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Abstract

Recently, Transformer has achieved great suc-
cess in Chinese named entity recognition
(NER) owing to its good parallelism and abil-
ity to model long-range dependencies, which
utilizes self-attention to encode context. How-
ever, the fully connected way of self-attention
may scatter the attention distribution and al-
low some irrelevant character information to
be integrated, leading to entity boundaries be-
ing misidentified. In this paper, we propose a
data-driven Adaptive Threshold Selective Self-
Attention (ATSSA) mechanism that aims to dy-
namically select the most relevant characters
to enhance the Transformer architecture for
Chinese NER. In ATSSA, the attention score
threshold of each query is automatically gener-
ated, and characters with attention score higher
than the threshold are selected by the query
while others are discarded, so as to address ir-
relevant attention integration. Experiments on
four benchmark Chinese NER datasets show
that the proposed ATSSA brings 1.68 average
F1 score improvements to the baseline model
and achieves state-of-the-art performance.

1 Introduction

Named Entity Recognition (NER) aims to identify
named entities in the given text, including persons,
locations, organizations, etc. It plays an impor-
tant role in downstream natural language process-
ing (NLP) tasks such as information retrieval (Chen
et al., 2015), relation extraction (Miwa and Bansal,
2016) and question answering (Diefenbach et al.,
2018). Compared with English NER, Chinese NER
is more difficult since there is no natural delimiter
between words in Chinese sentences.

To integrate word information related to each
character and avoid error propagation of word seg-
mentation, word-character lattice is first applied
to Chinese NER in Lattice-LSTM (Zhang and
Yang, 2018). However, the RNN-based model is
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Figure 1: A comparison of selective self-attention
and fully connected self-attention, where the attention
weights are indicated by blue color. We only show the
attention distribution of the character "上 (Shang)" in
the head that focuses on entities.

hard to model long-range dependencies, and has
poor computational efficiency. Recently, Trans-
former (Vaswani et al., 2017) is widely used in
Chinese NER, which utilizes self-attention to en-
code context. Since vanilla Transformer lacks di-
rectionality, TENER (Yan et al., 2019) combines
Transformer encoder with direction-aware position
encoding to catch directions between characters.
FLAT (Li et al., 2020) further exploits span relative
position encoding to convert the lattice structure
into a flat structure.

Although Transformer-based models perform
well on Chinese NER, they have a limitation that
the fully connected self-attention drives queries to
attend to all characters of the inputs, making irrel-
evant character-level attention integration, which
leads to entity boundaries being misidentified. We
argue that, in NER task, entities only depend on the
most relevant characters, while others should be ig-
nored. As shown in Figure 1, since the attention of
the character "上 (Shang)" attends to all characters,
irrelevant character-level information of "大 (Big)"
and "众 (Zhong)" is integrated, which may lead the
model to misidentify "上海大众 (Shanghai Volk-
swagen)" as an organization entity rather than "上
海 (Shanghai)" as a geopolitical entity.

To avoid irrelevant attention integration, re-
searchers have investigated sparse self-attention.
Child et al. (2019) introduce local and strided pat-
terns to select keys for queries. Since the spar-
sity pattern is fixed, it may lack transferability.
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As alternatives, sparsemax (Martins and Astudillo,
2016) and entmax (Peters et al., 2019) collect
most relevant keys via dedicated forward and back-
ward algorithms, which incurs large computational
costs. To improve efficiency, explicit sparse Trans-
former (Zhao et al., 2019) gathers a fixed number
of keys with highest attention score through top-k
selection at the cost of flexibility. However, none
of above works have been applied to Chinese NER.

In this paper, we propose an Adaptive Threshold
Selective Self-Attention (ATSSA) mechanism to
avoid irrelevant character-level attention integra-
tion for Chinese NER. This mechanism is data-
driven which assigns a various attention mass to
each query in different heads parallelly. Specifi-
cally, we generate an attention score threshold for
each query of input sequence via a matching ma-
trix (Wang et al., 2018) automatically. Then, keys
whose attention score exceeds the threshold are
selected, while others are discarded. In the end,
the softmax function only performs on those se-
lected query-key pairs, thereby improving attention
to relevant keys while avoiding irrelevant character-
level attention integration. As shown in Figure 1,
the character "上(Shang)" only attends to relevant
characters in "上海(Shanghai)", while attention to
irrelevant characters in "大众(Public)" is discarded.

