al., 2010), MetaMap (Aronson, 2001), Quick-
UMLS (Soldaini and Goharian, 2016), and Scis-
paCy (Neumann et al., 2019), as well as BERT-
based classifiers (Devlin et al., 2019).

3 Measuring Health Relatedness

Assessing whether a phrase is health-related can be
difficult without context; in particular for homony-
mous (same surface form, different meaning) or
polysemous (same surface form, different sense)
words. For instance, ‘cancer’ may refer to a health-
related malignant tumor, but also to the zodiac sign,
which is unlikely to appear in a health-related con-
text. As such, the task of assessing a phrase’s health
relatedness can be viewed as an extension of word-
sense disambiguation. Instead of the sense of a
particular word, the domain of the sense of a phrase
needs to be determined.

Since there are no large-scale labeled datasets
for health relatedness assessment, we rely on con-
trastive termhood scores that use distant supervi-
sion to measure the degree of a word or concept
being specific to a certain domain (Kageura and
Umino, 1996). Instead of training on explicitly
labeled words or phrases, contrastive termhood
scores are trained on texts that are heuristically
labeled. Specifically, a word’s or phrase’s domain
specificity depends on its “prominence” in domain-
specific or out-of-domain corpora. In this sec-
tion, we discuss three existing contrastive termhood
scores and then explain how we adapt and apply
them to health relatedness assessment.

3.1 Existing Contrastive Termhood Scores
The termhood scores contrastive weight (CW)
(Basili et al., 2001), term domain specificity (TDS)
(Park et al., 2008), and discriminative weight (DW)
(Wong et al., 2007) rely on a corpus H of domain-
specific texts (in our case: health-related texts) and
at least one contrastive corpus G of general or out-
of-domain texts (in our case: Wikipedia). To score
a term t (a word or phrase), CW, TDS, and DW use
occurrence frequencies: the absolute corpus occur-
rence frequency freqC(t) (i.e., the absolute number
of occurrences of t in corpus C), the relative cor-
pus occurrence frequency relC(t) = freqC(t)/|C|
(where |C| denotes some appropriate variant of
corpus size like number of words or n-gram occur-
rences), and the inverse corpora frequency icf (t)
defined for H and G together as

icf (t) = log

(
|H|+ |G|

freqH(t) + freqG(t)

)
.

The contrastive weight CW of a term t is similar
to tf ·idf but uses the corpus-oriented frequencies:

CW(t) = log (freqH(t) + 1) · icf (t) .
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For the term domain specificity TDS, we unify
the slightly different definitions of Ahmad et al.,
Park et al., and Wong et al. as

TDS(t) = log

(
relH(t) + 1

relG(t) + 1
+ 1

)
.

Finally, the discriminative weight DW was origi-
nally defined as the product of CW and a version
of TDS that uses freqC(t) instead of relC(t). Since
the values of such an “unnormalized” TDS depend
on corpus size, we use our above corpus-agnostic
normalized version but still compute DW as

DW(t) = CW(t) · TDS(t).

3.2 Our Generalized Termhood Scores
The above termhood scores were originally meant
to help augment taxonomy vocabularies or to find
terms missing in a dictionary for some specific do-
main. As such, the input terms are assumed to be
rather short and quite domain-related noun phrases
from which the “best” scoring ones are to-be-added
to the vocabulary. In pilot experiments for our case
of assessing the health relatedness of phrases from
the web, we observed that phrases like ‘fracture at
the base of the skull’ receive very low termhood
scores even though they are clearly health-related.
The reason is that such longer phrases as “a whole”
have quite low occurrence frequencies even in med-
ical corpora. A first straightforward idea could
be to average a phrase’s individual word’s term-
hood scores. However, for the above example with
many out-of-domain or stop words, this also does
not work well. We thus propose two schemes that
improve on the simple average and on the origi-
nal termhood scores’ treatment of longer phrases
as “a whole”. In our schemes, we also enable the
assessment to prioritize precision or recall.

