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Abstract

Few-shot named entity recognition (NER) en-
ables us to build a NER system for a new do-
main using very few labeled examples. How-
ever, existing prototypical networks for this
task suffer from roughly estimated label de-
pendency and closely distributed prototypes,
thus often causing misclassifications. To ad-
dress the above issues, we propose EP-Net, an
Entity-level Prototypical Network enhanced
by dispersedly distributed prototypes. EP-Net
builds entity-level prototypes and considers
text spans to be candidate entities, so it no
longer requires the label dependency. In addi-
tion, EP-Net trains the prototypes from scratch
to distribute them dispersedly and aligns spans
to prototypes in the embedding space using a
space projection. Experimental results on two
evaluation tasks and the Few-NERD settings
demonstrate that EP-Net consistently outper-
forms the previous strong models in terms of
overall performance. Extensive analyses fur-
ther validate the effectiveness of EP-Net.

1 Introduction

As a core language understanding task, named en-
tity recognition (NER) faces rapid domain shift-
ing. When transferring NER systems to new do-
mains, one of the primary challenges is dealing
with the mismatch of entity types (Yang and Kati-
yar, 2020). For example, only 2 types are over-
lapped between 12B2 (Stubbs and Ozlem Uzuner,
2015) and OntoNotes (Ralph et al., 2013), which
have 23 and 18 entity types, respectively. Unfortu-
nately, annotating a new domain takes considerable
time and efforts, let alone the domain knowledge
required (Hou et al., 2020). Few-shot NER is tar-
geted in this scenario since it can transfer prior
experience from resource-rich (source) domains to
resource-scarce (target) domains.
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Figure 1: A comparison of token- and entity-level pro-
totypical networks for few-shot NER, where the former
builds prototypes for token labels and requires label
dependency, while the latter builds prototypes for en-
tity types and does not require label dependency. The
dotted line denotes that the pair of token-prototype (or
span-prototype) is the most similar. For clarity, we only
list spans with lengths less than 2 and assume there are
only 2 pre-defined entity types.

Previous few-shot NER models (Fritzler et al.,
2019; Hou et al., 2020; Yang and Katiyar, 2020;
Tong et al., 2021) generally formulate the task as a
sequence labeling task and employ token-level pro-
totypical networks (Snell et al., 2017). These mod-
els first obtain token labels according to the most
similar token-prototype pair and then obtain enti-
ties based on these labels, as Figure 1 shows. The
sequence labeling benefits from label dependency
(Hou et al., 2020). However, when it comes to few-
shot NER models, the label dependency is off the
table, because a few labeled data is way insufficient
to learn the reliable dependency, and the label sets
could vary from domain to domain. To tackle this,
some methods try to transfer roughly estimated de-
pendency. Hou et al. (2020) first learn the abstract
label transition probabilities in source domains and
then copy them to target domains. As Figure 2a
shows, the abstract O— I probability is copied to
three targets directly (the red lines). However, this
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makes the target probability sum of O—(all labels)
end up with 160%. To avoid the possible proba-
bility overflows, Yang and Katiyar (2020) propose
an even distribution method. As Figure 2b shows,
the abstract O— I probability is distributed evenly
among the three targets (the green lines). However,
this could lead to severe contradictions between the
target probabilities and reality. For example, there
are 4,983 DATE entities and only one EMATL entity
in the I2B2 test set, so the target probabilities of
O—I-DATE and O—I-EMAIL should be clearly
different. Consequently, the current dependency
transferring may lead to misclassifications due to
the roughly estimated target transition probabilities,
even though it sheds some light on few-shot NER.

In addition, the majority of prototypical models
for few-shot NER (Huang et al., 2021; Li et al.,
2020) obtain prototypes by averaging the embed-
dings of each class’s support examples, while Yoon
et al. (2019) and Hou et al. (2020) demonstrate that
such prototypes distribute closely in the embedding
space, thus often causing misclassifications.

In this paper, we aim to tackle the above is-
sues inherent in token-level prototypical models.
To this end, we propose EP-Net, an Entity-level
Prototypical Network enhanced by dispersedly dis-
tributed prototypes, as Figure 1 shows. EP-Net
builds entity-level prototypes and considers text
spans as candidate entities. Thus it can deter-
mine whether a span is an entity directly according
to the most similar prototype to the span. This
also eliminates the need for the label dependency.
For example, EP-Net determines the “rain” and
“tonight” are two entities, and their types are the
Weather and Time, respectively (Figure 1).! In
addition, to distribute these prototypes dispersedly,
EP-Net trains them using a distance-based loss
from scratch. And EP-Net aligns spans and proto-
types in the same embedding space by utilizing a
deep neural network to map span representations
to the embedding spaces of prototypes.

In essence, EP-Net is a span-based model. Sev-
eral span-based models (Li et al., 2021; Fu et al.,
2021; Yu et al., 2022) have been proposed for the
supervised NER task. Our EP-Net differs from
these models in two ways: (1) The EP-Net ob-
tains entities based on the span-prototype similarity,
while these models do so by classifying span repre-
sentations. (2) The EP-Net works effectively with

'We also add a None type and assign it to spans that are
not entities.
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Figure 2: Methods of transferring estimated label de-
pendency. In each method, the abstracts and cor-
responding targets are displayed in the same color.
Method (a) copies the abstracts to the targets, whereas
method (b) distributes them equally to the targets.

few labeled examples, whereas these models need
a large number of labeled examples to guarantee
good performance.