We take the advantage of FLAT (Li et al., 2020)
in lexicon fusion and apply ATSSA to it. Our code
will be released at https://github.com/
hubiao20/atssa-ner. The contributions of
this paper can be summarized as:

• We propose Adaptive Threshold Selective
Self-Attention to avoid irrelevant character-
level attention integration for Chinese NER.

• We conduct experiments on four benchmark
Chinese NER datasets, experimental results
show that ATSSA brings 1.68 average F1
score improvements to the baseline model and
achieves state-of-the-art performance.

2 Related Work

Chinese NER with Lattice Structure Since lat-
tice structure can provide rich lexical semantics and
boundary information, lattice-based approaches
have become the mainstream of Chinese NER.
Lattice LSTM (Zhang and Yang, 2018) first pro-
posed a lattice structure to encode all characters and
matched words simultaneously. Gui et al. (2019a)
combined CNN and rethinking mechanism to en-

code characters and potential words at different
window sizes. Ma et al. (2020) generated the soft-
lexicon feature by a static method, simplifying the
structure of lattice. The backbone of these methods
are RNNs, which are hard to model long-range
dependencies. As a solution, models based on
GNN (Gui et al., 2019b; Sui et al., 2019; Ding
et al., 2019) are proposed. Recently, Transformer
has achieved state-of-the-art performance on Chi-
nese NER. FLAT (Li et al., 2020) integrated lattice
structure via an ingenious span position encoding.
Moreover, to capture fine-grained correlations in
word-character spaces, DCSAN (Zhao et al., 2021)
leveraged a cross-lattice attention to model dense
interactions over lattice structure. However, the
fully connected self-attention allows Transformer-
based models to integrate some redundant infor-
mation, which affects the performance on Chinese
NER. Compared with traditional self-attention, our
proposed ATSSA selectively activates keys and
avoids incorrect character-level information fusion.

Selective Self-Attention In many NLP tasks,
predictions of models only depend on a small part
of the inputs. Many works based on Transformer
employed sparse self-attention to discard attention
to irrelevant keys. Some data-driven approaches,
such as sparsemax (Martins and Astudillo, 2016)
and entmax (Peters et al., 2019; Correia et al., 2019)
selected keys iteratively, which have large compu-
tational costs. To keep computational efficiency,
others (Raganato et al., 2020; Child et al., 2019) de-
fined sparse patterns manually. However, the trans-
ferability of these methods has not been validated.
Besides, Zhao et al. (2019) proposed explicit sparse
Transformer which collects a fixed number of keys
with highest attention score empirically. Unlike
sparse self-attention based models, selective self-
attention used an additional controller to select keys
dynamically. ReSAN (Shen et al., 2018) used two
RSS (Reinforced Sequence Sampling) modules to
select keys that need to attend to. GA-Net (Xue
et al., 2020) utilized an auxiliary network to gener-
ate binary gates to select elements for the backbone
attention network. Inspired by the selective idea,
we propose the adaptive threshold selective self-
attention, which dynamically selects keys by an
automatically generated attention threshold.

3 Background

Our proposed ATSSA is applied to FLAT (Li et al.,
2020), thus, we briefly introduce the structure of

https://github.com/hubiao20/atssa-ner
https://github.com/hubiao20/atssa-ner


1825

FLAT in this section. FLAT treats the characters
and matched words of the input sequence as spans,
and designs an ingenious relative position encoding
of spans for lattice structure. Let head[i] and tail[i]
denote the head and tail position of span xi, four
relative distances are used to indicate the relation
between xi and xj :

dhhij = head[i]− head[j]
dhtij = head[i]− tail[j]
dthij = tail[i]− head[j]
dttij = tail[i]− tail[j]

(1)

Then, the span relative position encoding can
be calculated by a non-linear transformation of the
four distances:

Rij = ReLU(Wr[pdhhij
; pdhtij

; pdthij
; pdttij ]) (2)

where Wr is a learnable parameter, pd is the sine
and cosine functions explained as:

p(d,2i) = sin(d/100002i/dmodel)

p(d,2i+1) = cos(d/100002i/dmodel)
(3)

where d is the distance acquired by Eq.(1) and i is
the index of dimension, dmodel = N × dhead, N
is the head number and dhead is the dimension of
each head.

