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Abstract

Supervised open relation extraction aims to
discover novel relations by leveraging super-
vised data of pre-defined relations. However,
most existing methods do not achieve effective
knowledge transfer from pre-defined relations
to novel relations, they have difficulties gener-
ating high-quality pseudo-labels for unsuper-
vised data of novel relations and usually suffer
from the error propagation issue. In this paper,
we propose a Cluster-aware Pseudo-Labeling
(CaPL) method to improve the pseudo-labels
quality and transfer more knowledge for discov-
ering novel relations. Specifically, the model is
first pre-trained with the pre-defined relations
to learn the relation representations. To im-
prove the pseudo-labels quality, the distances
between each instance and all cluster centers
are used to generate cluster-aware soft pseudo-
labels for novel relations. To mitigate the catas-
trophic forgetting issue, we design the consis-
tency regularization loss to make better use of
the pseudo-labels and jointly train the model
with both unsupervised and supervised data.
Experimental results on two public datasets
demonstrate that our proposed method achieves
new state-of-the-arts performance1.

1 Introduction

Open relation extraction (OpenRE) has been pro-
posed to extract the novel relations that are not
defined or observed beforehand. Previous meth-
ods can be classified into two types: unsupervised
and supervised. Unsupervised OpenRE (Yao et al.,
2011, 2012; Marcheggiani and Titov, 2016; Elsa-
har et al., 2017; Tran et al., 2020; Hu et al., 2020)
regards the OpenRE as a totally unsupervised task
which first extracts the feature and then clusters
them. However, these methods don’t take full ad-
vantage of the large amounts of existing relational

∗The first three authors contribute equally. Yajing Xu is
the corresponding author.

1Code is available at https://github.com/BobTuan/CaPL
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Figure 1: Relation instance S1 and S3 belong to the
same relation type while S2 with similar context is from
another relation type. However, the hard pseudo-labels
produced by common clustering methods contain much
noise which causes the error propagation issue. We
generate soft pseudo-labels that contain the information
about true cluster to improve the pseudo-labels quality.

facts in knowledge bases. Hence, the supervised
OpenRE is proposed which leverages the super-
vised data of pre-defined relations to guide the
learning of the unsupervised data of novel rela-
tions. In this paper, we focus on the latter setting,
supervised OpenRE.

Since the classes between pre-defined relations
and novel relations are disjoint, the main challenge
of supervised OpenRE is how to make the best
use of the prior knowledge in pre-defined relations
to extract novel relations. Wu et al. (2019) pro-
poses relational siamese networks to transfer the
knowledge from pre-defined relations to novel re-
lations. However, many studies have shown that
high-dimensional embeddings learn much about
the complex linguistic information (Peters et al.,
2018; Jawahar et al., 2019; Clark et al., 2019; Gold-
berg, 2019), which makes it hard to produce ideal
clusters. Zhao et al. (2021) proposes a relation-
oriented clustering method that explicitly aligns the
derived clusters with relational semantic classes.

However, we find that the pseudo-labels pro-
duced by previous method are not robust to transfer

https://github.com/BobTuan/CaPL
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Figure 2: Overview of our CaPL method. Firstly, we pre-train the model with supervised data of pre-defined
relations. Then, we generate cluster-aware soft pseudo-labels for unsupervised data of novel relations. Finally,
we jointly train the model with both supervised data and unsupervised data. After step 1, step 2 and step 3 are
performed iteratively to gradually improve model performance on novel relations.

the knowledge from pre-defined relations to novel
relations which means that using unreliable pseudo-
labels could cause the error propagation issue. As
is shown in Figure 1, relation instance S1 and S3

belong to the same relation type BORN_IN_PLACE
while S2 with similar context is from another rela-
tion type BORN_IN_DATE. Owing to the spurious
correlations (Liu et al., 2021), existing method that
selects the nearest cluster center as the pseudo-
labels may produce noise pseudo-labels. Hence
if we further exploit the hard pseudo-labels, the
model would be wrongly optimized. We argue that
utilizing the information about all cluster centers to
generate the soft pseudo-labels would be helpful to
reduce the error propagation issue. The intuition is
that if we exploit the soft pseudo-labels, we can uti-
lize the information about the true cluster to guide
the learning for discovering novel relations.

