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Abstract

Accurate fact verification depends on perform-
ing fine-grained reasoning over crucial entities
by capturing their latent logical relations hid-
den in multiple evidence clues, which is gen-
erally lacking in existing fact verification mod-
els. In this work, we propose a novel Global-
to-Local Aggregation and Fission network
(GLAF) to fill this gap. Instead of treating en-
tire sentences or all semantic elements within
them as nodes to construct a coarse-grained
or unstructured evidence graph as in previ-
ous methods, GLAF constructs a fine-grained
and structured evidence graph by parsing the
rambling sentences into structural triple-level
reasoning clues and regarding them as graph
nodes to achieve fine-grained and interpretable
evidence graph reasoning. Specifically, to cap-
ture latent logical relations between the clues,
GLAF first employs a local fission reasoning
layer to conduct fine-grained multi-hop rea-
soning, and then uses a global evidence ag-
gregation layer to achieve information sharing
and the interchange of evidence clues for fi-
nal claim label prediction. Experimental re-
sults on the FEVER dataset demonstrate the ef-
fectiveness of GLAF, showing that it achieves
the state-of-the-art performance by obtaining a
77.62% FEVER score.

1 Introduction

The classic fact verification (FV) task is defined
as retrieving relevant sentences as evidence and
conducting joint reasoning over these evidence sen-
tences to verify the correctness of a claim, and
finally returning a result such as “SUPPORTS”,
“REFUTES”, or “NOT ENOUGH INFO”. Withthe
increasingly frequent internet fraud, political ru-
mors, fake news and other false information on-
line, fact verification is becoming more and more
important. How to automatically verify the fake
claims and prevent their spread is a vital problem.

*Corresponding author.

[ Claim Cj: The Great Wall of China stretches from Lop Lake to Shenyang. ]

Evidence #1: .-~ -
The Hushanyreal Wall, the far eastern end of the Great Wall of China, is
located Dandong.----==="""""""TTTTIIII s

Evidepce #2: N

Lop Lake, located in Xinjiang Province, is the starting side of the Great Wall
of China at the western end.

Evidence Clues Joint Reasoning:

(the Great Wall of China, eastern end of, Dandong)
(the Great Wall of China, western end of, Lop Lake)

aggregate

=5 warores |

Claim C3: The Rodney King riots took place in the most populous county
in the USA.

Evidence #1:

The 1992 Los Angeles riots, also known as the Rodney King riots were a series
of riots, lootings, arsons, and civil disturbances that occurred in

Evidence Clues 2-hop Reasoning: hop
(the Rodney King riots,occurred in,

)= [surrons
( ,is, most populous county in the USA)

Figure 1: Two motivating examples from FEVER,
which requires multi-evidence joint reasoning or multi-
hop reasoning to achieve accurate claim label predic-
tion.

In recent years, natural language inference models
actually have dominated the study of fact verifica-
tion (Si et al., 2021; Zhu et al., 2021; Thorne et al.,
2018a; Luken et al., 2018; Yin and Roth, 2018; Ye
et al., 2020), and many graph augmented neural
inference models have been proposed (Zhou et al.,
2019; Zhong et al., 2020; Liu et al., 2020; Chen
etal., 2021a,b), which first integrate multi-evidence
reasoning into fact verification with evidence graph,
and then output the claim label prediction result.

Though achieving remarkable progress, existing
neural inference FV models still suffer from the
following three limitations. Firstly, they gener-
ally lack the capability of fine-grained evidence
clue representing and semantic-level entity reason-
ing. Most of them either concatenate evidence
sentences into a single string (Thorne et al., 2018b),
or just treat each evidence-claim pair as a sentence-
level node (Zhou et al., 2019; Liu et al., 2020).
Since these methods represent and aggregate the
evidence at sentence-level, they have difficulty in
achieving fine-grained reasoning. Take claim C';
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in Figure 1 as an example, the claim states “The
Great Wall of China stretches from Lop Lake to
Shenyang”, while the evidence states that the great
wall stretches to “Dandong” instead of “Shenyang”.
Hence, it requires the FV model to carefully distin-
guish the subtle differences between truth and false
statements. However, existing sentence-level FV
models are hard to make such a meticulous discrim-
ination over these crucial entities (e.g., “Dandong”
and “Shenyang”). Secondly, prior models gener-
ally lack the capability of latent logical relation
mining and interpretable claim verifying. As the
false claims are often deliberately fabricated, they
may be semantically reasonable but logically are
not supported. Hence, it requires sufficient log-
ical relation capturing and hop-based reasoning
over these clues to guide an interpretable claim
judgment. For example, claim Cy in Figure 1
states “The Rodney King riots took place in the
most populous county in the USA”, while the ev-
idence clues present that (The Rodney King riots,
occurred in, Los Angeles County) and (Los Angeles
County, is, the most populous county in the USA), it
requires the FV model to mine the pivot “Los Ange-
les County” and capture the latent relation between
“The Rodney King riots” and “the most populous
county in the USA” to make an accurate and con-
vincing judgment by performing multi-hop reason-
ing. However, existing unstructured FV methods
in general cannot support such a triple-level multi-
hop reasoning. Thirdly, previous models generally
lack the noise evidence filtering mechanism. Since
the evidence sentences are retrieved from complex
background corpora, they will inevitably introduce
noises. Even worse, these noises may be magnified
in subsequent neural computations, which seriously
deteriorates the FV performance.

