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Abstract

Generative question answering (QA) models
generate answers to questions either solely
based on the parameters of the model (the
closed-book setting) or additionally retriev-
ing relevant evidence (the open-book setting).
Generative QA models can answer some rela-
tively complex questions, but the mechanism
through which they do so is still poorly under-
stood. We perform several studies aimed at
better understanding the multi-hop reasoning
capabilities of generative QA models. First,
we decompose multi-hop questions into mul-
tiple corresponding single-hop questions, and
find marked inconsistency in QA models’ an-
swers on these pairs of ostensibly identical
question chains. Second, we find that mod-
els lack zero-shot multi-hop reasoning abil-
ity: when trained only on single-hop questions,
models generalize poorly to multi-hop ques-
tions. Finally, we demonstrate that it is pos-
sible to improve models’ zero-shot multi-hop
reasoning capacity through two methods that
approximate real multi-hop natural language
(NL) questions by training on either concate-
nation of single-hop questions or logical forms
(SPARQL). In sum, these results demonstrate
that multi-hop reasoning does not emerge nat-
urally in generative QA models, but can be en-
couraged by advances in training or modeling
techniques.1

1 Introduction
Empowered by large-scale pre-trained language
models (LMs) (Devlin et al., 2019; Liu et al., 2019;
Lewis et al., 2020a; Raffel et al., 2020), recent
years have seen much progress on generative ques-
tion answering (QA), where LMs generate answers
given questions in an end-to-end fashion. While
most works only demonstrate the performance of
such generative QA models on simple questions
(Joshi et al., 2017; Kwiatkowski et al., 2019), there

∗Haibo Ding is now at Amazon.
1Code is available at https://github.com/jzbjyb/multihop.
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Figure 1: Probing generative closed- and open-book
QA models with both multi-hop (q) and their compo-
nent single-hop questions (q1, q2).

has been some indication that these models can
also answer complex questions that theoretically
require multi-hop reasoning (Xiong et al., 2020),
sometimes to an impressive degree. For exam-
ple, Brown et al. (2020) demonstrate strong perfor-
mance of LMs on multi-hop reasoning tasks such
as DROP (Dua et al., 2019) which requires discrete
reasoning and numeracy. On the other hand, many
argue that LM-based QA models are not actually
performing any reasoning, and rather performing
(sophisticated) pattern matching and data memo-
rization (Marcus and Davis, 2020). Simultaneously,
in the context of extractive QA models that select
answers from the provided context, several works
have demonstrated that they can leverage superfi-
cial signals to return correct answers even when
the context does not contain all the supporting facts
(Chen and Durrett, 2019; Min et al., 2019a)

In this paper, we perform a closer examination of
the multi-hop reasoning capabilities of generative
QA models. To do so, we take multi-hop questions
and their component single-hop questions to di-
rectly query generative QA models, studying their
multi-hop reasoning ability. Specifically, we use
multi-hop questions from the ComplexWebQues-
tions (Talmor and Berant, 2018) and HotpotQA
(Yang et al., 2018; Tang et al., 2021) datasets as

https://github.com/jzbjyb/multihop
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the testbed, and generate decomposed single-hop
questions using heuristics (§ 2.2). We examine
two types of generative QA models, namely closed-
book (Roberts et al., 2020; Khashabi et al., 2020)
and open-book (Guu et al., 2020; Lewis et al.,
2020b; Izacard and Grave, 2021; Xiong et al., 2020)
QA models that either do not or do refer to exter-
nal knowledge when generating the answer respec-
tively. Specifically, we use UnifiedQA (Khashabi
et al., 2020) as a representative closed-book model,
and RAG (Lewis et al., 2020b) as a representative
open-book model (§ 2.1). We first ask:

RQ1 Is the correctness of decomposed single-hop
questions a necessary and sufficient condition
for correctness of multi-hop questions? (§ 3.2)
Are answers to multi-hop and chains of de-
composed questions consistent? (§ 3.3)

RQ2 Do models trained on single-hop questions
demonstrate zero-shot generalization to multi-
hop questions? (§ 4)

