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Abstract

Question answering (QA) has demonstrated im-
pressive progress in answering questions from
customized domains. Nevertheless, domain
adaptation remains one of the most elusive
challenges for QA systems, especially when
QA systems are trained in a source domain
but deployed in a different target domain. In
this work, we investigate the potential bene-
fits of question classification for QA domain
adaptation. We propose a novel framework:
Question Classification for Question Answer-
ing (QC4QA). Specifically, a question classifier
is adopted to assign question classes to both the
source and target data. Then, we perform joint
training in a self-supervised fashion via pseudo-
labeling. For optimization, inter-domain dis-
crepancy between the source and target domain
is reduced via maximum mean discrepancy
(MMD) distance. We additionally minimize
intra-class discrepancy among QA samples of
the same question class for fine-grained adap-
tation performance. To the best of our knowl-
edge, this is the first work in QA domain adap-
tation to leverage question classification with
self-supervised adaptation. We demonstrate
the effectiveness of the proposed QC4QA with
consistent improvements against the state-of-
the-art baselines on multiple datasets.

1 Introduction

Question Answering (QA) or Reading Compre-
hension (RC) refers to the task of extracting an-
swers from given context paragraphs based on in-
put questions. QA systems predict the start and
end positions of possible answer spans in given
context documents upon input questions. In re-
cent studies, QA systems have achieved significant
improvements with transformer models and large-
scale datasets (Rajpurkar et al., 2016; Devlin et al.,
2019; Yue et al., 2022a).

Once deployed, QA systems often experience
performance deterioration upon user-generated
questions. Such performance drops can be traced

Figure 1: Overview for QA domain adaptation. A QA
model is trained with labeled source data and unlabeled
target data. The resulting QA system is deployed to
answer target questions.

back to domain shifts in two input elements:
(1) User-generated questions are syntactically more
diverse and thus, different from the training QA
pairs; (2) The context domain of test-time input
(target domain) can oftentimes diverge from the
training corpora (source domain), e.g., from news
snippets to biomedical articles (Hazen et al., 2019;
Fisch et al., 2019; Miller et al., 2020).

To alleviate the performance issue in QA do-
main adaptation, several approaches have been pro-
posed to reduce the discrepancy between the source
and target domains. Integrating labeled target QA
pairs in training can effectively improve the QA
system in answering out-of-domain questions (Ka-
math et al., 2020; Shakeri et al., 2020; Yue et al.,
2021, 2022b), where the target data can be human-
annotated QA pairs or synthetic data using ques-
tion generation methods. When only unlabeled
questions are available (see Figure 1), another pos-
sible approach is to reduce inter-domain discrep-
ancy via domain-adversarial training (Lee et al.,
2019). Combined with pseudo labeling, QA sys-
tems demonstrate improved generalization in an-
swering target domain questions (Cao et al., 2020).

Nevertheless, previous methods either require
large amounts of annotated target data or exten-
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sive computing power (Lee et al., 2019; Cao et al.,
2020; Yue et al., 2021, 2022b). Additionally, dif-
ferent types of QA pairs and their distributional
changes are not taken into account. As a result,
existing approaches are less effective for adapting
QA systems to an unseen target domain. In this
paper, we propose a domain adaptation framework
for QA: question classification for question an-
swering (QC4QA). Unlike existing methods, we
innovatively adopt a question classification (QC)
model to classify input questions from both the
source and target domains into different question
classes. Moreover, we pseudo label the target
data using a pretrained QA system and perform
distribution-aware sampling to build mini-batches
that resemble the target question distribution. In
the adaptation stage, we propose a self-supervised
adaptation framework to minimize the domain gap,
in which inter-domain and intra-class discrepan-
cies are simultaneously regularized. This is in
contrast to existing baselines (e.g., domain adver-
sarial adaptation methods) where the source data
is solely used for training but without explicitly
accounting for domain shifts and question distri-
bution changes (Lee et al., 2019; Cao et al., 2020;
Yue et al., 2021). To the best of our knowledge,
QC4QA is the first work that combines question
classification and self-supervised adaptation for
learning domain-invariant representation in QA do-
main adaptation.

Our main contributions are as follows1:

1. We propose QC4QA for QA domain adap-
tation. QC4QA innovatively adopts ques-
tion classification to identify question types
(classes) of the source and target QA pairs for
intra-class discrepancy reduction.

2. Our QC4QA can be combined with super-
vised QC or unsupervised clustering. In the
latter case, we show that QC4QA can transfer
knowledge to the target domain even without
additional model or annotation.

3. We design a distribution-aware sampling strat-
egy and an objective function that incorpo-
rates MMD distances for minimizing inter-
domain and intra-class discrepancies to trans-
fer knowledge to the target domain.

4. We demonstrate the effectiveness of QC4QA,
1Our implementation is publicly available at

https://github.com/Yueeeeeeee/Self-Supervised-QA.

where QC4QA consistently outperforms state-
of-the-art baselines by a significant margin.

2 Related Work

QA systems have achieved significant improve-
ments in extracting answers upon input context
and questions. However, trained QA systems are
known to experience performance drops when con-
text paragraphs and questions diverge from the
training corpora. That is, when domain shifts exist
between the training and test distributions (Hazen
et al., 2019; Fisch et al., 2019; Miller et al., 2020;
Zeng et al., 2022).