We evaluate our EP-Net on the tag set exten-
sion and domain transfer tasks, as well as the Few-
NERD settings. Experimental results demonstrate
that EP-Net consistently achieves new state-of-the-
art overall performance. Qualitative analyses (§5.5-
5.6) and ablation studies (§5.7) further validate the
effectiveness of EP-Net.

In summary, we conclude the contributions as
follows: (1) As far as we know, we are among
the first to propose an entity-level prototypical net-
work for few-shot NER. (2) We propose a prototype
training strategy to augment the prototypical net-
work with dispersedly distributed prototypes. (3)
Our model achieves the current best overall perfor-
mance on two evaluation tasks and the Few-NERD.

2 Related Work

Meta Learning. Meta learning aims to learn a gen-
eral model that enables us to adapt to new tasks
rapidly based on a few labeled examples (Li et al.,
2020). One of the most typical metric learning
methods is the prototypical network (Snell et al.,
2017), which learns a prototype for each class and
classifies an item based on item-prototype similari-
ties. Metric learning has been widely investigated
for NLP tasks, such as text classification (Sun et al.,
2019; Geng et al., 2019; Bao et al., 2020), relation
classification (Lv et al., 2019; Gao et al., 2020) and
NER (Huang et al., 2021). However, these methods
use the prototypes obtained by averaging the em-
beddings of support examples for each class, which
are closely distributed. In contrast, our model uses
dispersedly distributed prototypes obtained by su-
pervised prototype training.
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Few-shot NER. Previous few-shot NER models
(Li et al., 2020; Tong et al., 2021) generally for-
mulate the task as a sequence labeling task and
propose to use the token-level prototypical net-
work. Thus these models call for label dependency
to guarantee good performance. However, it is
hard to obtain exact dependency since the label
sets vary greatly across domains. As an alternative,
Hou et al. (2020) propose to transfer estimated
dependency. They copy the learned abstract depen-
dency from source to target domains, but the tar-
get dependency contradicts the probability defini-
tion. Yang and Katiyar (2020) propose StructShot,
which improves the above dependency transferring
by equally distributing the abstract dependency to
target domains, whereas the target dependency con-
tradicts the reality. Das et al. (2022) introduce
Contrastive Learning to the StructShot, which in-
herits the estimated dependency transferring. We
demonstrate that the roughly estimated dependency
may harm model performance. In addition, prompt-
based models (Cui et al., 2021; Sun et al., 2021;
Gu et al., 2022; Cui et al., 2022; Ding et al., 2022)
have been widely researched for this task recently,
but the model performance heavily relies on the
chosen prompts. Current with our work, Wang et
al. (2022) also propose a span-level prototypical
network to bypass label dependency, but their work
is still hampered by closely distributed prototypes.
In contrast, our model constructs dispersedly dis-
tributed entity-level prototypes, thus avoiding the
roughly estimated label dependency and closely
distributed prototypes.

3 Task Formulation and Setup

In this section, we formally define the task and then
introduce the standard evaluation setup.

3.1 Few-shot NER

We define an unstructured sentence as a token se-
quence X = (x1,x2,...,T,), and define entities
annotated in X as & = [(eM), (1), ... (e®) ()],
where e( and t(*) denote entity text and entity type,
respectively. A domain D = {(X®, £0)} NP js
a set of (X, &) pairs, and each D has a domain-
specific entity type set Tp = {t;}}¥,, and N is
various across domains.

We achieve the few-shot task through three steps:
Train, Adapt and Recognize. We first train EP-
Net with the data of source domains {D1, Ds, ...}.
Then we then adapt the trained EP-Net to target

domains {D},Dj,...} by fine-tuning it on sup-
port sets sampled from target domains. Finally, we
recognize entities of query sets using the domain-
adapted EP-Net. We formulate a support set as
S={(xW ¢ (i))}fvzsl, where S usually includes a
few labeled examples (K -shot) of each entity type.
For a target domain, we formally define the K -shot
NER as follows: given a sentence X and a K -shot
support set, find the best entity set £ for X'.

3.2 The Standard Evaluation Setup

To facilitate meaningful comparisons of results for
future research, Yang and Katiyar (2020) propose
a standard evaluation setup. The setup consists of
the query set and support set constructions.

3.2.1 Query Set Construction

They argue that traditional construction methods
sample different entity classes equally without con-
sidering entity distributions. For example, the [2B2
test set contains 4,983 DATE entities, while it only
contains one EMATIL entity. Thus they propose to
use the original test sets of standard NER datasets
as the query sets, thus improving the reproducibil-
ity of future studies.

3.2.2 Support Set Construction

To construct support sets, they propose a Greedy
Sampling algorithm to sample sentences from the
dev sets of standard NER datasets. In particular,
the algorithm samples sentences for entity classes
in increasing order of their frequencies. We present
the algorithm in Appendix A.

4 Model

In this section, we first provide an overview of
EP-Net in §4.1, and then illustrate the model ini-
tializations in §4.2 and discuss the model in §4.3.

4.1 EP-Net

Figure 3 shows the overall architecture of EP-Net.
Given a domain D={(X®, D)} and its entity

type set Tp = {t;}}¥,, we first initialize an entity-
level prototype for each t; (Figure 3-@).