To tackle these problems, we propose a novel
Global-to-Local Aggregation and Fission network
(GLAF), which is a graph attention augmented neu-
ral inference model for FV. Specifically, to address
the first limitation, we first parse the sentences into
fine-grained and structural relation triples, each
denoted as (s,r,0), and then feed them into the
BERT (Devlin et al., 2019) to obtain a set of global
evidence clue representations. Next, we introduce
a fresh perspective to exploit these structural evi-
dence clue triples. That is, we model each triple
(s,7,0) as a map function fe . (s) — o, and use it
to conduct entity-level multi-hop reasoning for final
claim verification. To address the second limita-

tion, we employ two neural inference layers: local
fission reasoning layer and global evidence aggre-
gation layer, to iteratively conduct 2-hop object
reasoning and evidence joint reasoning through a
triple-level attention mechanism. The two neural
layers are utilized to guide the interpretable rea-
soning process and improve the accuracy of fact
verification. Finally, to address the third limitation,
we use a graph pooling layer to iteratively select
hidden evidence nodes as crucial evidence clues
and filter out disruptive noise data, so as to improve
the robustness of our FV model.

We conduct experiments on FEVER (Thorne
et al., 2018a), which is one of the most influen-
tial benchmark datasets for fact verification. We
follow the official evaluation protocol of FEVER
and demonstrate that GLAF outperforms the recent
state-of-the-art baseline systems. Ablation study
also shows the effectiveness of each component in
improving the performance of fact verification, and
a further case study reveals that our model can ef-
fectively perform fine-grained multi-hop reasoning
over these evidence clues and reach an interpretable
conclusion for fact verification.

2 Related Work

2.1 Traditional Fact Verification Models

Many traditional fact verification (FV) systems
utilize Natural Language Inference (NLI) tech-
niques (Parikh et al., 2016; Peters et al., 2018;
Soleimani et al., 2020) to mine the relationship
between evidence and claim to make a final judg-
ment. One of the representative work is the
FEVER shared task (Thorne et al., 2018b), which
aims to develop an automatic FV system to check
the veracity of human-generated claims. Tradi-
tional FV models usually employ FEVER’s official
baseline (Thorne et al., 2018a) with a three-step
pipeline: document retrieval, sentence retrieval and
claim verification. Among these models, many
mainly focus on the last step. For example, Nie
et al. (2019) concatenate all evidences together to
verify the claim. Yoneda et al. (2018) infer the ve-
racity of each claim-evidence pair and make final
prediction by aggregating multiple predicted la-
bels. Hanselowski et al. (2018) encode each claim-
evidence pair separately, and use a pooling func-
tion to aggregate features for prediction. One of the
most widely used models in FEVER is Enhanced
Sequential Inference Model (ESIM) proposed by
Chen et al. (2017), which has been adopted to select
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[SEP]
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Figure 2: Architecture of GLAF.

relevant sentences in the sentence retrieval phase.
Note most of the above mentioned FV methods em-
ploy simple models to extract information from ev-
idence, but without letting evidence communicate
with each other, which limits their performance. To
address this problem, recently there are some good
attempts. For example, Si et al. (2021) leverage the
LDA model to conduct topic-aware evidence rea-
soning and stance-aware information aggregation
for FV. Wan et al. (2021) employ DQN to find a
minimal set of evidence and conduct sentence-level
information aggregation for FV. Jiang et al. (2021)
improve on previous pointwise aggregation manner
by taking advantage of TS5 model and explore a
listwise-based evidence aggregation method.

2.2 Graph Augmented Fact Verification
Models

Though achieving remarkable progress, the above
methods in general are difficult to perform global
evidence aggregation, since they are not based
on graph and hence cannot take the advantage
of graph propagation. Recently, by integrating
multi-evidence reasoning and global information
propagation into fact verification based on a con-
structed evidence graph, many graph augmented
FV models (Zhou et al., 2019; Zhong et al., 2020;
Liu et al., 2020; Chen et al., 2020) have been pro-
posed and achieve state-of-the-art results. Among
them, GEAR (Zhou et al., 2019) is the first to use
BERT (Devlin et al., 2019) to encode evidence,
and designs a graph network to aggregate informa-
tion on an evidence graph constructed by treating
each evidence as a node. DREAM (Zhong et al.,
2020) further employs XLNet (Yang et al., 2019)
to establish a semantic-level graph for evidence ag-
gregation by using GCN (Kipf and Welling, 2017)
and GAT (Velickovic et al., 2018). KGAT (Liu