To adapt QA systems for domain changes, meth-
ods for QA domain adaptation have been proposed
in two different settings: (1) Access to contexts
and QA pairs from the target domain. Here, par-
tial access to target data is provided, or a question
generation model is introduced for producing syn-
thetic QA pairs. The target data is then used to
train and improve adaptation performance (Shak-
eri et al., 2020; Yue et al., 2021); (2) Access to
context paragraphs and unlabeled input questions
from the target domain. Here, unsupervised or self-
supervised adaptation can be used to improve the
performance in the target domain (Cao et al., 2020).
In this paper, we focus on the latter setting and
study QA domain adaptation with access to target
contexts and unlabeled questions.

Domain adaptation in computer vision: Do-
main adaptation methods have been primarily stud-
ied for image classification problems. Such ap-
proaches focus on minimizing the representation
discrepancy between the source and target distri-
butions. Some methods design objective func-
tions that encourage domain-invariant features in
training (Long et al., 2015; Kang et al., 2019).
Other methods leverage domain-adversarial train-
ing with a discriminator to implicitly impose reg-
ularization when source and target features are
distinguishable (Tzeng et al., 2017; Zhang et al.,
2019a), with successful applications in various vi-
sion tasks (Zhang et al., 2019b, 2020, 2021).

Domain adaptation in QA: Various approaches
are designed to improve QA performance by gen-
erating and refining synthetic QA pairs. Based on
target contexts, question generation models are in-
troduced to produce a surrogate dataset, which is
used to train QA systems (Kamath et al., 2020;
Shakeri et al., 2020; Yue et al., 2022b). Con-
trastive adaptaion minimizes inter-domain discrep-
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ancy with question generation and maximum mean
discrepancy (MMD) distances (Yue et al., 2021,
2022c). When unlabeled questions are accessible,
domain-adversarial training can be applied to re-
duce feature discrepancy between domains (Lee
et al., 2019). Pseudo labeling and iterative refine-
ments of such labels can be used for improved joint
training (Cao et al., 2020).

Question classification (QC): Classifying ques-
tions of different types is a common task in natu-
ral language processing. One of the widely-used
question taxonomy TREC divides questions into
6 coarse classes and 50 fine classes (Li and Roth,
2002). Early machine learning methods perform
QC with hand-crafted features (Li and Roth, 2002;
Huang et al., 2008). Neural networks improve the
classification performance with sentence embed-
dings (Howard and Ruder, 2018; Cer et al., 2018).

However, the aforementioned approaches in QA
domain adaptation encourage domain-invariant fea-
tures without considering samples from different
classes and their distributional changes. Moreover,
it is hitherto unclear how to estimate class discrep-
ancies in QA, since class labels are not available
in QA datasets. To solve this problem, we propose
to use QC to divide QA pairs into different classes,
where questions can be classified via an additional
QC model or unsupervised clustering with mini-
mum computational costs. We exploit the question
classes by reducing the discrepancy among samples
from the same class (‘intra-class’). Additionally,
we design a distribution-aware sampling strategy
in QC4QA to account for distributional changes
between the source and target domains. By in-
corporating the discrepancy terms in the objective
function, our self-supervised adaptation framework
QC4QA achieves significant improvements against
the state-of-the-art baseline methods.

3 Methodology

3.1 Setup

Data: Our setting focuses on improving QA per-
formance when domain shifts exist in the test data
distribution. For this purpose, labeled source data
and unlabeled target data are available, we denote
the domain of source data with Ds and target data
with Dt. Formally, the input data is defined by:

• Source data: Labeled source data Xs from
Ds. Individual sample x

(i)
s ∈ Xs is defined

by a triplet consisting of a question x
(i)
s,q, a

context x(i)
s,c, and an answer x(i)

s,a. The exact
answer tokens can be found in context, an-
swer x(i)

s,a is represented by the start and end
position in x

(i)
s,c.

• Target data: Unlabeled target data Xt from
Dt. For target sample x

(i)
t ∈ Xt, we only

have access to the question x
(i)
t,q and context

x
(i)
t,c . Ground truth answer x(i)

t,a is not given
for training.

Model: The QA system can be represented with
function f . f takes an input question xq and con-
text document xc as input and yields answer pre-
diction xa, namely xa = f(xq,xc). The output
xa is represented as a subspan of xc and comprises
of the answer start and end positions.

Objective: The objective is to learn a f∗, which
maximizes the performance in answering questions
from the target domain Dt. In other words, f∗

minimizes the negative log likelihood (i.e., cross
entropy) for Xt from the target domain distribu-
tion:

f∗ = argmin
f

|Xt|∑
i=1

LNLL(f(x
(i)
t,q,x

(i)
t,c),x

(i)
t,a). (1)

3.2 The QC4QA Framework

3.2.1 Overall Framework
In the proposed QC4QA, we design a self-
supervised framework that facilitates question clas-
sification for QA domain adaptation. QC4QA can
be divided into three stages: (1) Question classifica-
tion; (2) Pseudo labeling & sampling and (3) Self-
supervised adaptation. In the first stage, we per-
form classification for all input questions, which
provides additional question class information for
the adaptation stage. In the next stage, we label and
filter all target samples and perform distribution-
aware sampling to build mini-batches that resemble
the target data distribution. Finally, we perform
self-supervised adaptation on the QA system to
minimize inter-domain and intra-class discrepan-
cies. Once input questions are classified, we itera-
tively perform stage 2 and stage 3 in each epoch.
The QA system is trained with both source and
target data, where we encourage domain-invariant
features and minimize intra-class discrepancies of
data samples from the same question class.