P = {¢o,91,62,....9n}, 1)

where @ € RW+1*d1 and d; is the dimension of
prototype representation. ¢ is the prototype of the
None type, and ¢; (i > 0) is the prototype of ¢;.
We design a distance-based loss L4 to super-
vise the prototype training (Figure 3-®@), aiming
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Figure 3: The architecture of EP-Net. As an example, we use the sentence in Figure 1 and 3-dimensional embed-
ding spaces. EP-Net first initializes entity-level prototypes for entity types (®). Then it trains the prototypes with a
distance-based loss L, (®), distributing them dispersedly in embedding space (®). Next, given a sentence X (@),
EP-Net first obtains text spans (®) and then uses BERT (®) to generate span representations (@). Fourth, EP-Net
uses the space projdection (®) to align spans and prototypes in the same embedding space (@). Finally, EP-Net
calculates span-prototype similarities measured by the squared Euclidean distance. The shorter the distance, the
better the similarity. EP-Net classifies entities based on the best similarity, e.g., classifying the “rain” into the

Weather type (©).

to distribute these prototypes dispersedly in the
embedding space (Figure 3-®). We argue that
the prototypes should be dispersedly distributed
in an appropriate-sized embedding space, neither
too large nor too small (§5.5). Thus we first set
a threshold 7 to limit the averaged prototype dis-
tance. Then we calculate the squared Euclidean
distance between any two prototypes and obtain the
averaged prototype distance (denoted as Euc(®)).
Next, we construct the L£; as follows.

Zf\f:o Z;V:o Zizl (¢i,k_¢j,k:)2

| Buc(®)—71 if Euc(®)>r,
Y= { T — Euc(®) if Fuc(®) <, (2b)
Ly =log(y +1). (2¢0)

The training goal is to achieve ¢ — 0T, which
equals to (¢) + 1) — 1. Thus we design the log(-)
loss (Eq.2c), where the smaller the L4, the more
the (1 +1) — 1T,

Next, given a sentence X = {z;}7_, of the do-
main D, we first obtain text spans (denoted as s,
Figure 3-@®):

8 = {Tiy Tit1y s Tigjf 58 1 <i <i+j <n, (3)

where the span length j+1 is limited by a threshold
e: 741 < e. To obtain the span representation
(Figure 3-®®), we first use BERT (Devlin et al.,
2019) to generate the embedding sequence of X

Hy = {hy,hs,... hy,}, “4)

where Hy € R™% and d, is the BERT embed-
ding dimension. h; is the BERT embedding of
z;. We use H; to denote the BERT embedding
sequence of span s.

H, = {h;,hii1,....hi;}. Q)

We obtain the span representation (denoted as
E;) by concatenating the max-pooling of H; (de-
noted as H) and the span length embedding.

HS == [max(hiﬁl, veny hi+j,1)7 ceny max(h,-,dp ceey hiJrj,dl )],
(6a)
E, = [Hgwji1), (6b)

where H, € R%2 E, € Ré2+ds, w41 is the length
embedding trained for spans with a length j+1 and
ds is the embedding dimension. Due to the fact
that E; and prototype representations (@) are not
in the same embedding space, we project E to the
embedding space of @ using a multi-layer Feed
Forward Network (FFN)? and denote the aligned
span representation as E; (Figure 3-®®).

E,=E,W+b, @)

where E, € R%, W and b are FFN parameters.
Next, for the span s, we calculate the similarity
between it and each prototype ¢; € @ using the
squared Euclidean distance.
d
sim(s, @) o = > (Esj—i5)>.  (8)
j=1

>The FFN enables us to fine-tune our model on support
sets without overfitting due to its simple neural architecture.
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As a shorter distance denotes a better similar-
ity, we classify entities based the shortest distance
(Figure 3-©):

ts = arg min sim(s, ¢;)Y, )
¢,

where t5 € Tp is the type classified for the span s.
To construct an entity classification loss, we
first take the —sim(s, @;)2Y_, as classification logits,
thus the best similarity has the largest logit. We
then normalize these logits using the softmax func-
tion. Finally, we construct a cross-entropy loss L.

exp_Sim(57¢i)

S g expsimegs)’

1 Ms N .
Lo=—3p 222 ¥slosd;  (10D)
j=1 i=0

Ysi = (10a)

where {ys,9s} € RV*L, and y; is the one-hot
vector of the gold type for the span s. Mg is the
number of span instances.
During model training, we optimize model pa-
rameters by minimizing the following joint loss.

L(W;0) = Lq+ Ls. (11)

4.2 Initializations
4.2.1 Train Initialization

In the Train step, given a source domain D with
an entity type set Tp={t;}~,, we randomly ini-
tialize the entity-level prototypes @ = {¢; }}¥.,.-We
assign @ to the None type and ¢; to ¢;. To guar-
antee that we can adapt EP-Net to target domains
that have more types than the domain D, we ac-
tually initialize = {¢;}%), where EP-Net can
be adapted to any target domains with entity types
less than 100. Moreover, the IV can be set to an
even larger value if necessary. By doing so, the
prototypes {@; };2) , ; are unassigned, but we can
still distribute them dispersedly through training
them using the loss £; (§5.6). We use the bert-
base-cased model in the embedding Layer.?