In this paper, we propose a Cluster-aware
Pseudo-Labeling (CaPL) method to improve the
pseudo-labels quality and transfer more knowledge
for discovering novel relations. Firstly, we pre-train
the model under the supervision of cross-entropy
loss to leverage the prior knowledge in pre-defined
relations. Then, to effectively transfer the knowl-
edge, rather than directly using the hard pseudo-
labels produced by common clustering algorithms,
we use the distances between each instance and
all cluster centers to generate cluster-aware soft
pseudo-labels for novel relations. Finally, we de-
sign consistency regularization loss to make the
best use of the knowledge stored in the cluster-
aware pseudo-labels and jointly train the model
with both supervised and unsupervised data to mit-
igate the catastrophic forgetting issue.

To summarize, the major contributions of our
work are as follows: (1) We propose a simple but
effective framework based on the CaPL for super-
vised OpenRE whicn can transfer more knowledge
for discovering novel relations. (2) We design the
consistency regularization loss to keep the cluster
predictions and pseudo-labels of unsupervised data
to be consistent for making better use of the pseudo-
labels. (3) Experimental results and analyses on
two public datasets demonstrate the effectiveness
of our proposed method.

2 Method

In the supervised OpenRE settings, training data
is split into two sets: a supervised dataset of pre-
defined relations Dl =

{(
xli, y

l
i

)
, i = 1, . . . , N

}
and an unsupervised dataset of novel relations
Du = {xui , i = 1, . . . ,M}, where xli in Dl and xui
in Du is an relation instance and yli is a categorical
label. Our goal is to cluster the Du to discover Cu

novel relations where we assume Cu to be known
a priori. The set of C l labeled classes is assumed
to be disjoint from the set of Cu unlabeled classes.

In this work, we propose a simple but effec-
tive framework based on the CaPL to improve the
pseudo-labels quality for discovering novel rela-
tions. Figure 2 shows the overall architecture of
our proposed method. We will introduce these step
details in the following subsections.

2.1 Leverage Knowledge with Pre-Training

To leverage the prior knowledge in pre-defined re-
lations, we use the supervised data of pre-defined
relations to pre-train the model. The goal of pre-
training with pre-defined relations is to make the
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model adapt to the relational feature space while
be less biased towards pre-defined relations.

Specifically, we learn the relational feature rep-
resentations under the supervision of cross-entropy
loss due to its simplicity and efficacy.

Lce = − 1

N

N∑
i=1

log
exp (ϕ (si)

yi)∑K
j=1 exp

(
ϕ (si)

j
) , (1)

where si is the ith relation feature representation
of pre-defined relations, ϕ (·) is a linear classifier
and ϕ (·)j are the output logits of the jth class.

2.2 Cluster-aware Pseudo-Labeling

Since there is a mass of unsupervised data of novel
relations, it’s important to effectively leverage
these samples to discover novel relations. Pseudo-
Labeling is a well-established technique for trans-
fer learning in general (Cui et al., 2021). After
leveraging the prior knowledge in pre-defined re-
lations with pre-training, we propose a simple but
effective method CaPL for transferring the knowl-
edge to discover novel classes.

To transfer more knowledge, rather than directly
generating the hard pseudo-labels with common
clustering algorithm like Zhao et al. (2021), we gen-
erate more robust cluster-aware soft pseudo-labels.
More specifically, we first obtain the relation in-
stance representations H = {h1, . . . , hN}, and
then perform k-means algorithm in the relational
feature space to obtain K cluster centers, denoted as
µk, k ∈ {1, . . . ,K}. Different from that the stan-
dard k-means algorithm regards the indicator of
the nearest cluster center as the hard pseudo-labels,
we adopt a soft assignment to K cluster centers for
each instance. Inspired by Hu et al. (2020), we use
the Student’s t-distribution to compute the assign-
ing probability between relation instance hj and
each cluster center µk:

pjk =

(
1 + ∥hj − µk∥22 /α

)−α+1
2

∑K
k′=1

(
1 + ∥hj − µk′∥22 /α

)−α+1
2

, (2)

where α denotes the degree of freedom of the Stu-
dent’s t-distribution and pjk can be regarded as the
probability of assigning the sample j to the cluster
center k. Without explicit mention, we set α = 1
for all experiments in this paper. In addition, we
can also use other common clustering algorithms
to generate the cluster centers.