Our approach leverages question classification
for fine-grained domain adaptation. Here, QC is
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designed for evaluating intra-class discrepancies
and distributional changes by introducing the addi-
tional question classes instead of using QA labels.
The idea behind it is that QA labels are defined by
subspans in input contexts, if we treat every com-
bination of start and end position as a class, the
corresponding label space would be too large and
sparse for any meaningful discrepancy estimation.
Therefore, we proposes the question classification
stage to introduce additional semantic knowledge
for intra-class discrepancy estimation. Moreover,
by performing pseudo labeling and distribution-
aware sampling, we resemble the target question
distribution in the adaptation stage to correct the
potential bias in the pretrained QA system. In other
words, QC4QA simulates the target data distribu-
tion and ‘pulls together’ source and target samples
of the same question class to encourage domain
invariance.

3.2.2 Question Classification
For question classification, we adopt the commonly
used question taxonomy in TREC and categorize
all questions into 6 coarse classes Q: ABBR: Ab-
breviation, DESC: Description, ENTY: Entity,
HUM: Human, LOC: Location and NUM: Nu-
meric Value. Each class indicates the potential
answer type to the question (Li and Roth, 2002). In
practice, we rarely find ABBR questions.

The proposed QC model leverages pretrained
sentence embedding methods to generate vector-
ized feature for input questions. We then build
a multilayer perceptron (MLP) to perform classi-
fication on the encoded questions, see Figure 2.
Specifically, we adopt InferSent and Universal Sen-
tence Encoder to encode the input questions sepa-
rately (Conneau et al., 2017; Cer et al., 2018). The
encodings are concatenated and used as an input
feature for the MLP classifier. With the trained QC
model, inference can be performed on all training
questions for the later adaptation stage.

To further examine the effectiveness of question
classification without additional model and anno-
tation, we introduce an unsupervised clustering
method, where we refrain from using an additional
dataset or classifier to perform question classifica-
tion. In particular, we feed the input data within the
transformer encoder (part of the QA system) and
utilize the output from the [CLS] token position
as features (Devlin et al., 2019). We sample a fixed
number of source features (10k in our experiments)
and perform KMeans clustering with a predefined

Figure 2: Model architecture for question classifier.

number of clusters k (Similar to TREC, we use 5
as default). Then, cluster centroids are preserved
to classify source and target QA datasets.

3.2.3 Pseudo Labeling & Sampling
Provided with the access to labeled source data, we
pretrain the QA system f to learn to answer ques-
tions. After pretraining, we can use f to predict
target answers for self-supervised adaptation. The
pseudo labels are filtered according to the answer
confidence, we preserve the target samples above
confidence threshold λcon. The pseudo labeling
and confidence thresholding steps are repeated in
each epoch to dynamically adjust the target distri-
bution used for training.

For mini-batch training, we sample the same
amounts of QA pairs from both domains to mini-
mize the inter-domain and intra-class discrepancies.
However, with randomly sampled data, training is
less efficient as source and target questions in each
batch can be entirely different (e.g., source samples
are all Human questions and target samples are all
Description questions). To solve this problem, we
design a distribution-aware sampling strategy: we
first sample target QA pairs from Xt and within the
same question classes, we sample from Xs such
that the source and target question classes in each
batch are identical. Consequently, the QA system
can be trained on a data distribution similar to the
target dataset. Moreover, the estimation of intra-
class discrepancy between both domains can be
performed more efficiently.

3.2.4 Self-supervised Adaptation
The sampled batches are used to adapt the pre-
trained QA system, where we optimize the model
to reduce the negative log likelihood loss, as in
Equation (1). Meanwhile, we encourage the do-
main invariance by computing the discrepancies
and incorporate them in the training objective.

To measure the discrepancy between samples
from different domains, we adopt the maximum
mean discrepancy (MMD) distance (Gretton et al.,
2012). MMD estimates the distance between two
distributions with samples drawn from them, with
f and H representing the feature mapping and the
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Figure 3: Overview for the proposed method. QC4QA can be divided into three stages: (1) Question classification
where all questions are assigned different classes; (2) Pseudo labeling & sampling, where we label and sample
target examples with the proposed distribution-aware sampling strategy; (3) Self-supervised adaptation, in which we
train the QA system jointly with source and target data. In the experiments, stage 2 and 3 are iteratively performed
and we apply the proposed objective Equation (5) to minimize both inter-domain and intra-class discrepancies.

reproducing kernel Hilbert space:

D = sup
f∈H

( 1

|Xs|

|Xs|∑
i=1

f(x(i)
s )− 1

|Xt|

|Xt|∑
i=1

f(x
(i)
t )

)
.

(2)
To simplify the computation, we adopt the Gaus-

sian kernel as feature mapping, i.e., k(x(i)
s ,x

(j)
t ) =

exp(−∥x(i)
s −x

(j)
t ∥2

γ ). We further leverage empirical
kernel mean embeddings (Long et al., 2015) to es-
timate the MMD distance between samples from
Xs and Xt:

DMMD =
1

|Xs||Xs|

|Xs|∑
i=1

|Xs|∑
j=1

k(ϕ(x(i)
s ), ϕ(x(j)

s ))

+
1

|Xt||Xt|

|Xt|∑
i=1

|Xt|∑
j=1

k(ϕ(x
(i)
t ), ϕ(x

(j)
t ))

− 2

|Xs||Xt|

|Xs|∑
i=1

|Xt|∑
j=1

k(ϕ(x(i)
s ), ϕ(x

(j)
t )),

(3)
where ϕ represents the transformer encoder in the
QA system. With DMMD, it is possible to mea-
sure the discrepancies between different domains
and question classes. The discrepancy values are
used to guide the self-supervised adaptation and
encourage domain-invariant features.