Our first scheme uses a weighted average of a
phrase’s individual word’s termhood scores (i.e.,
their individual health relatedness) to assess the
health relatedness of a phrase. The idea is that by
giving words that have a high individual health
relatedness score a higher weight, more health-
related phrases can be found (i.e., improved re-
call). Similarly, by giving words that have a low
individual health relatedness score a higher weight,
the precision of the assessment on the phrase level
should improve. Formally, in our first scheme, we
compute the termhood score of an m-word phrase
as the generalized mean of the word’s individual

Corpus Language Documents Words

Wikipedia mixed, layperson 12,265,374 3.0·109

PubMed scientific, abstracts 31,847,923 3.8·109
PubMed Centr. scientific, full texts 3,611,361 5.4·109
Textbook clinical, educational 434 1.4·107
Encyclopedia clinical, layperson 67,967 9.3·106

Table 2: Characteristics of the contrastive and health-
related corpora used for the termhood scores.

termhood scores x1, . . . , xm:

Mr(x1, . . . , xm) =

(
1

m

m∑
i=1

xri

) 1
r

,

where r is a real-valued parameter. For r = 1,
the generalized mean corresponds to the arithmetic
mean. By increasing r, the mean is biased towards
the higher-valued termhood scores and vice versa.
In the extreme cases of M-∞ or M∞, the minimum
or maximum xi is returned. At the limit for r
approaching 0, the generalized mean corresponds
to the geometric mean (Jensen, 1998).

As our second scheme, we propose to also com-
pute the weighted average termhood over the n-
grams of a phrase. For instance, while the uni-
grams ‘risk’ and ‘factor’ are relatively unrelated to
health, the bigram ‘risk factor’ certainly is health-
related. The above generalized mean scheme al-
ready increases the termhood of ‘risk factor’ com-
pared to a simple average but the high occurrence
frequency of the bigram itself is an even better
indicator of its health relatedness. Since longer n-
grams usually have quite low occurrence frequen-
cies, especially in smaller corpora, we only aver-
age the termhood scores of a phrase’s uni-, bi-,
or trigrams with a parameter n determining the
length of the longest used n-grams. For example,
the generalized score of the phrase ‘cancer risk
factor’ based on the termhood score s(.) (could
be CW, TDS, or DW) with n = 2 then is the av-
erage of Mr(s(‘cancer risk’), s(‘risk factor’)) and
Mr(s(‘cancer’), s(‘risk’), s(‘factor’)).

3.3 Contrastive and Health Domain Corpora
Table 2 shows basic characteristics of our employed
corpora. We select Wikipedia2 as our contrastive
general corpus G since it covers a wide variety of
domains and is easily accessible. As candidates for
health corpora H , we consider and evaluate four
alternatives, each with its own (dis)advantages.
2Dump of all English Wikipedia articles from July 1, 2021.
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Figure 1: Termhood score frequencies of (a) CW, (b) TDS, and (c) DW on the PubMed corpus, and of (d) DW on the
Encyclopedia corpus. Number of words in thousands (from the respective corpus). Example words are highlighted.

The first three health corpora use documents
provided by the National Library of Medicine:
(1) a dump of over 30 million MEDLINE abstracts
from PubMed,3 (2) a subset of over 3 million
full-text publications from PubMed Central,4 and
(3) 434 textbooks from the textbook and mono-
graph category of the NCBI Bookshelf.5 While
both PubMed-based corpora are large scale, their
language is mainly scientific. The textbook cor-
pus contains more clinical language, which we hy-
pothesize to more closely match the language of
health-related phrases on arbitrary web pages.

Finally, as our fourth health corpus, we crawled
the entries of five consumer-oriented medical on-
line encyclopedias.6–10 Since they are written in
layperson’s terms, we assume their language to
be most similar to the target language distribution
used for health-related phrases on web pages.

3.4 Pilot Inspection and Comparison
To get a first impression of the scores and the
corpus impact, we inspect the unigram termhood
score distributions in general and for some exam-
ple words. Figures 1 (a–c) show the score distribu-
tions of CW, TSD, and DW with PubMed as the
domain-specific corpus H . Apparently, all scores
rank the shown example out-of-domain words and
the stop word lower than the shown example health-
related words. However, the assessment of CW
and TDS can differ substantially for specific terms.
For example, ‘ward’ occurs frequently within texts
from the PubMed corpus so that CW attributes a
rather high health relatedness. At the same time,
‘ward’ also occurs frequently in the general do-
3https://pubmed.ncbi.nlm.nih.gov/
4https://www.ncbi.nlm.nih.gov/pmc/
5https://www.ncbi.nlm.nih.gov/books
6http://health.am/encyclopedia
7https://medlineplus.gov/encyclopedia.html
8https://merriam-webster.com/medical
9https://ucsfhealth.org (various subpages)
10https://www.rxlist.com/drug-medical-dictionary/article.htm

Dataset Text Type Health Length Size

CauseNet-F-Phrase Phrase pairs 21.4% 7.2 1,000
CauseNet-P-Phrase Phrase pairs 50.3% 3.4 1,000
CauseNet-F-Sentence Sentences 22.4% 30.3 1,000

Table 3: Characteristics of our three annotated datasets,
including the ratio of health-related entries, the aver-
age number of words per cause–effect phrase pair or
sentence, and the number of entries. CauseNet-F: sam-
pled from CauseNet-Full, CauseNet-P: sampled from
CauseNet-Precision.

main and the lacking “exclusiveness” leads TDS to
score it relatively low. Unsurprisingly, the product
score DW amplifies the extremes of both scores.