et al., 2020) innovatively adopts a kernel graph
attention network to aggregate information by uni-
fying the edge kernel mechanism and node ker-
nel mechanism over the evidence graph. How-
ever, existing graph augmented FV models either
treat entire sentences as sentence-level nodes, e.g.,
GEAR and KGAT, or extract all semantic elements
within them as semantic-level nodes, e.g., DREAM,
which makes them only focus on global evidence
aggregation, while ignoring reasoning over local
semantic clues in triple-level. Different from them,
our proposed GLAF is based on a well-structured
triple-level evidence graph, which facilitate fine-
grained multi-hop reasoning over the crucial en-
tities (i.e., subject or object) to capture explicit
reasoning chains for interpretable claim verifica-
tion.

3 Model Description

Given a claim ¢ and ! evidence sentences, the
fact verification task aims to check the verac-
ity of the claim and return a prediction label y,
where y € {“SUPPORTS”, “REFUTES”, “NOT
ENOUGH INFO”}. Instead of treating entire ev-
idence sentences or all semantic elements within
them as nodes to construct a coarse-grained or
unstructured evidence graph as in previous meth-
ods, GLAF constructs a fine-grained and struc-
tured evidence graph G by using an off-the-shelf
semantic role labeling (SRL) toolkit! to parse
the [ sentences into n structural relation triples?
and regarding them as graph nodes, denoted by
E = {el,...,ei,...,e”}. For each evidence
node e’, we use €' = (s',7",0") to represent a
relation triple (subject, relation, object). Then, all

'A re-implementation of a BERT-based model by Al-

lenNLP.
“Note each sentence could be parsed as multiple triples.
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these nodes are connected with edges to obtain a
fully-connected evidence graph G with n nodes.
Based on (G, GLAF produces a prediction prob-
ability P(y|G) by reasoning over these evidence
triples (nodes) to predict the claim label y. Simi-
lar to KGAT, we follow the standard graph label
prediction setting in graph neural network (Velick-
ovic et al., 2018) and split the prediction into two
components: 1) the evidence selection probabil-
ity P (ei|G) ; 2) the fine-grained label prediction
probability P (yle’, G):

Pyle)=>"" P(FIG) P (yld',G) (1)

As shown in Figure 2, GLAF mainly includes
four modules: Global Semantic Encoder (GSE),
Local Fission Reasoning (LFR) Layer, Global Evi-
dence Aggregation (GEA) Layer, and Graph Pool-
ing and MLP Classification Layer. Specifically,
GSE is used to obtain initial representations for the
claim c and all the nodes in GG; LFR, with the initial
node representations as inputs, is responsible for
conducting 2-hop object reasoning for fine-grained
claim verification. LFR outputs updated node repre-
sentations, which later will be aggregated to serve
as the inputs of the GEA layer; GEA is utilized
to achieve information sharing by performing 1-
order neighborhood information integration; Then,
Graph pooling is utilized to filter noise data to se-
lect valuable nodes by calculating the evidence se-
lection probability P (€‘|G); Finally, an MLP layer
is used to calculate the fine-grained label prediction
probability P (yle’, G).

Note that LFR and GEA each can perform 2-
hop reasoning and 1-order neighborhood aggrega-
tion, respectively. By iteratively execute LFR and
GEA, we can implement more hop reasoning and
higher order aggregation to capture sufficient log-
ical relation for more accurate verification. Such
an iterative execution process is illustrated in Al-
gorithm 1 (Lines 21-32). We use ¢ to denote the
iteration index and assume that 0 < t < N, where
N represents the total number of iterations and is a
model parameter. For convenience, in the follow-
ing discussion, we use the superscript ¢ to denote
the representations or values at the ¢-th iteration.
Next, we detail the separate modules.

3.1 Global Semantic Encoder

Following KGAT, GLAF employs the pretrained
language model BERT as the contextual se-
mantic encoder to initialize the global node

representations. It is worth noting that since we
construct the evidence graph based on triple-
level nodes, we first concatenate each triple as
[CLS]subject [ SEP ] relation [ SEP ] object [ SEP ]
and then feed them to BERT to obtain the initial
hidden state representation of the node. Specif-
ically, for node ¢', the evidence clue triple is
initialized as H;’?s, where,

H}), = [h%h}%; h}°] = BERT ([s';r%; 0'])
2
Similarly, the claim node representation is initial-
ized as,
[h¢; he; he] = BERT ([s% 7€ 0°]) 3)

ST Tro
3.2 Local Fission Reasoning Layer

In order to encourage the triple nodes to update the
object information for fine-grained claim verifica-
tion, GLAF employs a local fission reasoning layer
to conduct 2-hop entity-level reasoning between
the target node and its connected nodes, and finally
obtains an updated object vector. Different from
the previous models that use the whole evidence
sentence as a node (Zhou et al., 2019; Liu et al.,
2020), we propose to perform entity-level object
reasoning. Specifically, given a target node e’, we
update its object vector representation as follows:

* Calculates the cosine similarity between the
object (tail-entity) of the target node ¢’ and the
subject (head-entity) of the connected node e/,

M7 = cos (hit, hdt) ©)

fis o s
* Obtains the attentive weights by softmax func-
tion,
fis
n k—i,t
D k=1 €XP <Mfis )

exp (Mj_”’t>
J—=it
afis -

)

* Calculates the attentive vector corresponding
to the specific object after 2-hop reasoning,

all = ijl ' (6)

» Adaptively updates the object vector represen-
tation,

hT;t = LeakyReLU (wlhf;t + wgaf;t) @)

where wj and wo are two trainable linear
weights, and h’' denotes the updated object
vector representation of e’.
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Evidence Clue 2

at. - Evidence Clue 3
Evidence Clue 3

(a) Local fission reasoning  (b) Global evidence aggregation

Figure 3: Two kinds of attention-based neural layer.

Consequently, the updated representation of e’ after
a 2-hop reasoning can be obtained by,

Hij, = [hi'shy'; b)) ®)
Function LFR(-) in Algorithm 1 presents the de-
tailed implementation of the LFR layer. Finally, to
facilitate the subsequent global information shar-
ing, for each node e’, we conduct an aggregation

. . . it
operation to convert the fission representation H}Z B

to the aggregation representation Hfl’;g by,

Hi’t — Wi,t H/L'7t (9)

agg agg "~ fis

where Wfl’;g is a trainable matrix.

3.3 Global Evidence Aggregation Layer

To achieve information sharing and multi-evidence
joint reasoning, GLAF utilizes a global evidence
aggregation layer to perform 1-order neighborhood
aggregation, which mainly includes three steps:

* Calculates the cosine similarity between the
aggregated nodes,

M2 = cos (H;,

H/! )

agg’ ~ragg

(10)

* Obtains the attentive weights by softmax func-
tion,

» exp (Mgg?i’t)
a]—>7,,t — (11)

agg n k—it
Zk:l exp (Magg

* Calculates the attention vector as updated ag-
gregated node representation after integrating
the information of the surrounding n nodes
(including itself),

it J—i,tyyg,t
Higg = ijl Oagg” Hagg

Function GEA(:) in Algorithm 1 presents the de-
tailed implementation of this layer. Similarly, to

12)

Algorithm 1 GLAF graph learning algorithm

Input: Evidence node set E = {e',...,e%,...,e"} and
claim ¢
Parameter: Number of iterations N and pooling parameter k
Output: Label y
1: Initialize: global node representations and all the param-
eters

2: function LFR(fiss_node_set, t)

3 for each fiss_node e' do

4: for each fiss_node ¢’ do o

5: Similarity (g, hi*) — o7 (Eqs.4-5).
6: end for ‘ '

7 Sum(aifi_;z’t -hZt) — alt (Eq.6) o

8: Weigh (a5’ h%?) to update h%? — h%* (Eq.7)
9: Concatenate (h%*, h%‘ hit) — H}:S (Eq.8)
10: end for

11: end function
12: function GEA(agg_node_set, t)
13: for each agg_node e’ do

14: for each agg_node el do o

15: Similarity(Hy! o, B! )) — adgnt (Eqgs.10-
11).

16: end for ) _

17: Sum(od,t - HYL,) — Hut, (BEq.12)

18: end for

19: end function

20: Lett=0,E°=F
21: whilet < N do
22: LFR(E"t)

23: for each fiss_node ¢’ in E do
it Agg yi

24: Hy! “ HYl, (Eq9)

25: end for

26:  GEA(E'.t)

27: for each agg_node ¢’ in E do

28: Hi!, 7% HY, (Eq.13)

29: end for

30:  E'"' =Pooling (E*, c, k)

31: t=t+1

32: end while

33: Calculate P(y|G) by Egs.16-18 for each label
34: y = argmaxP(y|G)

35: return y

facilitate the execution of the LFR layer in the next
iteration (if exists), we conduct a fission operation

. . I
to convert the aggregation representation Hg,, to

. . it
the fission representation Hz, by,

it it it
Hfis _szs Hdgg

13)

it . )
where W}Z Sisa trainable matrix.