With the span relative position encoding, the
dot-product attention can be calculated as:

Attn = softmax (A)V (4)

Aij = QiK
T
j +QiR

T
ij + uKT

j + vRTij (5)

Q,K, V = EWq, EWk, EWv (6)

where E is the embedding of each span.
Wq,Wk,Wv ∈ Rd×dhead , u, v ∈ Rdhead are learn-
able parameters.

4 Adaptive Threshold Selective
Self-Attention

Intuitively, keys with high attention score are more
relevant than others to the correspondin query and
attention should be centralized on these keys. How-
ever, in the vanilla Transformer, fully connected
self-attention distributes attention to the entire con-
text, even those irrelevant keys, which weakens the
attention to critical ones. To this end, we propose
the Adaptive Threshold Selective Self-Attention, in
which keys with attention score lower than thresh-
old of the corresponding query are discarded before
the softmax operation.
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Figure 2: Structure of the proposed adaptive thresh-
old selective self-attention. The dotted box area illus-
trates the main difference between ATSSA and fully
connected self-attention. Threshold is generated by a
matching matrix and used for differentiable binariza-
tion. Then, the binary matrix is sampled by Bernoulli
distribution and exploited to select keys for each query.

4.1 Structure of ATSSA

In this section, we introduce the proposed ATSSA
in details, as shown in Figure 2. The goal of
the mechanism is to dynamically collect a sub-
set of keys to attend to through an adaptive ob-
tained threshold. Given an input sequence x =
[x1, x2, · · · , xn], the attention score matrix A can
be calculated by dot production of Q and K.
Different with the self-attention in vanilla Trans-
former, the proposed mechanism additionally uti-
lizes an automatically generated threshold T =
[T1, T2, · · · , Tn] to selectively activate elements in
A. For each element, Aij ≥ Ti means Aij is acti-
vated, that is, key Kj is selected by query Qi.

The threshold acts as an controller to determine
whether the information of keys should flow to the
target, which is the crux of our proposed mech-
anism. We argue that each query has a various
attention score threshold since its relevance to the
input sequence varies. To generate the threshold,
we introduce a matching matrix (Wang et al., 2018).
The matrix models the correlation between xi and
the entire sequence, and threshold of query Qi is
generated by applying a linear projection to it:

Ti =Wt[xi; mp(x);xi�mp(x);xi−mp(x)] (7)
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Figure 3: (a) The overall structure of the proposed model. Word information is fused to generate the representa-
tion of each character by a word fusion layer. Context is then encoded with the ATSSA based Transformer. (b)
Illustration of the word fusion layer, in which word representations only depend on matched words.

where Wt is a learnable parameter, � denotes the
element-wise product, and mp(·) denotes the mean
pooling operation.

With threshold selection, keys with attention
score above or equal to the threshold are kept, while
others are dropped. In the process of model train-
ing, we discover that the threshold of some queries
is higher than the attention score of all keys in the
initial stage, leading to the training error of the
model. To prevent the loss of critical information,
top-k (Zhao et al., 2019) is introduced to force the
model to keep at least k keys with largest attention
score. Therefore, the threshold of query Qi can be
calculated as:

T̃i = min(topki, Ti) (8)

where topki is the k-th largest value at row i in A.
The essence of threshold selection is to perform a

binarization operation on attention score matrix A.
We employ a binary matrix z to indicate whether
the element in matrix A is selected, where zij = 1
means that Kj is selected by query Qi whereas
zij = 0 indicates that Kj is discarded by query Qi.
Since the binary function is not differentiable, we
use an approximate step function (Liao et al., 2020)
for binarization:

bij =
1

1 + e−α(Aij−T̃i)
(9)

where α is amplification factor larger than 1. The
approximate step function is similar to the binary

function and has differentiability, which enables
the model to be optimized during training. bij is
a value in interval [0, 1], not the 0 or 1 we need.
To address this issue, we use it to parameterize a
Bernoulli distribution, and then, zij is a sample
generated from the Bernoulli distribution:

zij ∼ Bernoulli(bij) (10)

As z is sampled from Bernoulli distribution, our
attention strategy can be defined as:

Attn = softmax(A
′
)V (11)

A
′
ij =

{
Aij , zij = 1
−∞, zij = 0

(12)

4.2 Chinese NER with ATSSA
To adapt ATSSA for Chinese NER, we fine-turn the
structure of FLAT. As shown in Figure 3, the con-
text encoder is divided into two layers, consisting
of a word-level word fusion layer and a character-
level context encoding layer.