As for the effect of different health corpora, Fig-
ures 1 (c) and (d) contrast the DW scores using
the PubMed corpus (rather scientific language) to
using the Encyclopedia corpus (rather layperson
language). As an example result, the word ‘study’
has a comparably high termhood score using the
PubMed corpus, but is ranked like a non-health-
related word using the Encyclopedia corpus.

4 Evaluation

In this section, we evaluate our generalized term-
hood method on datasets of cause–effect statements
and compare it to state-of-the-art medical entity
linkers and BERT-based approaches.

4.1 Annotated Datasets
Table 3 depicts the general characteristics of three
cause–effect datasets we sampled from the web-
scale CauseNet resource (Heindorf et al., 2020),
a graph of over 11 million cause–effect pairs
(e.g., ‘stress → insomnia’) extracted from the
ClueWeb12.11 The CauseNet extraction used a
two-stage approach: (1) candidate sentences were
gathered using a set of lexico-syntactic patterns
representing causal language, and (2) a BiLSTM-
CRF model extracted cause–effect pairs from the
11https://www.lemurproject.org/clueweb12/

https://pubmed.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/pmc/
https://www.ncbi.nlm.nih.gov/books
http://health.am/encyclopedia
https://medlineplus.gov/encyclopedia.html
https://merriam-webster.com/medical
https://ucsfhealth.org
https://www.rxlist.com/drug-medical-dictionary/article.htm
https://www.lemurproject.org/clueweb12/
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candidates. Obviously, a pair may be extracted
from multiple different sentences (e.g., ‘stress →
insomnia’ from ‘stress causes insomnia’ or from
‘insomnia can be a result of stress’). All the sen-
tences from which a specific pair is extracted are
the support of that pair.

CauseNet comes in different versions: CauseNet-
Full and CauseNet-Precision. In CauseNet-Full,
all the extracted cause–effect pairs are contained,
while CauseNet-Precision only contains pairs that
were extracted by at least two different lexico-
syntactic extraction patterns. The idea is that pairs
supported by sentences from more patterns are less
likely to be false positive causal statements.

From each CauseNet version, we randomly sam-
pled 1,000 cause–effect pairs for our CauseNet-
F-Phrase and CauseNet-P-Phrase datasets (F: full,
P: precision). Note that the pairs sampled from
CauseNet-Precision typically are shorter (3.4 vs.
7.2 words; cf. Table 3)—shorter phrases are more
likely to be extracted by more than one pattern.

To label the health relatedness of the cause–
effect pairs, we had three annotators who first
labeled a kappa-test subset of 100 samples from
CauseNet-F-Phrase. The achieved agreement was
substantial (Cohen’s kappa of 0.76), so that after
a discussion of the disagreement cases, the an-
notators then each independently labeled disjoint
thirds of the remaining CauseNet-F/P-Phrase data.
Interestingly, according to the labeling, the pairs
sampled from CauseNet-Precision are much more
health related (50.3% vs. 21.4%; cf. Table 3).

Finally, for each of the 1,000 pairs in CauseNet-
F-Phrase, we randomly selected one of the sup-
porting sentences to complement the phrase-based
dataset with a sentence-based dataset. The respec-
tive CauseNet-F-Sentence set then was also labeled
with respect to health-relatedness by our three an-
notators. Indeed, for eleven causal phrase pairs that
were labeled as non-health-related and for one pair
that was labeled as health-related, the sampled sup-
porting sentence then was labeled in the opposite
way since it added important context. For example,
the pair ‘sound → particular feeling’ was labeled as
non-health related but the corresponding sentence
‘Any sound that is related to trauma can trigger a
particular feeling.’ was labeled as health-related
due to the explicit connection to trauma.

We randomly split each of the three datasets to
use 80% as the training data for parameter tuning
and the remaining 20% as the actual test set.

4.2 Medical Entity Linkers
We compare our generalized termhood method to
the state-of-the-art medical entity linkers cTakes,
MetaMap, QuickUMLS, and ScispaCy. To deter-
mine the health relatedness of a (multi-word) term
by applying one of these entity linkers, we use
the proportion of words that the linker matches to
medical concepts in some background knowledge
base like the UMLS Metathesaurus (Humphreys
and Lindberg, 1993).