2.3 Joint Training
Conventional cross-entropy loss cannot work with
the cluster-aware pseudo-labels. To make better use
of the knowledge in the pseudo-labels, we design
the consistency regularization loss. The idea of con-
sistency is that the cluster prediction and pseudo-
labels on a relation instance hj and its transformed
counterpart h

′
j should be the same. In our case, we

use dropout twice to get hj’s transformed counter-
part h

′
j like Gao et al. (2021) and then map these

relation representations into the cluster predictions
qj and q

′
j with the same equation 2. Finally, we use

the KL-divergence to keep the consistency between
cluster predictions and pseudo-labels:

ℓj = KL [pj∥qj ] + KL
[
pj∥q

′
j

]
+KL

[
qj∥q

′
j

]
(3)

KL [pj∥qj ] =
K∑
k=1

pjk log
pjk
qjk

(4)

Lcr =
N∑
j=1

ℓj
N

, (5)

To let the supervised data of pre-defined relations
better guide the learning of discovering novel rela-
tions and mitigate the catastrophic forgetting issue,
we jointly train the model with both supervised and
unsupervised data. The overall loss is as follows:

L = Lce + ω(r)Lcr, (6)

where ω(r) is a ramp-up function slowly increasing
from 0 to 1 along with the training. Following Zhao
et al. (2021), we use the sigmoid-shaped function

ω(r) = λe−5(1− r
T )

2

, where r is current epoch and
T is ramp-up length and a positive scalar factor λ.

3 Experiments

3.1 Datasets
To assess the performance of our method, we
conduct experiments on two relation extraction
datasets: FewRel (Han et al., 2018) and TACRED
(Zhang et al., 2017). FewRel is a human-annotated
dataset which contains 80 types of relations, each
with 700 relation instances. TACRED is also a
human-annotated dataset with 41 relation types.
Following the setup of Zhao et al. (2021), we split
the FewRel dataset into 64 pre-defined relations
and 16 novel relations and randomly select 1,600
instances in novel relations as the test set. For TA-
CRED, we also remove the instances labeled as
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Dataset Method
B3 V-measure

ARI Avg.
Prec. Rec. F1. Homo. Comp. F1.

FewRel

VAE(Marcheggiani and Titov, 2016) 0.309 0.446 0.365 0.448 0.500 0.473 0.291 0.376
RW-HAC(Elsahar et al., 2017) 0.256 0.492 0.337 0.391 0.485 0.433 0.250 0.340
Etype+(Tran et al., 2020) 0.238 0.485 0.319 0.364 0.463 0.408 0.249 0.325
SelfORE(Hu et al., 2020) 0.672 0.685 0.678 0.779 0.788 0.783 0.647 0.703
RSN(Wu et al., 2019) 0.486 0.742 0.589 0.644 0.787 0.708 0.453 0.583
RSN-BERT 0.585 0.899 0.709 0.696 0.889 0.781 0.532 0.674
RoCORE(Zhao et al., 2021) 0.752 0.846 0.796 0.838 0.883 0.860 0.709 0.788
CaPL 0.815 0.822 0.819 0.875 0.873 0.889 0.794 0.834
CaPL w/o Pre-training 0.735 0.802 0.767 0.834 0.865 0.850 0.693 0.770
CaPL w/o Consistency Regularization 0.752 0.785 0.768 0.840 0.855 0.847 0.738 0.784
CaPL w/o Joint Training 0.768 0.820 0.793 0.845 0.875 0.860 0.718 0.790

TACRED

VAE(Marcheggiani and Titov, 2016) 0.247 0.564 0.343 0.208 0.362 0.264 0.159 0.255
RW-HAC(Elsahar et al., 2017) 0.426 0.633 0.509 0.469 0.597 0.526 0.281 0.439
Etype+(Tran et al., 2020) 0.302 0.803 0.439 0.260 0.607 0.364 0.143 0.315
SelfORE(Hu et al., 2020) 0.576 0.510 0.541 0.630 0.608 0.619 0.447 0.536
RSN(Wu et al., 2019) 0.628 0.634 0.631 0.624 0.663 0.643 0.459 0.578
RSN-BERT 0.795 0.878 0.834 0.849 0.870 0.859 0.756 0.816
RoCORE(Zhao et al., 2021) 0.871 0.849 0.860 0.895 0.881 0.888 0.812 0.853
CaPL 0.858 0.888 0.873 0.891 0.906 0.898 0.829 0.867
CaPL w/o Pre-training 0.834 0.847 0.840 0.868 0.870 0.869 0.789 0.833
CaPL w/o Consistency Regularization 0.856 0.795 0.824 0.883 0.843 0.862 0.743 0.810
CaPL w/o Joint Training 0.835 0.827 0.831 0.870 0.855 0.862 0.788 0.827