We find that generative QA models, even those
close to the state-of-the-art, generally do not
demonstrate robust multi-hop reasoning abilities,
with success on multi-hop questions largely a result
of taking shortcuts rather than true multi-hop rea-
soning. Zero-shot multi-hop reasoning ability does
not emerge naturally from training on single-hop
questions, which motivates our final question:

RQ3 Can we improve models’ zero-shot multi-
hop reasoning capacity by training on approx-
imations of real multi-hop questions? (§ 4)

Motivated by the fact that pre-training on massive
text endows LMs with the ability to identify seman-
tically similar expressions, our first method uses
concatenated decomposed single-hop questions to
approximate real multi-hop questions. Our second
method is inspired by recent work teaching LMs
complex reasoning capabilities through neural ex-
ecution of logical forms, e.g. by training neural
models to execute SQL queries (Liu et al., 2021).
We hypothesize that the ability to perform multi-
hop reasoning can also be potentially learned from
logical forms without reliance on NL questions. To
this end, we propose to use SPARQL, a standard
query language over knowledge bases, as our logi-
cal forms to endow generative QA models with the
ability to perform multi-hop reasoning, and exam-
ine whether learning to execute SPARQL transfers
to the ability to answer NL multi-hop questions.

Both methods lead to significant improvement on
zero-shot multi-hop reasoning performance, and
further improvements are obtained when both are
combined, opening possibilities for future work
(§ 6).

2 Generative Question Answering

In this section, we briefly introduce generative QA
models and multi-hop QA datasets. Then we elab-
orate on how we use multi-hop and decomposed
questions to perform experiments.

2.1 Generative QA Models

There are two main classes of generative QA mod-
els: closed-book and open-book. Closed-book QA
models usually consist of a sequence-to-sequence
model that takes in a question q and calculates the
probability of an answer a based on model parame-
ters θ (Roberts et al., 2020; Khashabi et al., 2020):

P (a|q; θ) =
|a|∏
i=1

P (ai|q,a<i; θ),

Because these models can only refer to model pa-
rameters, any relevant information must be stored
in the parameters (Roberts et al., 2020). Open-
book QA models first retrieve relevant context c
from external resources, then generate answers us-
ing both questions and context (Guu et al., 2020;
Lewis et al., 2020b; Izacard and Grave, 2021):

P (a|c, q; θ) =
|a|∏
i=1

P (ai|c, q,a<i; θ),

We examine both types of models since we hypoth-
esize that the difference in inputs might lead to
different mechanisms of multi-hop reasoning.

Specifically, as our example of a closed-book
model we use the UnifiedQA model of Khashabi
et al. (2020). The UnifiedQA model is based on
the T5 model (Raffel et al., 2020), which is an
encoder-decoder model trained on the Colossal
Clean Crawled Corpus (C4) by a denoising ob-
jective. It further fine-tunes on a variety of QA
datasets by converting different QA formats into a
unified sequence-to-sequence format.

We use the RAG model of Lewis et al. (2020b)
as our example of an open-book QA model, which
consists of a retriever for searching relevant pas-
sages p, and a generator which generates answers
a given both p and q. The retriever is based on the
dense passage retrieval model (DPR) (Karpukhin
et al., 2020), and the generator is based on BART
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Type Questions (hop1, hop2, and multi-hop) Answers

Composition
Return the country where Limonese Creole is spoken. Costa Rica
Which continent is Costa Rica located? North America
On which continent is Limonese Creole spoken? North America

Conjunction
What team is Reggie Bush on 2011? Miami Dolphins, New Orleans Saints
Which one of the following is the team won the super bowl XLIV championship: Miami Dolphins, New Orleans Saints? New Orleans Saints
What team that won the super bowl XLIV championship was Reggie Bush in 2011? New Orleans Saints

Superlative
What countries does the Niger River flow through? Benin, Guinea, Mali, Niger Nigeria
Which one of the following country calling code is smallest: Benin, Guinea, Mali, Niger, Nigeria? Mali
What country with the smallest calling code does the Niger River flow through? Mali

Comparative
What were Hitler’s parents names? Alois Hitler, Klara Hitler
Which one of the following person’s date of death is after 1903-01-03: Alois Hitler, Klara Hitler? Klara Hitler
Which of Hitler’s parents died after 3 January 1903? Klara Hitler

Table 1: Each multi-hop question q from ComplexWebQuestions is decomposed into two single-hop questions q1
and q2. Underlined entities in the second single-hop questions are actually the answer to the first hop.