More formally, as the entity linking-based health
relatedness of a term t, we use the the ratio |e|/|t̂|,
where |e| denotes the length (in words) of the sub-
string of t that the linker detects as mentions of
some entity, and |t̂| denotes the length of t without
the stopwords12 that are not contained in any entity
mention detected by the respective linker.

As the background knowledge base for the en-
tity linkers we try four different options: (1) the
full UMLS (a mix of medical vocabularies of vary-
ing specificity), (2) the combined UMLS subsets
RxNorm and SNOMED CT (more specific clinical
vocabulary), (3) UMLS restricted to the 21 most fre-
quent semantic types (ST21pv subset) as proposed
in the MedMentions entity linking dataset (Mohan
and Li, 2019), and (4) the combined RxNorm and
SNOMED CT restricted to ST21pv.

4.3 BERT-Based Approaches
Besides medical entity linkers, we also compare
our generalized termhood method to BERT-based
classifiers fine-tuned to predict whether a sequence
of tokens is health-related. To test the effect of do-
main specific embeddings, we compare classifiers
based on pre-trained BERT (Devlin et al., 2019),
SciBERT (Beltagy et al., 2019), and PubMedBERT
(Gu et al., 2022) models. To further fine-tune these
models to the task, we first construct additional
training datasets where noun phrases (or sentences)
from Wikipedia are paired with noun phrases (or
sentences) from the PubMed or the Encyclopedia
corpus. To align with the evaluation datasets, we
extract noun phrases and sentences using spaCy.13

All models were fine-tuned with a batch size of 32
and a learning rate of 5 · 10−5 for 100,000 steps on
one NVIDIA A100 GPU. Due to the large corpora
sizes, we used early stopping and halted training
when no decrease in training loss was recorded for
15 consecutive samples (taken every 1,000 steps).
12English nltk stop words list.
13https://spacy.io/

https://spacy.io/
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4.4 Assessing the Health Relatedness of
Cause–Effect Pairs

To assess the health relatedness of a cause–effect
pair, we combine an approach’s individual scores
for the cause and effect phrase into one score based
on which a decision about the health relatedness
can be made (i.e., whether it is above some thresh-
old). Just like in our generalized termhood scores,
we use the generalized mean as the combination
scheme. The extreme case of M-∞ then corre-
sponds to an AND combination (cause and effect
score need to exceed a decision threshold), while
M∞ corresponds to an OR combination (cause or
effect above some threshold suffice). These se-
tups can thus be interpreted as precision or recall-
oriented, respectively.

4.5 Assessing the Health Relatedness of
Cause–Effect Sentences

To assess the health relatedness of a complete sen-
tence, we basically use the different approaches as
if the input was a phrase. The entity linking-based
methods link the entities in the sentence and then
compute the same ratio |e|/|t̂| but with t̂ now being
the sentence without non-linked stopwords. The
BERT-based approaches also get the sentence as
input and classify it as a whole as health-related
or not. And also our generalized termhood scores
simply treat an input sentence like a phrase.

4.6 Parameters and Optimization Criteria
We explore different hyperparameter values of the
approaches in grid searches on the 80% train-
ing sets of our annotated cause–effect datasets
(the other 20% are the test sets). For the term-
hood method, we experiment with four health cor-
pora (PubMed, PubMed Central, Textbook, En-
cyclopedia) and a maximum n-gram length n ∈
{1, 2, 3}. For the generalized mean Mr, we try
r ∈ {0,±1,±2,±5,±10,±∞} for combining the
n-gram scores, as well as for combining the cause
and effect scores of all approaches.

For the entity linkers, we explore linking against
the full UMLS with either all semantic types or
just the ST21pv subset, or linking just against the
combined RxNorm and SNOMED CT subset with
either all types or just the ST21pv subset. For the
QuickUMLS and ScispaCy linkers, we try similar-
ity thresholds in steps of 0.1 between [0.7, 1.0] and
[0.6, 0.9], respectively, and explore small (sm) and
large (lg) models for ScispaCy. Finally, the BERT-

based models are fine-tuned in four variations: on
sentences or on phrases from the PubMed or from
the Encyclopedia corpus.

We conduct three grid searches for three differ-
ent optimization scenarios. In the first two scenar-
ios, we optimize for precision or recall and identify
a parameterization and decision threshold with the
best recall (or precision) that can be achieved at an
operating point of a precision (or recall) of 0.9. For
example, in the scenario of precision optimization,
we only consider parameter combinations from the
grid search and decision thresholds that achieve a
precision of at least 0.9 on the training set. From
these, we then only consider the parameterizations
with the highest recall and from these, we select one
with the highest precision. In the third optimization
scenario, we target the Matthews correlation coef-
ficient (MCC). The MCC combines the numbers
of true positives (TP ), true negatives (TN ), false
positives (FP ), and false negatives (FN ) as

TP · TN − FP · FN√
(TP+FP)(TP+FN )(TN+FP)(TN+FN )

.