Among all tokens in each QA sample x, we
distinguish two types of features xa and xo. xa

stands for the mean vector of answer token repre-
sentations, while xo is the mean vector of all other

tokens in the representation space (Yue et al., 2021).
The QA system extracts the answer when the an-
swer tokens in the representation space are sepa-
rated from xo (van Aken et al., 2019). Therefore,
we adopt xa as feature representation to compute
MMD distances. By introducing question classifi-
cation, we introduce an additional term w.r.t. the
intra-class discrepancy in the objective function:

LQC4QA =
1

|Q|

Q∑
q∈Q

DMMD(X(q)
s ,X

(q)
t ), (4)

Xs refers to all answer features in source samples
and Xt represents answer features in target sam-
ples, while X(q) denotes the set of samples that
belong to question class q ∈ Q. LQC4QA ‘pulls to-
gether’ features from the same question class across
domains by minimizing their MMD distances.

3.2.5 Overall Objective
To encourage domain-invariant features, we incor-
porate Equation (4) into the training objective. Us-
ing the NLL loss and the contrastive adaptaion
loss (Yue et al., 2021, 2022c), the overall objective
function can be formulated as follows:

L = LNLL + λ(LCAQA + LQC4QA), (5)

in which LCAQA is the same as in (Yue et al.,
2021), while λ is a scaling factor we choose em-
pirically. Although we introduce LCAQA in our
training objective function, QC4QA is largely dif-
ferent from CAQA as: (1) LCAQA only reduces the
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inter-domain discrepancy, we incorporate question
classification to additionally reduce intra-class dis-
crepancy via LQC4QA for fine-grained adaptation;
(2) We perform pseudo labeling and distribution-
aware sampling to account for the distribution
shifts between the source and target dataset; and
(3) QC4QA leverages an efficient self-supervised
adaptation framework instead of the computation-
ally expensive question generation in (Yue et al.,
2021). As such, the proposed QC4QA efficiently
reduces the domain discrepancy and effectively
transfers learnt knowledge from the source domain
to the target domain.

The overall framework is illustrated in Figure 3.
We first generate question classes for all data sam-
ples. Next, the source-pretrained QA model gen-
erates pseudo labels for target data and we select
target samples above the confidence threshold λcon

for training. Pseudo labeling and self-supervised
adaptation are performed iteratively to refine the
pseudo labels and improve the performance in the
target domain using Equation (5). Unlike previous
works (Lee et al., 2019; Cao et al., 2020; Shakeri
et al., 2020; Yue et al., 2021), we discard domain-
adversarial training or question generation and in-
troduce a self-supervised adaptation framework
based on question classification for improved effi-
ciency and adaptation performance. We also design
a distribution-aware sampling strategy to resemble
the target data distribution and correct the potential
bias in the pretrained QA system. Additionally,
a fine-grained adaptation loss based on question
classification is introduced in training to minimize
both the inter-domain and intra-class discrepancies
across the source and target domain.

4 Experiments

4.1 Datasets and Baselines

For supervised question classification, we adopt
the TREC dataset (Li and Roth, 2002), a widely
used dataset containing ~5k training questions and
500 questions for testing. Following (Cao et al.,
2020; Shakeri et al., 2020; Yue et al., 2021), we
use SQuAD as our source domain QA dataset (Ra-
jpurkar et al., 2016). For target domain, we adopt
multiple QA datasets (details in Appendix A) and
refrain from using labels in training (Cao et al.,
2020; Shakeri et al., 2020; Yue et al., 2021).

For comparison, we adopt 4 baseline methods.
We first pretrain a QA system on the source dataset
and then evaluate on each target dataset with zero

knowledge of the target domain. We addition-
ally adopt 3 state-of-the-art baselines: Domain-
adversarial training (DAT) (Lee et al., 2019),
conditional adversarial self-training (CASe) (Cao
et al., 2020) and contrastive adaptation for QA
(CAQA*) (Yue et al., 2021). For fair comparison,
we adapt the original CAQA to our self-supervised
adaptation framework as a baseline, we denote the
adapted CAQA with CAQA*.2 BERT-QA is se-
lected as the QA model (Devlin et al., 2019). De-
tails of the baselines are elaborated in Appendix A.

4.2 Training and Evaluation
We train our QC model on the TREC training set
and evaluate on the test set, the best model is saved
to perform classification on all QA datasets. For un-
supervised question classification, sampled [CLS]
features from the source dataset are used to perform
KMeans clustering, followed by question class in-
ference on all QA datasets.

After question classification, we adopt a QA
model (pretrained on the source dataset) and
iteratively perform: (1) Pseudo labeling and
distribution-aware sampling to select data batches
that resemble the target data distribution; (2) Self-
supervised adaptation with the proposed objective
Equation (5) for learning domain-invariant repre-
sentation. For evaluation, we adopt two metrics:
exact match (EM) and F1 score (F1). We compute
the metrics on target dev sets to evaluate the adap-
tation performance. Details of our implementation
can be found in Appendix B.

4.3 Main Results
We first report the question classification perfor-
mance on TREC dataset. The MLP classifier has
2.36M parameters and can be trained efficiently in
less than one minute (57.6s on average) with GPU
acceleration. We perform the evaluation with the
proposed MLP QC model and reach an accuracy of
96.6% on the TREC test set. Similar magnitude of
efficiency can be observed in KMeans clustering
for unsupervised question classification. We pro-
vide detailed quantitative analysis and qualitative
examples in Appendix C.1.