Word Fusion Layer For the input sequence x
and a given dictionary D, all potential words in x
can be identified by matching the sequence with
D. Each matched word wjk(j 6= k) starts with
the j-th character and ends with the k-th character.
Position tags are employed to construct the word
set S corresponding to the character xi:

S(xi) = {wjk|∀wjk ∈ D, j ≤ i ≤ k} (13)



1827

Take the sequence given in Figure 3(b) as an ex-
ample, the word set corresponding to the charac-
ter “长 (Long)” is represented as [市长 (Mayor),
长江 (Yangtze River), 长江大桥 (Yangtze River
Bridge)]. For characters with no matched word,
word sets corresponding to them are empty, and the
word representations of these characters are None.

As the word sets constructed, a character-word
cross attention is exploited to generate word repre-
sentations. Let head[·] and tail[·] denote the head
and tail position of the matched word wjk, the rela-
tive distances in FLAT can be modified as:

dhhi,jk = i− head[wjk]
dtti,jk = i− tail[wjk]

(14)

where wjk ∈ S(xi). The relative position encod-
ing of the characters and matched words can be
calculated by a simple linear transformation of the
two distances:

Ri,jk =Wr[pdhhi,jk
; pdtti,jk

] (15)

where Wr is a learnable parameter.
Given characters as queries, words as keys and

values, word representation xwi of each character
can be obtained by self-attention. Finally, xwi is
concatenated with character xi as the input of con-
text encoding layer: xi = [xi;x

w
i ].

Context Encoding Layer In this layer, self-
attention based on relative position encoding is
introduced. For the input sequence x fused with
word information, relative position encoding of
each query-key pair can be indicated as Rij = pdij ,
where dij = i − j, i and j denote the position of
query and key respectively. Then, the attention
matrix A is generated by Eq.(5). Applying our
proposed ATSSA to A, attention of each query is
centralized on those critical keys. The following
calculation is the same with FLAT.

4.3 Training and Decoding
Since the binary matrix z is sampled by Bernoulli
distribution, model cannot be backpropagated dur-
ing training. Gumbel-Softmax (Jang et al., 2017)
provides a reparameterization solution. In Eq.(10),
bij denotes the probability that zij = 1, let b(1)ij =

bij and b(0)ij = 1− bij , zij can be expressed as:

zij = argmax
k

b
(k)
ij , k = 0, 1 (16)

The argmax operation is not differentiable, there-
fore, we substitute Gumbel-Softmax distribution

for Bernoulli distribution to acquire zij in the train-
ing stage. The Gumbel-Softmax distribution makes
a softmax approximation to bij with the following
continuous and differentiable calculation:

b̃
(k)
ij =

exp((log(b
(k)
ij ) + gk)/τ)∑1

l=0 exp((log(b
(k)
ij ) + gl)/τ)

(17)

where gl is a random sample from Gumbel(0, 1),
and τ is a hyperparameter called temperature.

To make use of the dependencies between la-
bels, CRF (Lafferty et al., 2001) is used to pre-
dict entity labels. Given the label sequence y =
[y1, y2, · · · , yn] and output H = [h1, h2, · · · , hn]
of the fine-turned model, the probability of the
ground-truth label sequence can be calculated as:

p(y|x) =
exp(

n∑
i=1

ϕ(yi−1, yi, x))∑
y′∈Y (x)

exp(
n∑
i=1

ϕ(y′i−1, y
′
i, x))

(18)

where Y (x) is the set of all arbitrary label se-
quences, ϕ(yi−1, yi, x) =W(yi−1,yi)hi+ b(yi−1,yi),
W(yi−1,yi) and b(yi−1,yi) are parameters specific to
yi−1 and yi. Therefore, loss function is defined as:

L = −
∑n

i=1
log (p (yi|x)) +

λ‖z‖1
L

(19)

The first term in loss function is negative log-
likelihood loss, and the second term is a l1 norm
regularizer over z. λ is a trade-off between the two
terms, and L is the length of input sequence.

5 Experiments

Experiments are carried out on Chinese NER
datasets across different domains. F1-score (F1) is
exploited to evaluate the performance of the model.
All experiments are conducted on a single Nvidia
Titan RTX GPU.