Since MCC generates a high score only when the
majority of the positive instances and the majority
of the negative instances are classified correctly,
it is regarded as one of the best ways to derive
one score from a binary classifier’s confusion ma-
trix (Chicco and Jurman, 2020).

4.7 Results
Table 4 shows the effectiveness of the differ-
ent approaches’ best parameterizations from the
training sets run on the test sets of CauseNet-
F-Phrase, CauseNet-P-Phrase, and CauseNet-F-
Sentence. The BERT-based approaches are usu-
ally the most effective. Our generalized termhood
methods often are slightly less effective but the
difference to the best BERT-based approach is
hardly ever statistically significant (bootstrapping
with 100,000 permutations, p < 0.05, Bonferroni-
corrected). The entity linking-based approaches,
though, almost always are significantly less effec-
tive than the best BERT-based approach.

While being almost as effective as the best BERT-
based approach, our generalized termhood method
is substantially more efficient (see Table 5). On
an AMD EPYC 7F72 processor, even without
parallelization, the generalized termhood is up to
107 times faster on phrases and up to 47 times faster
on the longer sentences than the BERT models. By
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Approach Precision Optimized Recall Optimized MCC Optimized

Parameters Mr P R Parameters Mr P R Parameters Mr P R F1 M

C
au

se
N

et
-F

-P
hr

as
e

cTakes RS ST21pv M-2 0.00 0.00† RS M2 0.28† 0.95 RS M5 0.43 0.67 0.52 0.39†

MetaMap RS ST21pv M-∞ 0.67 0.05† RS M2 0.35† 0.95 RS M2 0.52 0.82 0.63 0.54†

QuickUMLS RS ST21pv, 0.8 M-1 0.00 0.00† RS, 0.8 M2 0.30† 0.87 RS, 0.8 M2 0.57 0.41 0.48 0.38†

ScispaCy RS, sm, 0.9 M-∞ 0.00 0.00† UMLS, lg, 0.6 M2 0.26† 0.79 RS, sm, 0.6 M10 0.35 0.64 0.45 0.29†

BERT ENC, NP M1 0.91 0.77 ENC, NP M5 0.76 0.97 ENC, NP M2 0.81 0.90 0.85 0.82
SciBERT ENC, NP M5 0.94 0.77 ENC, NP M2 0.76 0.95 ENC, NP M2 0.82 0.85 0.84 0.80
PMBERT ENC, NP M2 0.94 0.82 ENC, NP M1 0.73 0.95 ENC, NP M2 0.80 0.92 0.86 0.82

CW ENC, n=2, M2 M-1 0.85 0.72 ENC, n=3, M5 M2 0.58† 0.92 ENC, n=1, M5 M2 0.84 0.79 0.82 0.77
TDS ENC, n=2, M1 M1 1.00 0.69 ENC, n=2, M0 M-1 0.67 0.92 ENC, n=3, M0 M1 0.76 0.82 0.79 0.74
DW ENC, n=1, M1 M1 1.00 0.74 ENC, n=3, M1 M∞ 0.62 0.90 ENC, n=2, M2 M1 0.78 0.90 0.83 0.79

C
au

se
N

et
-P

-P
hr

as
e

cTakes RS M1 0.79 0.34† RS M2 0.63† 0.96 RS M-2 0.75 0.56 0.64 0.33†

MetaMap RS M-5 0.76 0.85 RS M-2 0.69† 0.94 RS M-5 0.76 0.85 0.80 0.52†

QuickUMLS RS, 1.0 M10 0.83 0.46† RS, 0.9 M2 0.66† 0.88 RS, 0.8 M1 0.75 0.79 0.77 0.46†

ScispaCy RS, sm, 0.7 M-∞ 0.71 0.33† UMLS, lg, 0.7 M2 0.60† 0.88 RS, sm, 0.8 M10 0.66 0.80 0.73 0.30†

BERT ENC, NP M5 0.91 0.88 ENC, NP M10 0.92 0.91 ENC, NP M5 0.91 0.88 0.90 0.77
SciBERT ENC, NP M10 0.97 0.89 ENC, NP M5 0.90 0.90 ENC, NP M5 0.90 0.90 0.90 0.78
PMBERT ENC, NP M5 0.96 0.88 ENC, NP M2 0.91 0.95 ENC, NP M5 0.96 0.88 0.92 0.83