The QA system is first pretrained in the source
domain with 79.60 EM and 87.64 F1 score on

2We exclude question generation and adopt the same pro-
cess of pseudo labeling, distribution-aware sampling and self-
supervised adaptation as QC4QA in CAQA*. Different from
QC4QA, we use the same objective function as in (Yue et al.,
2021). A direct comparison between the proposed QC4QA
and the original CAQA can be found in Appendix C.2.
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Model CNN Daily Mail NewsQA HotpotQA SearchQA
EM / F1 EM / F1 EM / F1 EM / F1 EM / F1

(I) Zero-shot target performance

BERT-QA 14.30/23.57 15.38/25.90 39.17/56.14 43.34/60.42 16.19/25.03

(II) Target performance with domain adaptation

DAT (Lee et al., 2019) 21.89/27.37 26.98/32.72 38.73/54.24 44.25/61.10 22.31/31.64
CASe (Cao et al., 2020) 20.77/29.37 25.40/35.85 43.43/59.67 47.16/63.88 26.07/35.16
CAQA* (Yue et al., 2021) 21.97/30.97 32.08/41.47 44.26/60.83 48.52/64.76 32.05/41.07
QC4QA KMeans (Ours) 25.04/33.20 35.53/44.32 44.40/60.91 49.58/65.78 34.44/43.78
QC4QA TREC (Ours) 28.05/36.18 36.43/45.85 45.62/61.71 50.02/66.10 35.75/44.37

Table 1: Main results of QA adaptation performance on target dataset.

Model CoQA DROP Natural Questions TriviaQA
EM / F1 EM / F1 EM / F1 EM / F1

(I) Zero-shot target performance

BERT-QA 12.42/17.30 19.36/30.28 39.06/53.75 49.70/59.09

(II) Target performance with domain adaptation

DAT (Lee et al., 2019) 11.98/14.72 18.53/29.34 44.94/58.91 49.94/59.82
CASe (Cao et al., 2020) 13.71/18.57 21.78/31.44 46.53/60.19 54.74/63.61
CAQA* (Yue et al., 2021) 14.41/19.28 22.48/31.56 47.37/60.52 54.30/62.98
QC4QA KMeans (Ours) 14.83/19.60 23.13/31.73 49.37/62.25 54.99/63.58
QC4QA TREC (Ours) 15.03/19.71 23.46/32.22 50.59/62.98 55.98/64.57

Table 2: Results of QA adaptation performance on additional target dataset.

the SQuAD dev set. Then, we perform adapta-
tion experiments and report the main results in
Table 1, results on the additional target datasets
can be found in Table 2. Both tables are divided
into 2 parts: (1) QA systems pretrained on SQuAD
as naïve baseline (‘Zero-shot target performance’);
(2) Baseline methods and QC4QA for QA domain
adaptation (‘Target performance with domain adap-
tation’). The proposed approach with TREC su-
pervised classification is denoted with ‘QC4QA
TREC’, unsupervised KMeans question clustering
is denoted with ‘QC4QA KMeans’.

The following observations can be made from
our experiments: (1) Unsupervised adaptation
methods achieve superior performance than the
naïve baseline in most cases. Compared to the
naïve baseline, QC4QA can lead to improve-
ments of over 100% in EM and and over 75% in
F1. (2) Compared to contrastive adaptation (e.g.,
CAQA*), the proposed QC4QA is particularly ef-
fective on cloze questions (i.e., CNN and Daily

Mail), with average performance gains of 16.5%
and 10.4% in EM and F1. This suggests that we can
benefit more from QC when the target questions
are less similar to source questions. (3) By com-
paring CAQA* and both QC4QA methods, we find
consistent performance improvements due to ques-
tion classification for all datasets. (4) Both QC4QA
methods outperform baseline methods with consid-
erable improvements, from which QC4QA TREC
demontrates the best performance on all datasets.
For example, QC4QA KMeans significantly out-
performs the best baseline CAQA* with 5.2% and
3.2% performance increases in EM and F1 on aver-
age. For QC4QA TREC, the relative improvements
are 8.6% and 5.5% respectively. Altogether, the
results suggest that both the TREC and KMeans
question classification are effective for improving
the performance on out-of-domain data. Additional
results and analysis can be found in Appendix C.
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4.4 Ablation Studies
4.4.1 Question Classification
We first study the benefits of question classification.
The performance gains can be achieved by com-
paring the results between CAQA* and QC4QA
in Table 1 and Table 2. This is because CAQA*

is adapted to the same self-supervised adaptation
framework as in QC4QA. CAQA* models are
trained without minimizing the intra-class discrep-
ancies in Equation (5). The improvements from
QC4QA suggest that both supervised and unsu-
pervised question classification can consistently
improve QA systems in answering questions from
unseen domains. Moreover, QC4QA is particularly
effective on target datasets with different question
formats (e.g., CNN and Daily Mail).

4.4.2 Distribution-aware Sampling
To study the influence of distribution-aware sam-
pling in QC4QA, we replace the distribution-aware
sampling strategy with random sampling. Then
we perform unsupervised adaptation with QC4QA
TREC on CNN, Daily Mail and NewsQA to verify
the merits of the sampling strategy. Results are
presented in Table 3.

Dataset
Rand. Sampling QC4QA

EM / F1 EM / F1

CNN 26.69/35.24 28.05/36.18
Daily Mail 35.83/45.51 36.43/45.85
NewsQA 44.72/61.02 44.86/61.40

Table 3: QC4QA performance with the random sam-
pling strategy.