5.1 Experimental Setup
Datasets We conduct experiments on four dat-
sets, including Weibo NER (Peng and Dredze,
2015; He and Sun, 2017), Resume NER (Zhang
and Yang, 2018), OntoNotes (Weischedel et al.,
2011), and MSRA (Levow, 2006). Weibo NER is
drawn from Sina Weibo1, and Resume NER is col-
lected from Sina Finance2, while OntoNotes and
MSRA are in news domain. Statistics of the above
datasets are shown in Table 1.

1https://www.weibo.com/
2https://finance.sina.com.cn/stock/
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Datasets Type Train Dev Test

Weibo
Sentence 1.4k 0.27k 0.27k

Char 73.8k 14.5k 14.8k

Resume
Sentence 3.8k 0.46k 0.48k

Char 124.1k 13.9k 15.1k

OntoNotes
Sentence 15.7k 4.3k 4.3k

Char 491.9k 200.5k 208.1k

MSRA
Sentence 46.4k - 4.4k

Char 2169.9k - 172.6k

Table 1: Statistics of datasets

Hyperparameter Range
learning rate [1e-3,8e-4,6e-4]
-decay 0.05
head [4,8,12]
head dimension [8,10,12]
FFN size [4,6,8]×head×head dimension
warmup [1,5,10](epoch)

Table 2: Searching range of hyperparameters.

Baseline We take TENER (Yan et al., 2019) and
FLAT (Li et al., 2020) as baseline models, which
encode context with Transformer encoder.

Implementation Details We use the pre-trained
character embedding and bigram embedding
trained with word2vec (Mikolov et al., 2013)
over automatically segmented Chinese Giga-Word3.
The BERT in the experiments is BERT-wwm (Cui
et al., 2021), and the pre-trained word embedding
is released by (Li et al., 2018) that contains about
1.29 million words. The above four embeddings
have sizes of 50, 50, 768 and 300 respectively, all
of which are fine-tuned during training. For hy-
perparameter configurations, batch size is set to 8
and SGD with 0.9 momentum is used to optimize
the model. To avoid overfitting, dropout is applied
to embeddings with a rate of 0.5. When calculat-
ing selective self-attention, each query is forced to
keep at least 3 keys, i.e. the value of k in top-k is
set to 3. The amplification factor α in approximate
step function, temperature τ in Gumbel-Softmax
and λ in loss fuction are set to 50, 1 and 4× 10−6

respectively. We use random search to find the op-
timal values of other hyperparameters, and their
ranges are shown in Table 2.

5.2 Overall Performance

We compare our proposed model with the baseline
models and other state-of-the-art word-character

3https://catalog.ldc.upenn.edu/ LDC2011T13

Model Weibo Resume Ontonotes MSRA
Lattice-LSTM1 58.79 94.46 73.88 93.18
SoftLexicon*2 70.50 96.11 82.81 95.42
MECT*3 70.43 95.98 82.57 96.24
DCSAN*4 71.27 96.67 - 96.41
TENER5 58.39 95.25 72.82 93.01
FLAT*6 68.55 95.86 81.82 96.09
FLAT*+ATSSA 72.53 96.73 83.31 96.45

Table 3: Results(F1) on four datasets. * denotes the
models equipped with BERT. Zhang and Yang (2018)1,
Ma et al. (2020)2, Wu et al. (2021)3, Zhao et
al. (2021)4, Yan et al. (2019)5, Li et al. (2020)6.

Models Weibo Resume Ontonotes MSRA
FLAT*+ATSSA 72.53 96.73 83.31 96.45

-Selective SA 70.02 95.52 82.13 96.02
-top-k 68.47 96.19 82.60 95.37
-AF 68.67 95.89 82.65 95.51
-DT 68.53 95.70 82.63 95.68

Table 4: An ablation study of the proposed model. SA
stands for Self-Attention, and AF and DT indicates am-
plification factor and dynamical threshold respectively.

lattice based methods, results are reported in Ta-
ble 3. Our model outperforms TENER by 7.39 aver-
age F1 score on four datasets, and for FLAT+BERT,
the value is 1.68. In particular, the proposed
ATSSA brings improvements of 3.98 and 1.49 on
Weibo and OntoNotes respectively. Compared with
SoftLexicon (Ma et al., 2020) and DCSAN (Zhao
et al., 2021), which statically integrates word-level
information, and MECT (Wu et al., 2021) with
glyph information, our model is still competitive.
The results above indicate the effectiveness of
ATSSA, and suggest that ATSSA can better encode
context at character-level.