(Lewis et al., 2020a), which is also an encoder-
decoder model that encodes both context and ques-
tion, and generates answers autoregressively.

2.2 Multi-hop Questions and Decompositions
To understand multi-hop reasoning in generative
QA models, we propose to query models using
both multi-hop questions and their decompositions
into multiple single-hop questions, and perform
analysis based on the predictions.

To this end, we choose the ComplexWebQues-
tions dataset (Talmor and Berant, 2018) as our
major testbed, as it contains multi-hop questions
based on simple questions from the WebQuestion-
sSP dataset (Yih et al., 2016), and we can leverage
simple heuristics to obtain decomposed single-hop
questions and corresponding answers. Another ad-
vantage of ComplexWebQuestions is that it con-
tains four types of questions: composition, con-
junction, superlative, and comparative. This allows
us to perform fine-grained analysis over these cate-
gories. Specifically, we follow heuristics in Talmor
and Berant (2018) to generate decompositions. For
the composition type, they use questions from We-
bQuestionsSP as the second hop, and replace an
entity in it with a relational phrase to generate multi-
hop questions. We revert this process to get the
first-hop question. For the other three types, they
use questions from WebQuestionsSP with multiple
answers as the first hop, and add additional condi-
tions to form the multi-hop questions. We extract
those conditions and use the following template
to generate the second hop question: “Which one
of the following [condition]: [candidate answers]”.
Tab. 1 includes examples of multi-hop questions
and their decompositions of four types.

We also use another small dataset from Tang
et al. (2021) to test the generality of models, where
a subset of multi-hop questions from HotpotQA
(Yang et al., 2018) are manually annotated with

decompositions. This dataset only contains a sin-
gle type of question, which is composition. Com-
plexWebQuestions has 27,639/3,519 questions in
the training/development set, and HotpotQA has
1,000 questions in the development set.2

2.3 Answer Generation and Evaluation

We use qt, t ∈ {1, ..., T} to denote the t-th decom-
posed single-hop question for a multi-hop question
q with T hops. Correspondingly, we use at to de-
note answers and ct to denote retrieved context for
the single-hop question qt. Since the last single-
hop question always has the same answer as the cor-
responding multi-hop question, aT = a. We use
ât/â to denote the predictions from single-/multi-
hop questions generated with greedy decoding:

â
ât

= argmax
y

P
(
y
∣∣∣[c, ]q
[ct, ]qt

; θ
)
.

We query models using all decomposed questions
qt and multi-hop questions q which are concate-
nated with the corresponding context (ct or c) for
open-book settings to get predicted answers. All
questions from ComplexWebQuestions and Hot-
potQA have two hops (i.e., T = 2), thus in the
following sections we always use T = 2.

Pseudo-gold context for oracle-book models
Previous work clearly demonstrates that a better
retrieval component usually implies higher open-
book QA performance, as it results in more re-
trieved contexts with answers (Chen et al., 2017;
Lee et al., 2019; Karpukhin et al., 2020). There-
fore, we ablate out the influence of the retrieval

2Since the test sets of both datasets are hidden, we use
development sets for evaluation purposes. Break (Wolfson
et al., 2020) is another testbed with multi-hop questions and
manually decomposed questions. However, the decomposed
questions are not annotated with answers, making it less ap-
propriate for our study.
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component and focus on understanding the mecha-
nism through which generative QA models parse
multi-hop questions and generate answers.