In all target datasets, we see performance drops
when we replace the proposed strategy with ran-
dom sampling. In particular, we find relatively
large performance deterioration on CNN without
distribution-aware sampling. We believe the reason
is that the question distribution in CNN is less sim-
ilar to SQuAD (see Table 5), the resulting inconsis-
tency in sampled batches reduces the effectiveness
in discrepancy estimation.

4.4.3 Sensitivity of Hyperparameter λ

Now we evaluate the influence of λ to study the
robustness of the proposed objective function. We
select different values ranging from 0 to 5e-2 and
perform adaptation with QC4QA TREC. Experi-
ments on CNN, Daily Mail and NewsQA are pre-
sented to estimate the influence of λ.

Figure 4: QC4QA adaptation performance for different
lambda values. X-axis represents lambda and y-axis
represents EM / F1 scores.

Figure 4 visualizes EM / F1 with increasing λ.
Despite certain variations, we observe the results
first go up and then decrease. Although CNN and
Daily are more sensitive to λ, we observe greater
improvements by reducing inter-domain and intra-
class discrepancies. Overall, QC4QA consistently
improves adaptation performance.

4.4.4 Confidence Threshold in Pseudo
labeling

We study the influence of λcon to understand how
the performance varies with different confidence
thresholds in pseudo labeling. We select different
threshold values ranging from 0.2 to 0.8 to filter
pseudo labels and train with QC4QA TREC. Exper-
iments are performed on HotpotQA and SearchQA
to estimate the influence of λcon.

λcon Selection
HotpotQA SearchQA

EM / F1 EM / F1

0.2 48.12/64.56 25.60/34.50
0.4 50.02/66.10 33.56/42.62
0.6 49.95/69.84 35.75/44.37
0.8 49.44/65.11 37.29/46.31

Table 4: QC4QA adaptation performance for different
confidence thresholds in pseudo labeling.

Table 4 shows adaptation performance with dif-
ferent λcon. The best performance can be reached
with λcon ranging from 0.4 to 0.8. For large
datasets like SearchQA (with over 100k QA pairs),
a higher confidence threshold yields a better adap-
tation performance since we avoid noisy pseudo
labels. In sum, carefully selected λcon yields com-
paratively large improvements for QC4QA.
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5 Conclusion

In this paper, we propose a novel framework for QA
domain adaptation. The proposed QC4QA com-
bines question classification with self-supervised
adaptation techniques. QC4QA leverages question
classes to reduce domain discrepancies and resem-
ble target data distribution in training. Different
from existing works, QC4QA achieves superior
performance by introducing a simple question clas-
sifier and incorporating the question class informa-
tion in the training objective. We demonstrate the
efficiency and effectiveness of QC4QA compared
to state-of-the-art approaches by achieving a sub-
stantially better performance on multiple datasets.

Despite having adopted question classification
to adapt QA systems to unseen target domains, the
proposed QC4QA has certain limitations. For ex-
ample, we assume access to unlabeled questions in
QA datasets and have not exploited the potential
benefits of different question samples and question
classes. For future work, we plan to relax our set-
tings and explore question generation and question
value estimation for QA domain adaptation.
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A Dataset and baseline details

A.1 Dataset details

For QA datasets, we follow (Lee et al., 2019; Cao
et al., 2020; Yue et al., 2021) and select SQuAD
v1.1 as our source dataset (Rajpurkar et al., 2016).
SQuAD is a crowdsourced QA dataset based on
Wikipedia articles. For target domain, we adopt
multiple datasets to evaluate QC4QA:

1. CNN (Hermann et al., 2015) leverages CNN
articles as contexts. Cloze QA pairs are gen-
erated by replacing answers with ‘@place-
holder’.

2. CoQA (Reddy et al., 2019) is a conversational
dataset with rationales and QA pairs. Contexts
are given as multi-turn conversations.

3. Daily Mail (Hermann et al., 2015) is similar
to CNN and consists of news from Daily Mail.
Cloze questions and answers are used.

4. DROP (Dua et al., 2019) requires QA systems
to resolve references, reasoning, matching and
understanding context implications.

5. NewsQA (Trischler et al., 2016) provides
news as contexts and challenging questions
beyond simple matching and entailment.

6. HotpotQA (Yang et al., 2018) provides multi-
hop questions with challenging contexts (dis-
tractor contexts excluded).

7. Natural Questions (Kwiatkowski et al., 2019)
has user questions. We adopt short answers
and use long answers as contexts.

8. TriviaQA (Joshi et al., 2017) is a large-scale
QA dataset that includes QA pairs and sup-
porting facts for supervised training.

9. SearchQA (Dunn et al., 2017) is constructed
through existing QA pairs by searching for
context from online search results.

A.2 Baseline details

For naïve baseline, we adopt BERT-QA (uncased
base version with additional batch normalization
layer) and train on the source dataset (Devlin et al.,
2019; Cao et al., 2020). Additionally, we select 3
baselines in unsupervised QA domain adaptation:

1. Domain adversarial training (DAT) (Lee
et al., 2019) comprises of a QA system and a
discriminator using [CLS] output in BERT.
The QA system is first trained on labeled
source data. Then, input data from both do-
mains is used for domain-adversarial training
to learn generalized features.

2. Conditional adversarial self-training
(CASe) (Cao et al., 2020) leverages self-
training with domain-adversarial learning.
CASe iteratively perform self-training and
domain adversarial training to reduce domain
discrepancy. We adopt the entropy weighted
version CASe+E in our work as baseline.