5.3 Ablation Study

To investigate the effectiveness of the main com-
ponents of our proposed ATSSA , we conduct an
ablation study on all four datasets. The results are
reported in Table 4.

(1) We propose an adaptive threshold selective
self-attention to avoid irrelevant character-level at-
tention integration. To investigate the contribu-
tion of this mechanism, we replace selective self-
attention with global self-attention. The average
F1 score on all four datasets is reduced by 1.29,
especially by 2.51 on Weibo test set. The decline
in performance verifies the significance of our pro-
posed adaptive threshold selective self-attention.

(2) When calculating selective self-attention, top-
k is introduced to force the query to reserve atten-
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Model Complexity
Vanilla Transformer1 O(n2)
Explicit Sparse Transformer2 O(n2 + nlogn)
ATSSA O(n2 + 2n+ nlogn)

Table 5: Computational complexity of different meth-
ods. Vaswani et al. (2017)1, Zhao et al. (2019)2.

tion to a fixed number of keys with largest attention
scores. After removing top-k, we discover that the
stability of the model training is affected, and F1
scores obtained on the test set are decreased.

(3) The approximate step function is a variant
of the sigmoid function, in which an amplification
factor makes it more similar to a binary function.
Since the use of Bernoulli sampling, the selection
of keys with attention score close to the threshold
becomes random without the amplification factor.
After removing amplification factor, the degrada-
tion in performance on all four datasets indicates
the importance of amplification factor in approxi-
mate step function.

(4) In the computer vision domain, most exist-
ing threshold based methods set a fixed threshold,
which makes the approach inflexible. Our proposed
adaptive threshold selective self-attention assigns a
various threshold to each query of all heads in the
self-attention that enables the query to select keys
dynamically. We empirically replace the dynamic
threshold with a fixed threshold 0, and observe that
the performance of the model degenerates to be
close to FLAT.

5.4 Analysis in Efficiency

Compared with self-attention in vanilla Trans-
former, the proposed ATSSA has an additional
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Figure 5: Convergence speed on OntoNotes dataset

threshold computation, its computational complex-
ity is O(n2 + 2n + nlogn). The dot products of
queries and keys in self-attention correspond to the
first term. The threshold calculation corresponds
to the second term, that is, the dot product and sub-
traction of each input character and mean pooling
of the entire sequence. The sorting operation in
top-k corresponds to the third term. Since the ad-
ditional term O(2n+ nlogn) is overshadowed by
the dominant term O(n2), as shown in Table 4, our
proposed ATSSA is slightly slower than FLAT in
computational efficiency.

To verify the computational efficiency of
ATSSA, we compare the inference speed of Lattice-
LSTM, FLAT and our model on Weibo test set, as
shown in Figure 4. Lattice-LSTM cannot run in
parallel due to the use of directed acyclic graph.
As we can see, even with an additional threshold
generation operation, our model is only about 5
percent slower in inference speed than FLAT.

To further explore the convergence speed of
ATSSA, we conduct experiments on OntoNotes
dataset. Figure 5 illustrates the F1 scores of Lattice-
LSTM, FLAT and our model relative to the number
of training iterations. We observe that the perfor-
mance of our model is lower than Lattice-LSTM
and FLAT in the initial stages of model training.
As the number of iterations increases, our model
converges faster than FLAT. This is likely because
our model is less disturbed by irrelevant character
information than FLAT.

5.5 Influence of Hyperparameters

In our proposed ATSSA, k in top-k operation and
amplification factor α are two important hyperpa-
rameters that affect the performance of Chinese
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NER. We conduct experiments on Resume and
MSRA datasets to explore the influences by assign-
ing k and α with various values. The results are
summarized in Figure 6 and Figure 7.

The top-k operation is used to prevent the loss of
critical information at the initial stage of training,
it is a modification of the threshold. According to
Figure 6, our model achieves the best performance
when k is set to 3, which is due to the large propor-
tion of two- and three-character words in Chinese.
When k is smaller than 3, some critical information
may be lost at context encoding layer, and when k
is larger than 3, too much irrelevant character-level
information is integrated.