3.4 Graph Pooling and MLP Classification
Layer

GLAF employs a graph pooling layer to conduct
node selection and noise filtering. Specifically, at
the ¢-th iteration, after GEA is executed, the pool-
ing layer discards nodes with few evidence clues
and only selects the k£ (k is a model parameter)
most valuable nodes from all of the aggregated

1805



nodes to serve as the readout. Formally,

E"™! = Pooling (E', ¢, k) (14)

where E't! denotes the evidence node set after
pooling on Et, with E° = E. Moreover, the value

of a node ¢’ is defined as the semantic similarity
between the key vector [h¢; hS] € RY2F (Fis the

S
feature dimension) of the claim c and e"’s updated
it
agg®

representation H

M5 = cos (IS b - W, HE, )

pool S$) T agg (15 )
where W € R2FXF g a trainable matrix, which
is used to align the dimensions of the two vectors.
Then, GLAF obtains the evidence selection proba-
bility P (¢'|G) by,

i—c,t
exp (Mpool >
o
> g exp (M;:Olc )

The k nodes with the highest probability P (e‘|G)
will be selected as the readout.

After N iterations, the representations of the
remaining activated nodes are fed into an MLP to
conduct claim object verification and generate the
fine-grained label prediction probability,

(16)

P (ei]G) =

P (yle’, G) = softmax;(MLP(H}!  hS)) (17)

Finally, we can obtain the final prediction probabil-
ity by,

P(y|G) = Z; P (e'1G) P (yle',G) (18)

The whole GLAF model is trained end-to-end by
minimizing the cross-entropy loss,

L = CrossEntropy (y*, P(y|G)) (19)

using the ground truth verification label y*.

4 Experimental Setup

4.1 Datasets and Metrics

We conduct all our experiments on the large-scale
dataset FEVER (Thorne et al., 2018a), which con-
sists of 185,455 annotated claims with a set of
5,416,537 Wikipedia documents from the June
2017 Wikipedia dump. We keep the dataset parti-
tion the same as the FEVER Shared Task (Thorne
et al., 2018a) and TWOWINGOS (Yin and Roth,

Split Supported Refuted Not Enough Info
Train 80,035 29,775 35,639
Dev 3,333 3,333 3,333
Test 3,333 3,333 3,333

Table 1: Statistics of the FEVER dataset.

2018). Table 1 shows the statistics of the dataset
after partition.

Following several previous work (Zhou et al.,
2019; Zhong et al., 2020; Liu et al., 2020), we use
the official evaluation metrics’ to evaluate the per-
formance of our model on fact verification, which
includes Label Accuracy (LA) and FEVER score
(FEVER). LA is a general evaluation metric, which
calculates claim prediction accuracy rate without
considering retrieved evidence. The FEVER score
considers whether all evidence included in a golden
evidence set are mined, and hence better reflects
the reasoning ability.

4.2 Baselines

We compare our model GLAF with the following
state-of-the-art baselines.

« UNC-NLP (Nie et al., 2019)* proposes a neu-
ral semantic matching network for claim veri-
fication to jointly solve three subtasks by in-
corporating additional information, such as
pageview frequency and WordNet features,
for information aggregation.

* BERT Fine-tuning Systems (Zhou et al.,
2019) includes BERT-Concat and BERT-Pair.
The BERT-Concat system concatenates all evi-
dence into a single string while the BERT-Pair
system encodes each claim-evidence pair in-
dependently and then aggregates the results.
For these two BERT fine-tuning systems, we
use the source code from (Zhou et al., 2019)
and keep the settings unchanged.

» GEAR (Zhou et al., 2019)° is a graph-based
evidence aggregating and reasoning frame-
work by employing an evidence aggregator to
aggregate information and conduct evidence
reasoning over the evidence graph.

* DREAM (Zhong et al., 2020)° is built on top
of XLNet (Yang et al., 2019) and models evi-
dence graph at a semantic-level by retrieving

3https://github.com/sheffieldnlp/fever-scorer

*https://github.com/easonnie/combine-FEVER-NSMN

Shttps://github.com/thunlp/GEAR

®We reproduce DREAM and try to keep the same settings
as the original paper as no open-source code is available.

1806



Model Precision Recall F1 [ FEVER Model Dev Test

Dey [ESIM 2408 8672 37.69 [ 7170 LA FEVER| LA FEVER
BERT 27.29 94.37 42.34 75.88 UNC-NLP 0.7034 0.6716 0.6858 0.6472
Test ESIM 23.51 84.66  36.80 68.16 BERT-Concat 0.7399 0.6987 |0.71850.6718
BERT 25.21 87.47 39.14 69.40 BERT-Pair 0.7463 0.7008 [0.7179 0.6752
N N KGAT (ESIM) 0.7551 0.7269 [0.7348 0.7050
Table 2: Results of evidence selection models. GLAF (ESIM) 07586 0.7370 |0.7441 0.7236
GEAR 0.7601 0.7133 ]0.7304 0.6815
all semantic elements as graph nodes. This DREAM (XLNet; yrge) 0.7792 0.7235 0.7698 0.7140
model employs a GCN and a GAT network to KGAT (BERTBase) 07787 07575 07593 07419
. . . GLAF (BERTgas) 0.7804 0.7635 [0.7703 0.7494
conduct information aggregation. KGAT (CorefBERTpae) 0.7798 0.7608 [0.7635 0.7441
. . GLAF (CorefBERTg,s¢) 0.7835 0.7658 [0.7760 0.7522
* KGAT (Liu et al., 2020)" models claim- GLAF (BERTag) 0.7829 0.7662 [0.7784 0.7565
evidence pairs into nodes and adopts a kernel- ~ GLAF (RoBERTaparg.) 0.7852 0.7641 (0.7905 0.7620
based graph attention network to conduct evi- GLAF (CorefRoBERTay o) 0.7941 0.7840 [{0.8012 0.7762

dence aggregating and reasoning.