4.2.2 Adapt and Recognize Initializations

In the Adapt step, given a target domain D’ with an
entity type set Tpr={t;} ', and the EP-Net trained
in the Train step, we first assign a prototype of
the trained & = {¢;}1%) to each ¢,. In particular,

‘https://huggingface.co/
bert-base-cased.

we assign @ to the None type. And if there are
types that are overlapped between Tp and Tpr (i.e.,
TpNTp # D), for each overlapped type, we reuse
the prototype assigned in the Train step. For other
types in 7p, we randomly assign an unassigned
prototype in @ to it, and we first choose the proto-
type that is ever assigned in the Train step. Then,
we adapt EP-Net to the domain D’ by fine-tuning
it on support sets sampled from D’.

However, Fine-tuning the model with small sup-
port sets runs the risk of overfitting. To avoid this,
we propose to use the following strategies: (1) We
freeze the BERT and solely fine-tune the assigned
prototypes and the multi-layer FFN. (2) We use an
early stopping criterion, where we continue fine-
tuning our model until the loss starts to increase.
(3) We set upper limits for fine-tuning steps, where
the model will stop when reaching the limits even
though the loss continues decreasing. With the
above strategies, we demonstrate that only a few
fine-tuning steps on these examples can make rapid
progress without overfitting.

In the Recognize step, we use the domain-
adapted EP-Net to recognize entities in the query
set of D’ directly.

4.3 Model Discussion

In the Train step, the randomly initialized proto-
types cannot represent entity types at first. Through
the joint model training with the £( W; #), EP-Net
establishes correlations between entity types and
their assigned prototypes. Moreover, the multi-
layer FEN can also be trained to cluster similar
spans around related prototypes in the embedding
space. As Figure 3-@ shows, the “rain” is mapped
to be closer to the Weather than other prototypes.

To precisely simulate the few-shot scenario, we
are not permitted to count the entity length of target
domains. Thus we set the span length threshold
€ to an empirical value of 10 based on source do-
mains. For example, 99.89% of the entities in the
OntoNotes have lengths under 10.

We propose a heuristic method for removing
overlapped entities classified by EP-Net. Specifi-
cally, we keep the one with the best span-prototype
similarity of those overlapped entities and drop the
others.

Concurrently, Wang et al. (2022) propose a
span-level model — ESD. We summarize how our
EP-Net differs from the ESD as follows: (1) Our
EP-Net fine-tunes on support sets while the ESD
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solely uses them for similarity calculation without
fine-tuning. Ma et al. (2022) claim that the fine-
tuning method is far more effective in using the
limited information in support sets. (2) The ESD
obtains class prototypes with embeddings of the
same classes in support sets, thus suffering from
closely distributed prototypes (Hou et al., 2020).
By contrast, our EP-Net avoids this by training
dispersedly distributed prototypes from scratch.

S Experiments

5.1 Evaluation Tasks

We evaluate EP-Net on two evaluation tasks and the
Few-NERD settings using 1- and 5-shot settings.
Limited by space, we solely report the key points
here and discuss more details in Appendix B.

Tag Set Extension. This task aims to evaluate
models for recognizing new types of entities in
existing domains. Yang and Katiyar (2020) divide
the 18 entity types of the OntoNotes (Ralph et al.,
2013) into three target sets, i.e., Group A, B and C,
to simulate this scenario. Models are evaluated on
one target set while being trained on the others.
Domain Transfer. This task aims to evaluate mod-
els for adapting to a different domain. Yang and
Katiyar (2020) propose to use the general domain
as the source domain and test model on medical,
news, and social domains.

Few-NERD Settings. Few-NERD (Ning et al.,
2021) is a large-scale dataset for few-shot NER.
It consists of two different settings: Intra and In-
ter. The Intra divides the train/dev/test accord-
ing to coarse-grained types. The Inter divides the
train/dev/test according to fine-grained types. Thus
the coarse-grained entity types are shared. The In-
tra is more challenging as the restrictions of sharing
coarse-grained types.

5.2 Datasets and Baselines

For a fair comparison, we use the same datasets
and baselines reported in (Yang and Katiyar, 2020;
Ning et al., 2021; Das et al., 2022). Specifically,
we use OntoNotes (general domain), CoNLL 2003
(Tjong Kim Sang and De Meulder, 2003) (news
domain), 12B2 2014 (Stubbs and Ozlem Uzuner,
2015) (medical domain) and WNUT 2017 (Der-
czynski et al., 2017) (social domain) for the tag set
extension and domain transfer tasks.

We compare the performance of EP-Net with pre-
vious best models, including: Prototypical Network
(ProtoNet) (Snell et al., 2017), ProtoNet+P&D

(Hou et al., 2020) , NNShot and StructShot (Yang
and Katiyar, 2020) and CONTaiNER (Das et al.,
2022). We represent more baseline details in Ap-
pendix C.

5.3 Implementation Details

In all experiments, we optimize EP-Net using
AdamW with a learning rate of 5e-5 and set d;
and ds to 512 and 25, respectively. dg is 768 when
using the BERT base model. We set 3 layers for the
multi-layer FFN, and the train batch size to 2 and
8 in 1- and 5-shot experiments, respectively. We
set the distance threshold 7 to 2 and 3 for 1- and
5-shot experiments, respectively. Moreover, we
investigate the model performance against differ-
ent 7 values in Appendix D. Following supervised
span-based work (Ji et al., 2020), we sample spans
of the None type during model training and set the
sampled count to 20 and 40 in 1- and 5-shot exper-
iments, respectively. Following (Yang and Katiyar,
2020; Das et al., 2022), we sample 5 support sets
and report the mean and standard deviation of the
F1 scores in each experiment.