Table 1: Experimental results produced by baselines and proposed model on FewRel and TACRED in terms of B3,
V-measure, ARI and average performance. The horizontal line divides unsupervised and supervised methods.

no_relation. We seperately select 30 pre-defined
relations and 10 novel relations. In addition, we ran-
domly select 15% of the instances from the novel
relations as the test set.

3.2 Baselines
For comparison, we consider both unsupervised
and supervised OpenRE baselines for comparison:

• Unsupervised. We first compare with unsu-
pervised OpenRE methods. VAE (Marcheg-
giani and Titov, 2016) proposes a VAE-based
model learned by the self-supervised signals.
RW-HAC (Elsahar et al., 2017) first extracts
entity types and re-weights the word embed-
dings and then clusters them. Etype+ (Tran
et al., 2020) solely uses entity types as the
input. SelfORE (Hu et al., 2020) proposes a
self-supervised framework which learns the
embeddings with pseudo-labels.

• Supervised. We also compare our method
with supervised OpenRE methods. RSN (Wu
et al., 2019) proposes the relation similarity
metrics to transfer the knowledge to discover
novel relations. RSN-BERT replaces the
static word embeddings with the pre-trained
BERT embeddings for a fair comparison. Ro-
CORE (Zhao et al., 2021) proposes a relation-
oriented method to explicitly align the derived
clusters with relational semantic classes.

3.3 Implement Details

We use the pre-trained model (bert-base-uncased2,
with 12-layer transformer) as our network back-
bone. To avoid overfitting and improve the training
efficiency, as suggested in Zhao et al. (2021), we
freeze all the parameters of BERT and only fine-
tune the parameters of the layer 8. The training
batch size is 128, the learning rate is 1e-4, and we
use Adam (Kingma and Ba, 2014) as optimizer.
All experiments are conducted by using a GeForce
RTX 3090Ti with 24 GB memory.

3.4 Main Results

The main results are shown in Table 1. The pro-
posed method CaPL achieves SOTA performance
in all datasets and evaluation metrics. It demon-
strates the effectiveness that our method leverages
the pre-defined relations to extract novel relations.
In addition, we find that most supervised methods
perform better than unsupervised methods. It indi-
cates that transferring knowledge from pre-defined
relations is helpful to discover novel relations.

3.5 Ablation Analysis

To study the effect of different components in
CaPL, we conduct ablation experiments. From
Table 1, we find that the performance of CaPL will
severely degrade without these modules, which

2https://huggingface.co/bert-base-uncased

https://huggingface.co/bert-base-uncased
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Task Method Prec. Rec. F1. Avg.

FewRel

RoCORE 0.752 0.846 0.796 0.788
CaPL-hard 0.753 0.811 0.781 0.781
CaPL-soft 0.815 0.822 0.819 0.834

TACRED

RoCORE 0.871 0.849 0.860 0.853
CaPL-hard 0.832 0.850 0.841 0.827
CaPL-soft 0.858 0.888 0.873 0.867

Table 2: Experimental results with different pseudo-
labels under the same pre-training setting on FewRel
and TACRED. CaPL-hard adopts the same hard pseudo-
labels with RoCORE while our method CaPL-soft
adopts the cluster-aware soft pseudo-labels. This ta-
ble only lists the results of metric B3. For results of
other metrics, please refer to the Appendix D.

Task Method Prec. Rec. F1. Avg.