CW ENC, n=1, M10 M5 0.95 0.72 ENC, n=1, M10 M2 0.80† 0.91 ENC, n=1, M5 M2 0.83 0.89 0.86 0.66
TDS ENC, n=3, M1 M1 0.93 0.89 ENC, n=2, M1 M1 0.93 0.89 ENC, n=2, M1 M1 0.89 0.93 0.91 0.79
DW ENC, n=2, M1 M1 0.92 0.88 ENC, n=3, M10 M1 0.93 0.91 ENC, n=3, M5 M1 0.90 0.91 0.91 0.79

C
au

se
N

et
-F

-S
en

te
nc

e

cTakes RS – 0.70 0.20† RS – 0.25† 0.91 RS – 0.57 0.46 0.51 0.42†

MetaMap RS – 1.00 0.03† RS – 0.29† 0.91 RS – 0.42 0.49 0.45 0.33†

QuickUMLS RS ST21pv, 1.0 – 1.00 0.03† RS, 1.0 – 0.32† 0.91 RS, 1.0 – 0.49 0.49 0.49 0.38†

ScispaCy RS, lg, 0.8 – 0.88 0.20† RS, sm, 0.9 – 0.25† 0.89 RS, lg, 0.6 – 0.42 0.60 0.49 0.37†

BERT ENC, NP – 0.86 0.51 ENC, NP – 0.59 0.83 ENC, NP – 0.76 0.74 0.75 0.70
SciBERT ENC, NP – 0.89 0.49 ENC, NP – 0.53 0.89 ENC, NP – 0.64 0.66 0.65 0.57
PMBERT ENC, NP – 0.83 0.57 ENC, NP – 0.59 0.86 ENC, NP – 0.87 0.57 0.69 0.66

CW ENC, n=3, M5 – 0.75 0.43 ENC, n=1, M10 – 0.56 0.89 ENC, n=1, M5 – 0.67 0.63 0.65 0.58
TDS ENC, n=1, M1 – 0.84 0.46 ENC, n=1, M2 – 0.62 0.91 ENC, n=2, M0 – 0.69 0.63 0.66 0.59
DW ENC, n=3, M1 – 0.83 0.43 ENC, n=2, M2 – 0.59 0.83 ENC, n=2, M1 – 0.71 0.77 0.74 0.68

Table 4: Effectiveness on the test sets as precision (P), recall (R), F1, or Matthews correlation coefficient (MCC) of
the best parameterization of each approach optimized for precision, recall, or MCC on the respective training set.
The operating point for precision / recall optimization is set to 0.9 on the training data (gray scores indicate that 0.9
could not be reached during training). Statistically significant differences to the best approach for a dataset and
optimization criterion (best scores highlighted in bold) are denoted by † (p < 0.05, Bonferroni-corrected for the
nine comparisons in each group). For entity linkers, the usage of UMLS or combined RxNorm and SNOMED CT
vocabulary (RS) restricted / or not to the ST21pv subsets, and, where applicable, similarity thresholds or spaCy model
size (sm or lg) are reported. BERT models were fine-tuned on the PubMed (PM) or Encyclopedia (ENC) corpus
using sentences (S) or noun phrases (NP). Termhood scores use either the PubMed (PM), PubMed Central (PMC),
Textbook (TB), or Encyclopedia (ENC) corpus, a maximum n-gram size of n, and the generalized mean Mr. In the
phrase scenarios, the generalized mean Mr for combining the cause and effect scores is also reported.

precomputing the n-gram frequencies and then par-
allelizing hash table lookups in the inference phase,
the termhood scores could be even further sped up.
As for memory efficiency, the n-gram frequencies
and the BERT model checkpoints have a similar
memory footprint of about 400MB.

As for the assessment of phrases vs. sen-
tences, our results in Table 4 show that most ap-
proaches are substantially more effective on just

the phrase pairs than on sentences (e.g., BERT-
based: 0.12 to 0.23 better MCC on CauseNet-F-
Phrase than on CauseNet-F-Sentence; termhood:
0.11 to 0.19 better MCC). Only the ScispaCy en-
tity linking approach is really more effective on
sentences than phrases (MCC improves by 0.08).