5.4 Main Results

We report experimental results for 1- and 5-shot
settings in Table 1 and Table 2, respectively. We
have the following observations.

(1) In terms of the overall metric (i.e., Avg.), EP-
Net consistently outperforms the listed baselines
on the two tasks and Few-NERD, delivering +1.5%
to +7.0% averaged F1 gains. Moreover, EP-Net
improves up to +11.4% F1 scores on 1-shot Group
B. We attribute these gains to the advantages of the
proposed entity-level prototypical network.

(2) On the 5-shot Group C, EP-Net is inferior
to CONTaiNER by 8.5% F1 scores. Detailed er-
ror analysis indicates that the group’s DATE type
should bear the primary responsibility. Of the
4,178 entities in the test set, 1,536 are DATE enti-
ties, in which there are up to 429 different expres-
sions, such as “week”, “this week”, “’last week”,
“2 weeks”, “2 - week” etc. However, the 5-shot
setting solely enables us to sample very few vari-
ous expressions, leading to the poor performance
in DATE entities. For example, if a support set
solely samples the “week”, it is hard for EP-Net to
recognize entities like “this week” and “last week”.

In addition, we conduct episode evaluations on
Few-NERD and report the results in Appendix E.
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Model Tag Set Extension Domain Transfer Few-NERD
Group A GroupB GroupC Avg. 12B2 CoNLL WNUT Avg. Intra Inter Avg.

ProtoNet 18.7+4.7 244489 18.34+6.9 20.5 7.6+£3.5 53.0£7.2 14.8+4.9 25.1 18.6+7.2 25.3£8.8 22.0

ProtoNet+P&D 18.5+4.4 24.849.3 20.7£8.4 213 79432 56.0+7.3 18.8£53 27.6 19.445.6 26.2+4.2 22.8

NNShot 27.243.5 32.5£14.4 23.8+10.2 25.7
StructShot 27.5+4.1 32.4£14.7 23.8+10.2 27.9
CONTaiNER  32.4+£5.1 30.9£11.6 33.0+£12.8 32.1

16.6£2.1 61.3£11.5 21.7+£6.3 33.2
22.1£3.0 62.3£11.4 25.34+5.3 36.6
21.5£1.7 61.2£10.7 27.5+1.9 36.7

20.1£8.5 25.7£7.7 22.9
20.3£4.3 26.7£5.6 23.5
224454 28.4+4.3 254

EP-Net (ours) 38.4+4.5 42.3+10.8 36.7+9.5 39.1

27.5+£4.6 64.8£10.4 32.3+4.8 41.5

25.8+5.1 30.9+4.9 28.4

Table 1: F1 scores of 1-shot experiments. We report the mean and standard deviations of F1 scores.

Model Tag Set Extension Domain Transfer Few-NERD
Group A GroupB GroupC Avg. 12B2 CoNLL WNUT Avg. Intra Inter Avg.
ProtoNet 27.14£2.4 38.0+£5.9 38.4+33 345 10.3+0.4 659+1.6 19.845.0 32.0 33.2+£6.4 31.7459 32.5
ProtoNet+P&D 29.8+2.8 41.0+6.5 38.5+3.3 36.4 10.1+0.9 67.1£1.6 23.84£3.9 33.6 26.4+3.8 28.7£7.2 27.6
NNShot 447423 539+7.8 53.0£23 50.5 23.7+1.3 74.3+£2.4 23.945.0 40.7 29.6£5.3 33.945.1 31.8
StructShot 474432 57.1£8.6 542425 529 31.8£1.8 752423 27.2+6.7 447 31.24+4.4 35.7+3.8 33.5
CONTaiNER  51.24+6.0 56.0+£6.2 61.2+2.7 56.2 36.7£2.1 75.8£2.7 32.54+3.8 48.3 33.1+4.6 38.4+4.4 35.8
EP-Net (ours) 55.54+3.2 64.8+4.8 52.74+2.2 57.7 44.9+2.7 78.8+2.7 38.4+52 54.0 36.4+4.6 41.4+3.6 38.9

Table 2: F1 scores of 5-shot experiments. We report the mean and standard deviations of F1 scores.

5.5 Visualization

We use the 1-shot Group A experiment to investi-
gate prototype distributions. Specifically, in the
Train step we initialize the prototype set @ =
{#}1%9 and assign {¢}12, to the None type and
the 12 pre-defined entity types of the source do-
main. In the Adapt step, we assign {¢}{_ to the
None type and the 6 pre-defined entity types of the
Group A.

We report the visualization results in Figure 4.
From Figure 4b, we observe that all prototypes are
dispersedly distributed because the Euclidean dis-
tance between any two prototypes is approximate 2.
Therefore, we conclude that EP-Net can distribute
the prototypes dispersedly through the prototype
training. From Figure 4a, we see that the distances
between the None type and other assigned pro-
totypes are generally larger than other distances.
We attribute it to the fact that the None type does
not represent any unified semantic meaning, thus
the None spans actually correspond to a variety of
semantic spaces, requiring the None prototype to
keep away from other prototypes to alleviate the
misclassification problem.