4.3 Implementation Details

Evidence sentence retrieval We adopt a two-
stage scheme to retrieve evidence sentences, which
includes document retrieval stage and sentence se-
lection stage. The document retrieval stage re-
trieves related Wikipedia pages and is kept the
same with previous work (Zhou et al., 2019; Liu
et al., 2020). At first, it extract all potentially en-
tities included claim as key phrases by using the
constituency parser developed by AllenNLP. Then,
it regards theses key phrases as queries to search
relevant Wikipedia pages through the online Medi-
aWiki API®, until it searching out convinced article.
The sentence selection stage selects relevant sen-
tences from retrieved Wikipedia pages. In our ex-
periments, we try both ESIM-based retrieval model
and BERT-based retrieval model. From Table 2,
we can see that BERT performs better than ESIM.
So, we adopt BERT-based model to retrieve evi-
dence sentences. Specifically, following previous
work (Zhou et al., 2019; Liu et al., 2020), we first
feed these evidence sentences to a BERT-based
ranking model. Then, we use the “[CLS]” hidden
state to represent claim-evidence pair. Finally, we
adopt a pairwise loss to optimize the ranking model
for obtaining an optimal evidence retrieval result.

Triple-level clue representation. Similar to pre-
vious work (Zhou et al., 2019; Liu et al., 2020),
we adopt an identical two-stage scheme to retrieve
evidence sentences from background corpus. But
different from them, we subsequently adopt a se-
mantic role labeling toolkit to parse each evidence
sentence into triple format. Specifically, we built
the triples by using the results of the SRL toolkit”,

"https://github.com/thunlp/Kernel GAT
8https://www.mediawiki.org/wiki/API:Main_page
*https://demo.allennlp.org/semantic-role-labeling

Table 3: Overall performance. Note the FEVER score
on the blind test set is the main evaluation metric made
by FEVER organizers, and all results are statistically
significant with p < 0.05 under t-test.

which includes (subject, predicate, object) and
(subject, attributes, value). Note that these ex-
tracted attributes include time, place, purpose, rea-
son, and other crucial elements that can be mined
by SRL. We process all these triples as evidence
clues and feed them into BERT to obtain a set of
triple-level evidence clue representations. Then,
we built an evidence graph by using these triple
representations as initial nodes, as described in
Section 3.

Model training details. In our experiments, the
batch size is set to 8, learning rate is set to 2¢~> and
warmup proportion is set to 0.1. The max length is
set to 140, and the max number of training epochs
is set to 6. The maximum number of iterations N is
set to 2. BERT and CorefBERT respectively inherit
huggingface’s implementation'’ and THUNLP’s
repository!!. The same as previous work (Zhou
et al., 2019; Liu et al., 2020), Adam optimizer is
used to optimize all models. All experiments are
conducted with PyTorch, and all the source code
will be made publicly available upon acceptance.
More details about hyper-parameter settings can be
found in the Appendix.

5 [Evaluation Results

5.1 Overall Performance

The overall performance is shown in Table 3, where
the best performance in each scenario is in bold-
face. It can be observed that, compared with other
baselines, GLAF exhibits the best performance

https://github.com/huggingface/pytorch-transformers
Uhttps://github.com/thunlp/CorefBERT
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Model .l 'SEtVEI[*( al
Complete model | 77.62 -
w/o SRL retrieval & LFR Layer 72.55 5.07
w/o GEA Layer 74.20 342
w/o Graph Pooling Layer 76.35 1.27

Table 4: Ablation study on FEVER test set.

on all testing scenarios. With ESIM sentence re-
trieval, GLAF outperforms the classic top system
UNC-NLP and current best model KGAT on both
development and testing sets. With BERT-based
sentence retrieval, GLAF outperforms GEAR by
almost 10%, DREAM by almost 5% and KGAT
by almost 1% test FEVER score. This illus-
trates the consistent effectiveness of GLAF among
graph augmented reasoning models with different
sentence retrieval methods. Furthermore, when
using CorefBERTgase, BERTarge, ROBERTaL grge
and CorefRoBERTay ,pe as the encoder, GLAF
achieves even better performance, especially for
CorefROBERTay yge, it outperforms the current
best model KGAT by almost 4.9% in LA metric
and 4.3% in FEVER metric on blind test set and
achieves the state-of-the-art performance.