F → T

RSN 0.349 0.590 0.439 0.387
RSN-BERT 0.337 0.866 0.486 0.400
RoCORE 0.621 0.602 0.611 0.642
CaPL 0.813 0.601 0.691 0.847

T → F

RSN 0.225 0.529 0.316 0.359
RSN-BERT 0.261 0.861 0.400 0.438
RoCORE 0.687 0.766 0.724 0.796
CaPL 0.722 0.757 0.739 0.802

Table 3: Results on two cross-domain tasks. F means
FewRel, which is from encyclopedia domain. T means
TACRED, which is from news and web domain. This
table only lists the results of metric B3. For results of
other metrics, please refer to the Appendix D.

demonstrates that all modules are important to the
final model performance. It is worth noting that
without consistency regularization the performance
is seriously hurt which indicates that the loss we
designed makes better use of the pseudo-labels.
Further study about consistency regularization can
be found in Appendix B.

3.6 Effect of Pseudo-labels Quality

In this section, we analyse the effect of pseudo-
labels quality for transferring knowledge to dis-
cover novel relations. Specifically, we adopt the
same method as RoCORE to generate and utilize
the hard pseudo-labels and combine it into our
framework which is named as CaPL-hard. From
Table 2, we can see that under the same pre-training
setting, our method that generates and utilizes
cluster-aware soft pseudo-labels significantly out-
performs the CaPL-hard method which indicates
that our method generates the high-quality pseudo-
labels and makes the best use of them for discover-
ing novel relations.

3.7 Cross Domain Analysis

To further study the knowledge transfer ability, we
adopt more strict cross-domain settings to evaluate
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Figure 3: Visualization of the learned relation represen-
tations by CaPL on both pre-defined and novel relations.

the model in which the pre-defined and novel re-
lations come from different domains. Specifically,
we conduct two cross-domain tasks: FewRel to
TACRED and TACRED to FewRel. In Table 3,
we observe that in the more realistic cross-domain
settings, our model shows better generalization per-
formance on novel relations which indicates that
our method effectively transfers the knowledge to
discover novel relations.

3.8 Visualization Analysis

To explore the effectiveness on the refinement of
relation representations in semantic space, we vi-
sualize the representations of both pre-defined and
novel relations. We randomly choose 5 relations
and sample 250 instances for each relation sepa-
rately in pre-defined and novel relations. As is
shown in Figure 3, the relation representations from
both pre-defined and novel relations are mostly
separated in our proposed method which means
that our method not only fully leverages the prior
knowledge for discovering novel relations but also
mitigates the catastrophic forgetting issue for pre-
defined relations.

4 Conclusion

In this paper, we propose an effective framework
based on Cluster-aware Pseudo-Labeling (CaPL)
to transfer more knowledge for discovering novel
relations. Our main contribution is to improve the
knowledge transfer ability of the model. The pro-
posed method makes better use of the prior knowl-
edge in pre-defined relations and generalizes to
novel relations with the high-quality pseudo-labels.
Experiments and analyses confirm the effectiveness
of CaPL for supervised OpenRE.
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A Evaluation Metrics

For evaluation metrics, we adopt B3 (Bagga
and Baldwin, 1998), V-measure (Rosenberg and
Hirschberg, 2007), and Adjusted Rand Index (ARI)
(Hubert and Arabie, 1985), the same as Wu et al.
(2019); Zhao et al. (2021). We take the average
for comprehensive evaluation, since that any of the
three metrics can measure the clustering perfor-
mance from different angles.

B Effect of Consistency Regularization
Loss

Table 4 shows the effect of consistency regular-
ization loss for exploiting the pseudo-labels. We
individually add different components of the con-
sistency regularization loss in equation 3, including
the consistency between cluster predictions and

Dataset Method Prec. Rec. F1. Avg.

FewRel

Baseline 0.752 0.785 0.768 0.784
+ CC 0.747 0.822 0.783 0.786
+ single CP 0.753 0.832 0.790 0.790
+ double CP 0.794 0.802 0.798 0.812
+ double CP + CC 0.815 0.822 0.819 0.834

TACRED

Baseline 0.856 0.795 0.824 0.810
+ CC 0.845 0.823 0.835 0.830
+ single CP 0.842 0.856 0.849 0.841
+ double CP 0.844 0.871 0.857 0.849
+ double CP + CC 0.858 0.888 0.873 0.867

Table 4: Evaluation of the effectiveness of the proposed
consistency regularization loss. Baseline: CaPL with-
out consistency regularization loss, CC: consistency
between cluster predictions and cluster predictions, CP:
consistency between cluster predictions and pseudo-
labels. This table only lists the results of metric B3.
Refer to Table 5 for detailed results.

cluster predictions (CC) and the consistency be-
tween cluster predictions and pseudo-labels (CP).
We can observe that both CC and CP consistency
are helpful to extract novel relations while CP con-
sistency performs better than CC consistency. We
argue it’s the knowledge in the pseudo-labels that
makes it.