Moreover, we realize another entity-level proto-
typical network with conventional prototypes®, and
refer to it as CP-Net. We do not train the conven-

“We obtain the conventional prototypes by averaging the
embeddings of each type’s examples. For the None type,
we obtain its prototype by averaging representations of the
sampled None spans.

(a) The assigned
prototypes

(b) All the prototypes

Figure 4: Heat maps of prototype distributions in the
embedding space, which are measured by the squared
Euclidean distance. In the (b), we show the distribu-

tions of all the prototypes ® = {¢}1%9. In the (a), we

amplify the distributions of the 13 assigned prototypes
{#}12,. The darker the color, the larger the distance.

tional prototypes with the loss £ but fine-tune it
during the model training. We report more details
of CP-Net in Appendix F.

We visualize the distributions of our prototypes
and conventional prototypes in Figure 5. To be
specific, we use prototypes obtained in the Rec-
ognized step of both models. We observe that:
(1) Our prototypes are distributed much more dis-
persedly than the conventional prototypes. (2) Our
None prototype is more distant from other proto-
types, whereas the conventional None prototype
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stays close to other conventional prototypes. These
results indicate that our prototypes enable us to
alleviate the misclassifications caused by closely
distributed prototypes.

(a) Our prototypes

(b) Conventional prototypes

Figure 5: Heat maps of prototype distributions of our
prototypes and conventional prototypes.

5.6 How does the Dispersedly Distributed
Prototyes Enhance the EP-Net?

We run the 1-shot Group A experiment with EP-
Net and CP-Net to conduct the investigation. We
first compare the F1 scores of the two models. The
results show our EP-Net outperforms CP-Net by
+9.6% F1 scores, verifying the effectiveness of the
dispersedly distributed prototypes.

In addition, we use t-SNE (Van der Maaten and
Hinton, 2008) to reduce the dimension of span rep-
resentations obtained in the Recognize step of EP-
Net and CP-Net and visualize these representations
in Figure 6. We can see that our EP-Net clusters
span representations of the same entity class while
dispersing span representations of different entity
classes obviously, which we attribute to the usage
of dispersedly distributed prototypes. Based on
the above fact, we conclude that our EP-Net can
greatly alleviate the misclassifications caused by
closely distributed prototypes.

5.7 Ablation Study

We conduct ablation studies to investigate the sig-
nificance of model components and report the
results in Table 3. Specifically, (1) In the “-
Entity-level prototype”, we ablate the entity-level
prototypes and use token-level prototypes instead.
Moreover, we use the copying method (Figure 2) to
transfer the label dependency. The ablation results
show that the F1 scores drop from 5.1% to 7.2%,
validating the advantages of entity-level prototypes.
(2) In the - Prototype training”, we remove the
loss L4 from the £( W; 6), thus the prototypes are

Ordinal iy Org
Norp
> Quantity

(a) EP-Net (b) CP-Net

Figure 6: t-SNE visualization of span representations
of EP-Net and CP-Net. We obtain these representations
in the Recognize step of both models. Since there are
too many None spans (890,000+), we do not show their
visualizations in the figure.

Group A I12B2 Intra Inter

Model F1) (F1) (F1) (F1)
EP-Net 38.4 27.5 258 309
- Entity-level prototype 31.6 224 186 25.1
- Prototype training 30.3 19.8 200 19.1
- Euclidean distance 334 252 216 273

Table 3: Ablation results under the 1-shot setting. We
select one dataset for each of the two evaluation tasks,
as well as the Intra and Inter of the Few-NERD.

not trained being dispersedly distributed. The de-
creasing F1 scores (5.8% to 11.8%) demonstrate
that EP-Net significantly benefits from the dispers-
edly distributed prototypes. (3) In the “-Euclidean
distance”, we use the cosine similarity to measure
span-prototype similarities instead. We see that
the Euclidean similarity consistently surpasses the
cosine similarity, revealing that a proper measure is
vital to guarantee good performance, which is con-
sistent with the conclusion in (Snell et al., 2017).

6 Conclusion

In this paper, we propose an entity-level prototypi-
cal network for few-shot NER (EP-Net). And we
augment EP-Net with dispersedly distributed pro-
totypes. The entity-level prototypes enable EP-Net
to avoid suffering from the roughly estimated label
dependency brought by abstract dependency trans-
ferring. Moreover, EP-Net distributes the proto-
types dispersedly via supervised prototype training
and maps spans to the embedding space of the pro-
totypes to eliminate the alignment biases. Experi-
mental results on two evaluation tasks and the Few-
NERD settings demonstrate that EP-Net beats the
previously published models, creating new state-
of-the-art overall performance. Extensive analyses
further validate the model’s effectiveness.
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Appendix

A The Greedy Sampling Algorithm

Algorithm 1: Greedy Sampling Algorithm

Require: shot K, dev set X of a domain D and its entity
type set T~
: Sort types in 7 based on their frequencies in X
: S « @ // Initialize the support set
: {Count; <+ 0}
// Initialize the count of each type in S
: while ¢ < |T| do
while Count; < K do
Sample (X,&) € X s.t. T; € &.type'
/I Sample a sentence containing entities of 7;
/I type, w/o replacement
7: S+ SU{(X, &)}
8: update {Count;} V T; € E.type
9:  end while
10: end while
11: return S

A W N =

D

! £ type denotes the types of entities annotated in £

B Details of the Evaluation Task

B.1 Tag Set Extension

The Group A, B, and C split from the OntoNotes
dataset are as follows.

e Group A: {Org, Quantity, Ordinal,
Norp, Work, Law}

e Group B: {Gpe, Cardinal, Percent,
Time, Event, Language}

e Group C: {Person, Product, Money,
Date, Loc, Fac}

In this task, we evaluate our EP-Net on each
group while training our model on the other two
groups. In each experiment, we modify the train-
ing set by replacing all entity types in the target
type set with the None type. Hence, these target
types are no longer observed during training. We
use the modified training set for model training in
the Train step. Similarly, we modify the dev and
test sets to only include entity types contained in
the target type set. We use the Greedy Sampling
Algorithm to sample multiple support sets from the
dev set for model adaption.