3. Contrastive adaptation for QA
(CAQA*) (Yue et al., 2021) proposes
contrastive adaptation based on token-level
features. CAQA utilizes answer tokens
as features and reduce the domain gap by
minimizing MMD distances. We exclude
question generation and adopt the same
process of pseudo labeling, distribution-aware
sampling and self-supervised adaptation. In
particular, we perform training using the
original contrastive adaptation loss as in (Yue
et al., 2021).

B Implementation

We first train a question classifier on the TREC
dataset. The QC model is trained for 4 epochs
using RMSprop optimizer with learning rate of
0.01 and batch size of 64. We evaluate the QC
model on the TREC test set and report the accuracy
of the best QC model.

For pretraining BERT-QA on the source dataset
(i.e., SQuAD), we follow (Devlin et al., 2019; Yue
et al., 2021) to preprocess data and perform training.
We select the AdamW optimizer and train BERT-
QA for 2 epochs without linear warmup. Learning
rate is 3e-5 and batch size is 12. After pretraining,
we validate the model with the provided dev set
and report the EM and F1 scores.

For baseline methods, we use our pretrained
BERT-QA and follow their default settings for do-
main adaptation. For QC4QA, adaptation is per-
formed 4 epochs with the AdamW optimizer, learn-
ing rate of 3e-5 and 10% proportion as warmup
in training. In the pseudo labeling stage, we first
perform inference on unlabeled target data and pre-
serve the target samples above confidence threshold
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λcon. For batching in self-supervised adaptation
stage, we sample 12 target examples and perform
distribution-aware sampling to sample another 12
source QA pairs. The sampled source data has
same question classes as the target examples. Vali-
dation is performed every 2000 iterations and after
every epoch to save the best QA model. In our
experiments, we empirically select λ from [1e-4,
1e-3, 1e-2], we select λcon from [0.4, 0.6]. Our sys-
tem setup is Intel Xeon Gold 6326 CPU, NVIDIA
A40 GPU and 128GB RAM.

C Additional results

C.1 Question Classification Results

Due to our light-weight design, the TREC ques-
tion classifier can perform training and inference
efficiently within a few minutes. For example, we
achieve an average training time of 57.6s on TREC
in repeated experiments with GPU acceleration. In-
ference on QA datasets are of similar efficiency
and depends on the individual size of each dataset.

Since TREC classes are not provided in QA
datasets, it’s not possible to directly evaluate the su-
pervised QC model on them. We report the distribu-
tion of different question classes in Table 5, where
we observe significant distribution shifts between
the source dataset and certain target datasets (e.g.,
CNN and Daily Mail). Additionally, we present
selected examples of classified questions in Table 9,
from which we observe the following: (1) Cloze
questions are more difficult to classify. Unlike
natural questions, cloze questions usually do not
contain auxiliary verb and wh-words (e.g., what,
where etc.) as indicator of the question classes.
(2) Multiple question classes may qualify for cloze
questions. In some examples, different types of to-
kens can be filled in the placeholder position (e.g.,
both DESC and ENTY qualify for Q3). (3) The
TREC question classifier can be less accurate on
cloze questions. This is the case for Q5 in Table 9,
where the questions are more likely to be DESC
and LOC than HUM. (4) For natural questions,
the question classifier performs generally well and
makes fewer mistakes due to the similarity of natu-
ral questions across QA datasets. More examples
can be found in the released code and data.

For KMeans unsupervised question classifica-
tion, we focus on the discrepancy among ques-
tion samples and perform KMeans clustering us-
ing the [CLS] output from BERT encoder, see
Figure 5. The plot shows a principle component

analysis (PCA) visualizing the BERT-encoder out-
put of NewsQA examples, where different colors
represent question class predictions via KMeans
algorithm. We observe that [CLS] features are
comparatively homogeneous, making it hard to
determine cluster boundaries that clearly separate
different classes of questions. This might cause
performance deterioration in case of increasing out-
liers. Overall, KMeans can successfully cluster QA
examples within each neighborhood on the target
dataset. Ideally, the cluster labels can be used to
reduce intra-class discrepancies for fine-grained
domain adaptation similar to TREC classification.
Both adaptation results and cluster visualization
suggest that KMeans is effective in improving the
performance on out-of-domain data.

Figure 5: Visualization of KMeans cluster analysis on
NewsQA using [CLS] features from BERT.

C.2 Comparison with CAQA

We study the effectiveness of the proposed QC4QA
by comparing the performance between QC4QA,
the original CAQA and the adapted CAQA* (Yue
et al., 2021). The results are presented in Table 6,
we observe that the best-performing method is
QC4QA with TREC question classification for 7
out of 8 metric values. For SearchQA, the origi-
nal CAQA performs the best in EM, with QC4QA
TREC is of similar magnitude and clearly ranks sec-
ond. On average, QC4QA TREC performs the best
with EM of 48.09 and F1 of 59.51. Despite discard-
ing question generation using the T5 transformer,
QC4QA KMeans and the original CAQA performs
similarly. Interestingly, we observe that CAQA*

outperforms the original CAQA in HotpotQA, sug-
gesting that the distribution-aware sampling and it-
erative pseudo-processing can effectively improve
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Dataset ABBR DESC ENTY HUM LOC NUM
SQuAD 0.5% 12.5% 31.4% 19.9% 11.6% 24.1%
CNN 0.0% 5.3% 39.2% 43.6% 5.3% 6.5%
Daily Mail 0.0% 3.9% 38.6% 46.1% 4.4% 6.9%
NewsQA 0.1% 19.5% 21.4% 29.4% 10.3% 19.3%
HotpotQA 0.0% 1.6% 21.1% 51.6% 14.8% 10.9%
CoQA 0.1% 14.1% 14.2% 53.7% 9.3% 8.5%
DROP 0.0% 2.3% 24.0% 51.8% 7.3% 14.5%
Natural Questions 0.2% 5.0% 13.2% 39.2% 13.4% 29.0%
SearchQA 0.2% 3.7% 43.1% 4.8% 13.5% 34.7%
TriviaQA 0.2% 1.6% 37.8% 36.5% 19.3% 4.7%

Table 5: Question class distribution in all datasets.