Entity Linking-based Approaches The entity
linking-based approaches mostly use the combined
RxNorm and SNOMED CT vocabulary (some-
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Approach Phrase Sentence

ms Speedup ms Speedup

cTakes 119.68 0.5 212.12 0.2
MetaMap 49.64 1.2 120.28 0.4
QuickUMLS 7.23 8.3 8.98 5.3
ScispaCy 16.38 3.7 15.96 3.0

PubMedBERT 60.19 1.0 47.77 1.0

Termhood n=1 0.56 107.5 1.02 46.8
Termhood n=2 0.93 64.7 1.97 24.2
Termhood n=3 1.27 47.4 2.82 16.9

Table 5: Run time efficiency of the different approaches’
most effective parameterization on the CauseNet-F-
Phrase and -Sentence test sets. Time per instance aver-
aged over 10 runs, speedup computed against PubMed-
BERT as the most effective approach from Table 4.

times only the ST21pv subset) and only once the
full UMLS. Still, even with such a “restricted”
vocabulary, the entity linking-based approaches
hardly achieve really high precision values—or
only at the expense of very low recall. One rea-
son is that even specifically tailored health-related
entity vocabularies still contain many terms that
are only loosely health-related and then yield false
positive results on the cause–effect statements. In-
terestingly, only the MetaMap and the ScispaCy pa-
rameterizations “attempt” to compensate for this
by using generalized averages Mr with r < 0 for
the cause–effect combination when optimizing for
precision. Still, the many 0-values for precision op-
timization on CauseNet-F-Phrase indicate that no
health-related statements are found. This is again
caused by a “precision problem”. In the grid search
on CauseNet-F-Phrase, all entity linking-based ap-
proaches achieve precision values of at least 0.9
but at a very tiny recall (6–8 true positives). On the
test sets, these low-recall parameterizations do not
detect any of the health-related statements.

Another drawback of some entity linkers in the
phrase scenarios is their reliance on syntactic pars-
ing to detect candidate mentions—the parses might
not be too meaningful for (short) phrases. ScispaCy
in particular relies on parsing and thus is less effec-
tive than the other linkers on phrases—even though
ScispaCy is one of the best medical entity linkers
in full text scenarios (Vashishth et al., 2021).

Overall, the entity linking-based approaches
achieve rather low effectiveness compared to the
other approaches and are also slower than our new
generalized termhood method. In our scenario of
assessing the health relatedness of phrases and sen-
tences, they are not really a good option.
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Figure 2: ROC curves and AUC values (in parenthe-
ses) (a) for fine-tuning PubMedBERT on the CauseNet-
F-Sentence training data using sentences (S) or noun
phrases (NP) from the PubMed (PM) or Encyclope-
dia (ENC) corpus, and (b) for discriminative weight DW
(n = 1, r = 1) on the CauseNet-F-Phrase training data
with the health corpora PubMed (PM), PubMed Cen-
tral (PMC), Textbooks (TB), or Encyclopedia (ENC).

BERT-based Approaches Interestingly, domain
specific pre-training only has a minor positive ef-
fect for the BERT-based models. While PubMed-
BERT often is the most effective, SciBERT and
even the domain-agnostic BERT usually are al-
most as effective. Interestingly, all prefer the recall-
oriented higher values of r in the generalized aver-
age Mr for the cause–effect score combination.

Another observation is that the best BERT-based
approaches all are fine-tuned on noun phrases from
the Encyclopedia corpus—even in the sentence sce-
nario. As an example, Figure 2 (a) shows the
ROC curves and AUC values for PubMedBERT
in different fine-tuning setups on the CauseNet-F-
Sentence training data. Fine-tuning on the Ency-
clopedia corpus clearly achieves better AUC values
(at least 0.06 over PubMed) as does fine-tuning on
phrases instead of sentences (at least 0.04).

Termhood-based Approaches Among the term-
hood-based approaches, TDS and DW are more
effective than CW in almost all scenarios.

Further analysis of the termhood methods’ pa-
rameters shows that the health corpus is very impor-
tant: the best parameterizations all use the Encyclo-
pedia corpus. Figure 2 (b) details this observation
for DW. The AUC-ROC value with the Encyclope-
dia corpus is by far the best; the health corpus’ fit
to the target language is crucial. The n-gram length
and the generalized mean setup are less important.
Table 6 shows several ablation results. In most
cases, the ablated setups achieve equal or lower
effectiveness, but in some cases higher effective-
ness. By fixing n = 1, the MCC decreases by 0.00
to 0.03 on most datasets (except TDS / CW on
sentences where it increases). Fixing the phrase-
internal averaging to the arithmetic mean (M1) only
decreases the MCC by a maximum of 0.05.
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Appr. P Opt. R Opt. M Opt.