5.2 Ablation Study

In this part, we perform ablation experiments to
evaluate the effectiveness of each module and set
them accordingly. 1) w/o SRL retrieval & LFR
Layer'? denotes that we remove semantic triple re-
trieval and local fission reasoning, and just adopt
the global aggregation layer to aggregate informa-
tion; 2) w/o GEA Layer denotes that we remove the
global evidence aggregation layer and connect the
local fission reasoning layer to the pooling layer
directly; 3) w/o Graph Pooling Layer denotes that
we remove the graph pooling layer and connect the
GEA layer to the MLP layer directly. From the re-
sults in Table 4, we can observe that removing each
module will result in a performance degradation. In
particular, w/o SRL retrieval & LFR Layer and w/o
GEA Layer causes 5.07 and 3.42 absolute drops
in test FEVER score, respectively, which further
verifies the effectiveness of our model.

5.3 Effectiveness Evaluation and analysis

Assessment of evidence mining capability.
This experiment evaluates the capability of our
model to effectively mine evidence when incre-
mental corpus size is given. Specifically, more

2] FR cannot be decoupled with SRL retrieval, since it

relies on the triples parsed by SRL. Therefore, we consider
them together.

—*— GLAF
—A— KGAT
—8— GEAR

21 —— GLAF
—A— KGAT
—8— GEAR

ent Rate (FEVER)
vement Rate (LA)

Corpus Size

(a) FEVER improvement
Figure 4: The assessment of evidence mining capabil-
ity.

Corpus Size

(b) LA improvement

Number of iterations N

Corpus Size 0 1 5 3
5 0.7494 0.7488 0.7443 -
6 0.7508 0.7522 0.7510 -
7 0.7522  0.7545 0.7518 -
8 0.7531  0.7550 0.7522 -
9 0.7540  0.7579 0.7534 -
10 0.7528 0.7611 0.7581 -
15 0.7568 0.7608 0.7620 0.7588

Table 5: Study of hyperparameter N under different
corpus sizes. Best performance under each corpus size
is in boldface.

evidence sentences will bring more noise elements,
which requires the model to have stronger evidence
selection and reasoning ability to carefully distin-
guish these evidence clues. As shown in Figure 4,
we set b pieces of evidence as the basic scenario,
and vary the corpus size in [6, 7, 8,9, 10] to test the
improvement effect on FEVER and LA. As can
be observed, compared with KGAT and GEAR,
our GLAF model consistently achieves the best
performance on FEVER and LA metrics. We con-
jecture the reason might be that the pooling layer
in GLAF effectively improves the reasoning model
by filtering out noise clues.

Study on the number of iterations N. We con-
duct this experiment to explore the optimal number
of iterations IV under different corpus sizes. From
Table 5, we can observe that with the increase of the
corpus size, more iterations are needed to dig out
the potential logical relationships hidden among ev-
idence nodes. Specifically, when corpus size = 5,
the optimal number of iterations is N = 0; When
corpus size varies in the range of [6,7,8,9,10],
the optimal number of iterations is N = 1; When
corpus size reaches 15, the optimal number of it-
erations is N = 2. This experiment reveals the
relationship between model depth and its perfor-
mance. Specifically, deeper model may cause the
overfitting problem, while shallower models may
have difficulty in mining potential advanced fea-
tures. Therefore, it is important to select the proper
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number of iterations.

Corpus Size With Pooling Without Pooling
LA FEVER LA FEVER

5 0.7703  0.7494 | 0.7680  0.7492

7 0.7761  0.7540 | 0.7743  0.7526

10 0.7814  0.7609 | 0.7752  0.7536

15 0.8012  0.7762 | 0.7905  0.7635

Table 6: Effectiveness evaluation of pooling layer.

More evaluation on the pooling layer. We con-
duct this experiment to further evaluate the effec-
tiveness of the pooling layer. The result is shown
in Table 6. In this experiment, we set up a group
of comparison models with and without a pooling
layer, and set the corpus size within [5,7, 10, 15].
From Table 6, we can observe that the model with
the pooling layer achieves better performance than
the one without, which demonstrates the effective-
ness of the pooling layer in improving the model’s
reasoning ability over evidence clues through the
noise filtering mechanism.

5.4 Case Study

We take the fact verification task in Table 7 as an
example, which requires performing triple-level
2-hop reasoning over retrieved evidence clues to
reach a reliable conclusion. To verify whether “The
Rodney King riots” took place in “the most pop-
ulous county in the USA”, our model mines two
crucial evidence clues, (The Rodney King riots, oc-
curred in, Los Angeles County) and (Los Angeles
County, is, the most populous county in the USA),
to perform attention-based 2-hop reasoning. To
better understand what our LFR layer has learned,
we visualize the attention map from the LFR layer
and the final graph pooling layer, as shown in Fig-
ure 5. It is clear to see that node 1 achieves the
highest value score 0.982 in the last column by
integrating information from surrounding nodes,
mainly from nodes 2 and 3. Since node 2 is seman-
tically worthless and has the lowest value score
0.125, it will be filtered out by the pooling layer,
which implies that 1 — 3 is the optimal 2-hop
reasoning chain. Finally, the two corresponding
evidence clues (The Rodney King riots, occurred in,
Los Angeles County) and (Los Angeles County, is,
the most populous county in the USA) can be suc-
cessfully selected and reasoned to make the final
claim verification.