B.2 Domain Transfer

In this task, we train our EP-Net on the standard
training set of the OntoNotes dataset and evaluate
our model on the standard test sets of 2B2, CoNLL,
and WNUT. In addition, we sample support sets
for model adaption from the standard dev sets of
the above three datasets.

B.3 Few-NERD Settings

FEW-NERD (Ning et al., 2021) is the first dataset
specially constructed for few-shot NER and is one
of the largest human-annotated NER datasets. It
consists of 8 coarse-grained entity types and 66
fine-grained entity types. The dataset contains two
sub-sets, name Intra and Inter.

e In Intra, all the fine-grained entity types
belonging to the coarse-grained People,
MISC, Art, Product are assigned to the
training set, and all the fine-grained entity
types belonging to the coarse-grained Event,
Building are assigned to the dev set, and
all the fine-grained entity types belonging to
the coarse-grained ORG, LOC are assigned to
the test set. In this dataset, the training/de-
v/test sets share little knowledge, making it a
difficult benchmark.

o In Inter, 60% of the 66 fine-grained types are
assigned to the training set, 20% to the dev set,
and 20% to the test set. The intuition of this
dataset is to explore if the coarse information
will affect the prediction of new entities.

We use the standard evaluation (§3.2) and the
episode evaluation to evaluate the performance of
our EP-Net. For the standard evaluation, we con-
duct experiments on Intra and Inter, respectively.
We first use the training set to train our EP-Net and
then sample support sets from the test set for the
model adaptation and evaluate our model on the
remaining test set. For the episode evaluation, we
use the exact evaluation setting proposed by (Ning
et al., 2021).

C Baseline Details

Following the established line of work (Yang and
Katiyar, 2020; Das et al., 2022; Ning et al., 2021),
we compare EP-Net with the following competitive
models.

e Prototypical Network (ProtoNet) (Snell et al.,
2017) is a popular few-shot classification algo-
rithm that has been adopted in most previously
published token-level few-shot NER models.

e ProtoNet+P&D (Hou et al., 2020) uses pair-
wise embedding and collapsed dependency
transfer mechanism in the token-level Proto-
typical Network, tackling challenges of simi-
larity computation and transferring estimated
label dependency across domains.

e NNShot (Yang and Katiyar, 2020) is a sim-
ple token-level nearest neighbor classification
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model. It simply computes a similarity score
between a token in the query example and all
tokens in the support set.

e StructShot (Yang and Katiyar, 2020) com-
bines NNShot and Viterbi decoder and uses
estimated label dependency across domains
by first learning abstract label dependency and
then distributing it evenly to target domains.

e CONTaiNER (Das et al., 2022) introduces
Contrast Learning to the StructShot. It mod-
els Gaussian embedding and optimizes inter
token distribution distance, which aims to de-
crease the distance of token embeddings of
similar entities while increasing the distance
for dissimilar ones.

For a fair comparison, we use the results of the
ProtoNet, ProtoNet+P&D, NNShot, and StructShot
reported in (Yang and Katiyar, 2020), and the re-
sults of CONTaiNER reported in (Das et al., 2022).

In addition, we run the ProtoNet, Pro-
toNet+P&D, NNShot, and StructShot on Few-
NERD using the standard evaluation setup (§3.2,
B.3).

D Performance against Prototype
Distance Threshold (7)

We conduct 1- and 5-shot experiments to explore
the performance against different 7 values. Since
validation sets are unavailable in the few-shot sce-
nario, we randomly sample 20% of the query sets
for the explorations. We report the results in Figure
7, where we set the 7 value from 1 to 10, respec-
tively. We can observe that: (1) The F1 scores
generally first increase and then decrease when the
7 value consistently increases. (2) Except for the
Group C and Intra, our EP-Net performs the best
in the 1-shot experiments when setting the 7 to 2.
(3) Except for the Group A and Intra, our EP-Net
performs the best in the 5-shot experiments when
setting the 7 to 3.

The above results validate our argument that the
prototypes should be distributed in an appropriate-
sized embedding space, neither too large nor too
small (§4.1). For simplicity, we set the 7 to 2 and 3
in all the other 1- and 5-shot experiments, respec-
tively.

E Episode Evaluation on Few-NERD

We evaluate our EP-Net on Few-NERD with the
episode evaluation setting and compare our model
with previous state-of-the-art models, including

=)
i)

F1 Scores (%)
8 3

1 2 3 4 5 6 7 & 9 10
Distance threshold
a) 1-shot

——GroupA
iroup B ——

®©
S

F1 Scores (%)
S
4 j} ‘

}

Group C —— CoNLI Tnira
B2 ——WNUT —— Inter

D
<

1 2 3 4 5 6 7 8 9 10
Distance Threshold
b) 5-shot

Figure 7: Performance comparisons of different proto-
type distance threshold (7) values in 1- and 5-shot ex-
periments.