We try to provide context that contains answers
to the QA model so failure of answering the ques-
tion can be mainly attributed to the generator in-
stead of the retriever. Since gold context is not
annotated in the datasets, we follow Karpukhin
et al. (2020) to obtain pseudo-gold context. Specifi-
cally, we use the DPR model to retrieve the top-100
passages to each single-hop question qt, and find
the first one containing the answer at, which is de-
noted as the pseudo-gold passage p3

t . Only using
pseudo-gold passages as the context might make
the task too easy because no incorrect contexts are
presented. Therefore, we concatenate the pseudo-
gold passage with a negative passage p7

t which is
the first retrieved passage not containing the an-
swers: ct = [p3

t ,p
7
t ].

3 For multi-hop questions q,
we concatenate all context of the decomposed ques-
tions: c = [c1, ..., cT ]. We fix the context for all of
our experiments, and only use the generator of the
RAG model. For clarity, instead of open-book we
use oracle-book to refer to these QA models in the
following sections.

Multi-answer generation Since some questions
involve multiple answers, as shown in Tab. 1, we
fine-tune generative QA models to generate multi-
ple answers separated by a special symbol “#”.

Evaluation metrics We follow previous works
(Roberts et al., 2020; Khashabi et al., 2020; Lewis
et al., 2020b) to use exact match (EM) as our major
evaluation metric, which measures the percentage
of predictions that match the ground truth answers
exactly (Rajpurkar et al., 2016; Yang et al., 2018).
Since we allow multi-answer generation, we split
the prediction by the special symbol “#” and match
each entry against all the answers. The prediction
is judged as correct if all answers are included and
no extra entry is predicted.

3 Probing Multi-hop Questions and
Decompositions

To answer the first research question, we probe
generative QA models on both multi-hop questions
and their decompositions, examining the similar-
ities and differences in models’ behavior thereon.
We hypothesize that if models answer multi-hop
questions in a robust way, they should be able

3The concatenation order is randomized to avoid leaking
superficial signals to QA models.

Model Type Hop1 Hop2 Multi-hop

U
ni

fie
dQ

A overall 32.91 49.13 33.25

composition 47.49 38.67 33.40
conjunction 22.49 63.30 38.01
superlative 16.23 48.69 21.99
comparative 15.53 25.57 8.68

R
A

G

overall 58.72 65.11 60.32

composition 76.23 61.24 60.51
conjunction 25.12 78.82 66.50
superlative 13.33 76.67 53.33
comparative 17.65 35.29 26.47

Table 2: EM of two models on ComplexWebQuestions
overall or each type separately.

Model Type Hop1 Hop2 Multi-hop

UnifiedQA composition 1.70 1.30 1.20
RAG composition 31.55 21.66 6.15

Table 3: EM of two models on HotpotQA.

to perform multi-hop reasoning by following the
chain of decompositions internally, which makes
being able to answer decomposed questions a nec-
essary and/or sufficient condition of being able to
answer multi-hop questions. Motivated by this, we
choose two probing angles to examine this question.
The first angle evaluates the prediction correctness
on decomposed and multi-hop questions, and in-
vestigates whether there is a correlation between
them. The second angle generates predictions by
answering multi-hop questions and the correspond-
ing chain of decomposed single-hop questions in a
sequence, and examining whether predictions are
consistent.

3.1 Experimental Settings
We fine-tune the UnifiedQA and RAG model us-
ing both single- and multi-hop QA pairs from the
training set of the ComplexWebQuestions dataset.4

Then we generate predictions for both single- and
multi-hop questions from the test set of the Com-
plexWebQuestions/HotpotQA datasets, and show
their overall results in Tab. 2 and Tab. 3 respectively.
We measure the EM metric on first-hop q1 (Hop1),
second-hop q2 (Hop2), and multi-hop questions q
(Multi-hop) separately. We also group examples
by four types to investigate whether different types
of reasoning exhibit different regularities.