Claim:

The Rodney King riots took place in the most populous county

in the USA.

Evidence:

(1) The 1992 Los Angeles riots, also known as the Rodney King
riots were a series of riots, lootings, and civil disturbances that
occurred in Los Angeles County, California in April and May 1992.
(2) Los Angeles County, officially the County of Los

Angeles, is the most populous county in the USA.

Retrieved claim clue:

(The Rodney King riots, took place in, the most populous county

in the USA)

Retrieved evidence clues:

@ (The Rodney King riots, were, riots_lootings_civil_disturbances)
@ (The Rodney King riots, occurred in, Los Angeles County)

® (Los Angeles County, officially named, the County of Los Angeles)
@ (Los Angeles County, is, the most populous county in the USA)
Label: SUPPORTED

Table 7: A case study illustrating semantic-level 2-hop
reasoning over fine-grained evidence clues.

1.0
o - 0.384 0.384 0.002 0.002 0.326
0.8
— - 0.064 0.064 1.000 1.000 0.6
o~ - 0.124 0.124 -0.4
-0.2
m - 0.008 0.008 0.224 0.224
' ' l l i -0.0
0 1 2 3 4

Figure 5: Attention map for the example in Table 7.
The first four columns indicate the attention weights
oyis from nodes 0 to 3 (corresponding in turn to the
four retrieved evidence clues in Table 7) in the LFR
layer, and the last column visualizes the value score
Mi=3¢ of the four nodes from the final graph pooling

pool
layer.

6 Conclusion

In this paper, we introduce a fresh perspective to
revisit the fact verification task and propose a novel
Global-to-Local Aggregation and Fission Network
(GLAF) to capture latent logical relations hidden in
evidence clues for more accurate fact verification.
Instead of treating evidence as sentence-level or
unstructured representations as in previous work,
the proposed GLAF model first parses the evidence
sentences as triple-level evidence clues, and then
feeds them into contextual language model to ob-
tain global semantic representations. Moreover, to
capture latent logical relations between the clues,
GLAF respectively employs a local fission layer to
conduct fine-grained multi-hop reasoning, as well
as a global aggregation layer to conduct interchang-
ing of evidence clues in the graph. Experimen-
tal results on the benchmark dataset FEVER have
demonstrated the effectiveness and superior perfor-
mance of our model in both overall evaluation and
ablation study.
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A Appendices

A.1 Hyperparameters Setting

Hyperparameter Name | GLAF
Batch Size 8
Bert Embedding Size 768
Learning Rate 2e7?
Warmup Proportion 0.1
Dropout 0.6
Max Epochs 6
Corpus Size 15
Max Length 140
Pooling k [10,5,3]
Number of iterations N 2

Table 8: Hyperparameters we used for FEVER.

A.2 Error Analysis

To better understand the limitations of our model,
we conduct an error analysis on GLAF. We ran-
domly select 200 incorrectly predicted instances
that achieve low test FEVER scores. We report sev-
eral reasons for the low scores, which can roughly
be classified into three categories. 1) Upstream doc-
ument retrieval and sentence selection components
extract insufficient evidence for inferring (56%); 2)
Incomplete or even incorrect extraction of evidence
clues, which may be due to limitations of the SRL
toolkit (28%); 3) Lack of common sense knowl-
edge for the claim verification (16%). For example,
the claim states “The Great Wall is a famous an-
cient building in China", while the evidence states
“The Great Wall stretches from Lop Lake to Dan-
dong, which is a famous ancient building". The
model fails to realize that “Lop Lake" and “Dan-
dong" are located in “China" due to the lack of
common sense knowledge. Solving this type of
errors needs to involve external knowledge (e.g.,
ConceptNet proposed by (Speer et al., 2017)).

A.3 More complicated cases

For more complicated cases, such as a claim sen-
tence contains multiple predicates, GLAF first
parses the sentence to multiple triples by the SRL
toolkit, and then verifies them separately before
making a combined judgment. For example, “Mi-
crosoft was founded by Bill Gates and promoted
by Tim Cook" can be parsed to two claim triples:
(Microsoft, was founded by, Bill Gates) and (Mi-
crosoft, was promoted by, Tim Cook), GLAF first

Priority [ Label1 Label 2 | Final Label

Refutes 0 1 1
Not Enough Info 0 0 0
Supports 1 0 0

Table 9: Example of multi-label decisions. Note the pri-
ority is in descending order, i.e., Refutes > Not Enough
Info > Supports.

predicts their respective labels and then combines
these labels to make the final judgment by Table 9.
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