C More details about Encoder

In this section, we introduce how we encode
the relation instance using the pre-trained mod-
els. Given a relation instance with n tokens as
w = [w1, w2, . . . , wn], where head entity eh and
tail entity et are marked with the start and end
position of the entity. In addition, we adopt the
pre-trained language model BERT (Devlin et al.,
2019) to encode each token wt to the correspond-
ing representation ht ∈ Rd where d denotes the
dimension of representation vectors. Then, we ob-
tain the hidden state vectors of two entities hent
by averaging their respective token’s hidden state
vectors:

hent = mean-pooling([hs, . . . , he]) (7)

where hent ∈ Rd. s and e represent start and end
position of the corresponding entity respectively.
Finally, we use the concatenation of representations
of two entity as the representation of the relation
instance h ∈ R2·d:

h = [hhead, htail] (8)

D Detailed Results of Other Experiments

In this section, detailed results of consistency regu-
larization loss, different pseudo-labels analysis and
cross domain analysis are listed in Table 5, Table 6
and Table 7 respectively.
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Dataset Method
B3 V-measure

ARI Avg.
Prec. Rec. F1. Homo. Comp. F1.

FewRel
Baseline 0.752 0.785 0.768 0.840 0.855 0.847 0.738 0.784
+ CC 0.747 0.822 0.783 0.837 0.867 0.852 0.722 0.786
+ single CP 0.753 0.832 0.790 0.839 0.872 0.855 0.726 0.790
+ double CP 0.794 0.802 0.798 0.861 0.869 0.865 0.773 0.812
+ double CP + CC 0.815 0.822 0.819 0.875 0.873 0.889 0.794 0.834

TACRED
Baseline 0.856 0.795 0.824 0.883 0.843 0.862 0.743 0.810
+ CC 0.845 0.823 0.835 0.879 0.855 0.867 0.789 0.830
+ single CP 0.842 0.856 0.849 0.870 0.874 0.872 0.801 0.841
+ double CP 0.844 0.871 0.857 0.870 0.884 0.877 0.812 0.849
+ double CP + CC 0.858 0.888 0.873 0.891 0.906 0.898 0.829 0.867

Table 5: The detailed results of the proposed consistency regularization loss.

Dataset Method
B3 V-measure

ARI Avg.
Prec. Rec. F1. Homo. Comp. F1.

FewRel
RoCORE 0.752 0.846 0.796 0.838 0.883 0.860 0.709 0.788
CaPL-hard 0.753 0.811 0.781 0.843 0.873 0.858 0.705 0.781
CaPL-soft 0.815 0.822 0.819 0.875 0.873 0.889 0.794 0.834

TACRED
RoCORE 0.871 0.849 0.860 0.895 0.881 0.888 0.812 0.853
CaPL-hard 0.832 0.850 0.841 0.867 0.878 0.872 0.769 0.827
CaPL-soft 0.858 0.888 0.873 0.891 0.906 0.898 0.829 0.867

Table 6: The detailed results of different pseudo-labels analysis.

Task Method
B3 V-measure

ARI Avg.
Prec. Rec. F1. Homo. Comp. F1.

F → T

RSN 0.349 0.590 0.439 0.387 0.533 0.448 0.279 0.389
RSN-BERT 0.337 0.866 0.486 0.400 0.777 0.528 0.352 0.455
RoCORE 0.621 0.602 0.611 0.642 0.666 0.654 0.451 0.572
CaPL 0.813 0.601 0.691 0.847 0.703 0.769 0.650 0.703

T → F

RSN 0.225 0.529 0.316 0.359 0.507 0.420 0.243 0.326
RSN-BERT 0.261 0.861 0.400 0.438 0.822 0.571 0.263 0.411
RoCORE 0.687 0.766 0.724 0.796 0.836 0.815 0.658 0.732
CaPL 0.722 0.757 0.739 0.802 0.830 0.816 0.664 0.740

Table 7: The detailed results of cross domain analysis.