n = 1 M1 n = 1 M1 n = 1 M1

F-
Ph

ra
se CW -0.10 -0.08 -0.03 -0.03 0.00 -0.05

TDS 0.00 0.00 -0.05 0.03 -0.02 0.02
DW 0.00 0.00 -0.04 0.00 -0.01 -0.01

P-
Ph

ra
se CW 0.00 0.00 0.00 0.00 0.00 -0.02

TDS -0.05 0.00 0.01 0.00 -0.03 0.00
DW -0.07 0.00 -0.03 0.00 -0.01 0.03

F-
Se

nt
. CW 0.03 -0.03 0.00 0.00 0.00 0.05

TDS 0.00 0.00 0.00 -0.11 0.07 0.10
DW -0.03 0.00 0.00 -0.03 0.02 0.00

Table 6: Ablation study indicating the difference in
effectiveness on the test sets from the best parame-
terizations optimized for precision (P), recall (R), or
the Matthews correlation coefficient (M) to the best pa-
rameterizations when ablating the n-gram length (fixed
n = 1) or the generalized mean (fixed M1 for combin-
ing the n-gram scores). Operating point for precision /
recall is set to 0.9. The difference is given with respect
to the “interesting” measure (i.e., drop in recall for the
P columns, drop in precision for the R columns, and
drop in MCC for the M columns).

Overall, our generalized termhood-based meth-
ods are much faster but not significantly less effec-
tive than the BERT-based approaches—with TDS
and DW usually being better than CW. When apply-
ing the generalized termhood methods, it is crucial
to choose a good health corpus while optimizing
the other parameters (n-gram length, averaging)
only leads to smaller improvements.

5 Webis Medical CauseNet 2022

By applying our generalized termhood method
for health relatedness assessment to the com-
plete CauseNet, we create the new Webis Medi-
cal CauseNet 2022 resource consisting of health-
related cause–effect statements found on the web.
It is important to note, that the statements in
CauseNet—and thus also in our Webis Medical
CauseNet 2022—are only claimed cause–effect
statements. For many of the contained statements,
scientific evidence can surely be found (e.g., ‘stress
→ insomnia’) while for many other this might not
be possible (e.g., ‘incorrect placement of jupiter
→ diabetes’). Still, it could be interesting to ana-
lyze websites that contain many claimed health-
related cause–effect statements with respect to
whether medical evidence exists or not. Such
health-sociological analyses are now enabled by
our Webis Medical CauseNet 2022 resource at web
scale since the URLs of the pages from which a
statement was extracted are part of CauseNet.

Subset Statements Sentences P R

Prec (P) 103,273 1,259,339 0.93 0.89
Prec (MCC) 112,707 1,340,873 0.89 0.93
Full (P) 2,201,071 5,680,635 1.00 0.74
Full (MCC) 3,206,964 7,842,464 0.78 0.90

Table 7: Characteristics of the four Webis Medical
CauseNet 2022 versions. Number of statements / sup-
porting sentences, and estimated precision and recall of
the precision- or MCC-optimized termhood extraction.

The Webis Medical CauseNet 2022 comes in
four different versions14 based on the best term-
hood parameterizations from the evaluation. Ta-
ble 7 contains some general characteristics. The
two smaller versions are extracted from CauseNet-
Prec (statements with high support) by using TDS
optimized for precision or MCC, while the two
larger versions are extracted from CauseNet-Full
by using DW optimized for precision or MCC.

6 Conclusions

We have proposed generalized termhood-based
methods that effectively and efficiently assess the
health relatedness of phrases. On cause–effect
statements from the web, our new approaches are
almost as effective as the best BERT-based ap-
proaches while being much faster. Approaches
using state-of-the-art medical entity linkers are
slower and less effective. When configuring our
new termhood-based methods, it is crucial to select
a background health corpus that matches the target
language distribution while the other parameters
(n-gram length, averaging) are less important.

Using our methods, we have extracted the We-
bis Medical CauseNet 2022 resource of health-
related cause–effect statements from the web-
scale CauseNet. Based on Webis Medical
CauseNet 2022, health-sociological analyses of on-
line cause–effect relations are now possible at an
unprecedented scale compared to previous small-
scale analyses of health-related online information.

Finally, our termhood-based assessment could
also be useful in retrieval scenarios. For instance,
given the termhood scores’ efficiency, they could
directly be used at search engine side to quickly
assess the health relatedness of some query not seen
before (for other queries, the clicked documents
usually suffice to assess the health relatedness) and
to possibly adopt the retrieval accordingly (e.g.,
preferring medical resources).
14Available under a permissive license: https://github.com/

webis-de/COLING-22

https://github.com/webis-de/COLING-22
https://github.com/webis-de/COLING-22
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