Model Natural Questions HotpotQA SearchQA TriviaQA
EM / F1 EM / F1 EM / F1 EM / F1

(I) Zero-shot target performance
BERT-QA 39.06/53.75 43.34/60.42 16.19/25.03 49.70/59.09

(II) Target performance with domain adaptation
CAQA* (Yue et al., 2021) 47.37/60.52 48.52/64.76 32.05/41.07 54.30/62.98
CAQA (Yue et al., 2021) 48.55/62.60 46.37/61.57 36.05/42.94 55.17/63.23
QC4QA KMeans (Ours) 49.37/62.25 49.58/65.78 34.44/43.78 54.99/63.58
QC4QA TREC (Ours) 50.59/62.98 50.02/66.10 35.75/44.37 55.98/64.57

Table 6: Comparison between QC4QA and CAQA.

the adaptation performance.

C.3 Cluster Number in QC4QA KMeans
Classification

To study the influence of cluster number in unsuper-
vised question clustering for QC4QA, we initialize
KMeans algorithm with different number of clus-
ters. Then we perform QC4QA KMeans adaptation
on HotpotQA and SearchQA to examine the influ-
ence of cluster number.

Cluster Number
HotpotQA SearchQA

EM / F1 EM / F1
3 49.82/65.73 30.34/39.49
5 49.58/65.78 32.19/41.27
7 49.87/65.66 30.51/39.25
9 50.45/66.14 29.59/38.14

Table 7: QC4QA adaptation performance for different
numbers of KMeans clusters.

Results are presented in Table 7, we observe per-
formance drops when we reduce number of clusters
from the default of 5. Surprisingly, the performance
on HotpotQA grows consistently with increasing
number of clusters. A potential explanation for
such improvements is that fine-grained question

classification is more helpful for complex multi-
hop QA datasets.

C.4 Human Annotation

Training Method Daily Mail NewsQA
EM / F1 EM / F1

0 Annotation 36.43/45.85 44.86/61.40
5k Annotations 48.04/56.27 45.71/62.21
10k Annotations 55.37/61.95 47.17/63.46
20k Annotations 66.83/72.18 48.72/64.92

Table 8: Semi-supervised adaptation performance with
QC4QA.

We also study the influence of human annota-
tions by introducing labeled target examples. We
present the results on Daily Mail and NewsQA in
Table 8. We observe that human annotations im-
prove the adaptation performance in general. With
the increasing amount of annotations, the perfor-
mance gains of QC4QA rise rapidly and then stay
steady. In both cases, introducing limited annota-
tions can significantly improve model performance.
The results indicate that the introduction of even
limited amount of annotations helps QA systems
reach comparable magnitude of supervised results.
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TREC classification examples
Q1: Judges in @placeholder and Oregon this week overturn marriage bans. → DESC
Q2: Spain international Mata close to joining English club @placeholder. → ENTY
Q3: The Surprise will be sold in 120 @placeholder stores, costing 1.75 for four? → ENTY
Q4: School bus drivers union will strike wednesday if it doesn’t reach deal with @placeholder. →
HUM
Q5: Serial killer Israel Keyes may have killed missing @placeholder woman. → HUM
Q6: Which is the latest version of corel draw? → ENTY
Q7: Who did say South Africa did not issue a visa on time? → HUM
Q8: Census bureaus are hiring people from where? → LOC
Q9: How long was the lion’s longest field goal? → NUM
Q10: Musician and satirist Allie Goertz wrote a song about the "The Simpsons" character Milhouse,
who Matt Groening named after who? → HUM
Q11: To whom did the Virgin Mary allegedly appear in 1858 in Lourdes France? → HUM
Q12: When did the Scholastic Magazine of Notre dame begin publishing? → NUM
Q13: The Basilica of the Sacred heart at Notre Dame is beside to which structure? ENTY
Q14: How often is Notre Dame’s the Juggler published? NUM
Q15: Where is the headquarters of the Congregation of the Holy Cross? LOC
Q16: What is the oldest structure at Notre Dame? ENTY
Q17: Which organization declared the First Year of Studies program at Notre Dame "outstanding"?
HUM
Q18: The College of Science began to offer civil engineering courses beginning at what time at
Notre Dame? HUM
Q19: In what year was the College of Engineering at Notre Dame formed? NUM
Q20: Which prize did Frederick Buechner create? ENTY
Q21: What was the amount of children murdered? NUM
Q22: Where was one employee killed? HUM
Q23: What happened in Chad? DESC
Q24: What did one of John II’s replacements do in captivity? ENTY
Q25: Who threw the first touchdown pass of the game? HUM
Q26: Which player scored touchdowns running and receiving? HUM
Q27: What all field goals did Olindo Mare make? ENTY
Q28: Which team had a safety scored on them in the first half? HUM
Q29: What was the difference between the role of blacks and whites in the draft? DESC
Q30: What was burned last: city of Ryazan or suburbs of Moscow? LOC

Table 9: Qualitative examples of classified questions in target datasets.