The amplification factor α is utilized to control
the similarity between approximate step function
and binary function. The larger it is, the higher
the similarity. As shown in Figure 7, our model
performs best when α is 50. This is because when
α is small, the selection or discarding of keys with
attention score around the threshold has high un-
certainty due to the Bernoulli sampling. When
α becomes large, the gradient of the approximate
step function (except the neighborhood of point
Aij = Ti) tends to 0, which brings difficulties to
the optimization of the model.

In addition, since the Resume dataset has a rela-
tively smaller scale, the model is more sensitive to
the above two hyperparameters on Resume dataset
than on MSRA dataset.

5.6 Test of Significance

For a fair comparison with the baseline, we imple-
ment a significance test on all four datasets. We
randomly select ten various seeds and conduct ex-
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Figure 7: Influence of α value

periments on our model and FLAT4. Then, a paired
T-test is performed on each dataset. The p-values
obtained on Weibo, Resume, Ontonotes and MSRA
datasets are 0.0058, 0.0013, 0.0008 and 0.0161 re-
spectively. Each of them is less than 0.02, which
verifies the effectiveness of our proposed ATSSA.

5.7 Case Study

To verify that our proposed ATSSA can better
recognize entity boundaries than the fully con-
nected self-attention, we analyze two examples
from Weibo test set, as shown in Figure 8. In
the first case, due to the use of fully connected
self-attention, the two characters "梦(Meng)" and
"科(Ke)" as queries attend to the characters in
"购物节(Shopping Festival)", which leads to the
integration of the character information of "购
物节(Shopping Festival)". As a result, FLAT
misidentifies the "购物节(Shopping Festival)" as
a part of the organization entity "梦科商城购物
节(Mengke Mall Shopping Festival)". Our pro-
posed ATSSA uses a threshold to discard charac-
ters in "购物节(Shopping Festival)" and correctly
identify "梦科商城(Mengke Mall)" as an organiza-
tion entity. In the second case, the fully connected
self-attention assigns attention to each character in
"腾讯(Tencent)" and "联想(Lenovo)" and FLAT
misidentifies "腾讯联想(Tencent and Lenovo)" as
a complete entity. However, ATSSA blocks the in-
teractions between them via the threshold and iden-
tifies "腾讯(Tencent)" and "联想(Lenovo)" as two
separate organization entity entities. These results
show that the adaptive threshold can effectively fil-
ter irrelevant character information and help the

4https://github.com/LeeSureman/Flat-Lattice-
Transformer
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Figure 8: Examples of Weibo test set, where blue colors represent the correct labels and red colors represent the
wrong labels.

(a) Attention distribution of case 1. (b) Attention distribution of case 2.

Figure 9: Selective self-attention distributions of the two examples in the head that focus on entities.

model to correctly identify entity boundaries.
Furthermore, we visualize the selective self-

attention distributions of these two examples, as
shown in Figure 9. In multi-head self-attention, dif-
ferent heads play some specific roles (Voita et al.,
2019). For entity recognition, our analysis is based
on the head that focuses on entities. In the figure,
the vertical axis indicates queries and the horizontal
axis represents keys. We observe that in Figure 9(a),
the attention of queries in "梦科(Mengke)" is only
assigned to keys in "梦科商城(Mengke Mall)",
and attention of queries in "购物节(Shoping Fes-
tival)" is assigned to other keys, which provide
support for the correct identification of the entity
"梦科商城(Mengke Mall)". In Figure9(b), even
though queries in "腾讯(Tencent)" attend to the key
"联(Link)", queries in "联想(Lenovo)" only attend
to the keys followed by "腾讯(Tencent)", which
separates "腾讯(Tencent)" and "联想(Lenovo)" as
two entities. We also observe that each query at-
tends to a different number of keys, which demon-
strates the flexibility of the proposed ATSSA.

6 Conclusion

In this paper, we propose an adaptive threshold-
selective self-attention mechanism to dynamically
select keys for queries in parallel to enhance the

architecture of Transformer, which avoids the in-
tegration of irrelevant character-level information
when encoding context. This data-driven mecha-
nism maintains computational efficiency without
losing flexibility. Based on FLAT, we apply it to
Chinese NER and achieve state-of-the-art perfor-
mance on four benchmark Chinese NER datasets.
In future work, we will adapt ATSSA to different
kinds of NLP tasks, such as text classification and
natural language inference.
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