ProtoBERT (Ning et al., 2021), NNShot, Struct-
Shot, CONTaiNER, and ESD (Wang et al., 2022).
We would like to mention that the ESD is a concur-
rent span-based few-shot NER model to ours.

We report the results in Table 4 and Table 5,
where we take the results of ProtoBERT, NNShot,
and StructShot reported in (Ning et al., 2021), and
the results of CONTaiNER and ESD reported in
their original papers. We can see that:

e On the Intra, our EP-Net consistently outper-
forms the best baseline (i.e., CONTaiNER) in
terms of the Avg. metric, bringing +2.39% F1
gains. In addition, our EP-Net surpasses the
concurrent ESD by +4.43% F1 scores.

e On the Inter, our EP-Net is inferior to ESD
by a large margin (5.0%) in terms of the Avg.
metric. However, our model consistently out-
performs the other baselines, delivering up
to +5.31% F1 scores compared to the CON-
TaiNER.

e Both our EP-Net and CONTaiNER outper-
form ESD in 1-shot experiments, but they are
inferior to ESD in 5-shot experiments.

The above results demonstrate the effectiveness
of the proposed EP-Net. And compared to ESD,
our model is more efficient in the few-shot scenario
when entities share less coarse-grained information
(the Intra).’

Compared to our simple concatenation method
(Eq.6b) to obtain span representations, ESD pro-
poses to use Inter Span Attention (ISA) and Cross

3 As shown in Appendix B.3, entities in the Intra share little
coarse-grained information, but the Inter is designed to allow
entities sharing the coarse-grained information.
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1~2-shot

5~10-shot

Model Avg.
5 way 10 way 5 way 10 way
ProtoBERT 23.45+£0.92  19.76+0.59 41.93£0.55 34.61£0.59 29.94
NNShot 31.01£1.21 21.88+0.23 35.74+£236 27.67£1.06 29.08
StructShot 35.92+0.69 25.38+0.84 38.83£1.72  26.39+2.59 31.63
ESD 41.44£1.16 32.29+£1.10 50.68+£0.94 42.92+0.75 41.83
CONTaiNER 40.43 33.84 53.70 47.49 43.87
EP-Net (Ours) 43.36+0.99 36.41+1.03 58.85+1.12 46.40+£0.87 46.26

Table 4: Episode evaluation results (F1 scores) on the Intra dataset of Few-NERD. We report the mean and standard

deviations of F1 scores.

Model 1~2-shot 5~10-shot Ave.
5 way 10 way 5 way 10 way
ProtoBERT 44.444+0.11  39.09+0.87 58.80+£1.42  53.97£0.38 49.08
NNShot 54.29£0.40 46.98£1.96 50.56+£3.33  50.00£0.36 50.46
StructShot 57.33£0.53  49.46+£0.53 57.16£2.09 49.39£1.77 53.34
CONTaiNER 55.95 48.35 61.83 57.12 55.81
ESD 66.46+0.49 59.95+0.69 74.14+0.80 67.91+1.41 66.12
EP-Net (Ours)  62.494+0.36  54.3940.78 65.24+0.64 62.37+1.27 61.12

Table 5: Episode evaluation results (F1 scores) on the Inter dataset of Few-NERD. We report the mean and standard

deviations of F1 scores.

Span Attention (CSA) to enhance the span rep-
resentations. We believe that the ISA and CSA
enable ESD to encode the shared coarse-grained
information into span representations sufficiently,
which helps ESD obtain the current state-of-the-art
performance on the Inter dataset.

F CP-Net

We propose the CP-Net as a comparable model to
our EP-Net. CP-Net is also an entity-level prototyp-
ical network, but it uses conventional prototypes
obtained by averaging the embeddings of type’s
examples. Similar to EP-Net, CP-Net also uses the
BERT model as an embedding generator. In addi-
tion, it uses the sampling strategy discussed in §5.3
to randomly sample None spans. CP-Net consists
of two steps, namely Train and Recognize.

In the Train step, we train CP-Net with the
source domain data. To be specific, we obtain
the entity-level prototypes by averaging the em-
beddings of type’s examples in the training set.
Moreover, we obtain span representations with
the same method of EP-Net (Eq.3-7), as well as
the method to calculate span-prototype similarity
(Eq.8-9). During the model training, we use the
training loss L5 (Eq.10b) to fine-tune the BERT
model.

In the Recognize step, we use the fine-tuned
BERT model as the embedding generator and ob-

tain the entity-level prototypes by averaging the
embeddings of each type’s examples in the support
sets. Then we obtain the type of each span accord-
ing to the best similarity between the span and the
prototypes.

The CP-Net differs from our EP-Net in the fol-

lowing two ways.

e CP-Net uses conventional prototypes, and it
does not train these prototypes during the
model training. By contrast, our EP-Net
trains prototypes from scratch with the dis-
tance based loss L4 (Eq.2c)

e CP-Net does not contain a domain adaption
procedure, and it solely uses the support sets
for similarity calculation. By contrast, our EP-
Net contains a Adapt step for domain adap-
tion and it uses the support sets for not only
the similarity calculation but also the domain
adaption.
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