To examine the correlation between success on
decomposed and multi-hop questions, we bucket

4We follow the default hyperparameters of UnifiedQA for
100K steps and a batch size of 16 on a single TPU, and the
default hyperparameters of RAG for 10 epochs with a batch
size of 4 on a single V100 GPU.
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Figure 2: Correctness confusion matrices of two models on ComplexWebQuestions. Two binary codes on the
X-axis indicates the correctness of the first/second single-hop question s1s2 = {00, 01, 10, 11}. In the table, the
first/second row indicates the percentage (%) of examples of which the multi-hop question is correctly/incorrectly
answered P (s = {1, 0}, s1s2); the last row indicates the conditional success rate P (s = 1|s1s2).

examples by their correctness. We use s1, s2 and s
to denote correctness of predictions generated from
the first/second single-hop and multi-hop questions,
which is either 0 (incorrect) or 1 (correct). There
are 8 = 23 configurations of the correctness of
a triple. We present the results using the correct-
ness confusion matrices in Fig. 2, where exam-
ples are bucketed into 4 bins by correctness on
single-hop questions (i.e., s1s2 = {00, 01, 10, 11})
and the inner blue/orange bars indicate the per-
centage of the corresponding configurations (i.e.,
P (s = {1, 0}, s1s2 = {00, 01, 10, 11})). To bet-
ter reveal the correlation between decomposed
and multi-hop questions, we compute the condi-
tional success rate on multi-hop questions P (s =
1|s1s2) = P (s=1,s1s2)

P (s=1,s1s2)+P (s=0,s1s2)
in the last row

of the table, which indicates how likely multi-hop
questions are correctly answered given the correct-
ness on single-hop decompositions.5

To examine the prediction consistency between
multi-hop questions and chains of decompositions,
we replace entities in the second single-hop ques-
tions q2 which correspond to answers to the first
hop with a special placeholder “#1”, and denoted
it as q∗2 . When answering a chain of decomposed
questions, predictions from the first hop â1 are
used to replace the placeholder in the second hop:
q∗2(â1), from which we generate the final answer
denoted as â∗2. Models fine-tuned in the normal
setting only generate final answers from multi-hop
questions, but not intermediate answers (i.e., an-
swers to the hop1 question). To examine whether
models can predict intermediate answers from the
multi-hop question, and measure consistency on
both, we append two prompts to multi-hop ques-
tions to instruct models to generate two predictions:

5For robust models, P (s = 1|s1s2 = 11) should be close
to 1, P (s = 1|s1s2 = {00, 01, 10}) should be close to 0.

â∗
1

â
= argmax

y
P
(
y
∣∣∣[c, ]q, “Intermediate answer:”

“Final answer:”

)
â1

â∗
2
= argmax

y
P
(
y
∣∣∣[c1, ]q1

[c2, ]q
∗
2(â1)

)
,

where â∗1 denotes intermediate predictions. Pre-
dictions from multi-hop questions (â∗1/â) are com-
pared with predictions from decomposed questions
in sequence (â1/â∗2) respectively to measure their
consistency.

3.2 Correlation of Correctness

Multi-hop performance is unexpectedly high
Given the hypothesis that being able to answer de-
composed questions is a prerequisite of being able
to answer multi-hop questions, we expect a priori
that the performance on multi-hop questions will
be much lower than the performance on all single-
hop questions due to error propagation. However,
what we observe on ComplexWebQuestions is the
opposite: overall, the multi-hop performance is
slightly higher than the hop1 performance, and the
gap between hop2 and multi-hop performance is
much smaller than may be expected, especially for
the oracle-book RAG model. This indicates that
generative QA models somehow manage to take
shortcuts when answering multi-hop questions, i.e.,
being able to answer the multi-hop question with-
out correctly answering its component questions.

Success on decompositions does not always im-
ply success on multi-hop questions Looking at
the overall percentage, we can see that indeed the
success rate on multi-hop questions is highest if
both decomposed questions are correctly answered,
i.e., P (s = 1|s1s2 = 11) = 85%/88% for the Uni-
fiedQA/RAG model respectively, indicating that
generative QA models are more likely to answer
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Type Questions (hop1, hop2, multi-hop) Answers Predictions
C

om
po

. Return the country where Cerveceria Modelo Corona light beer is made. Mexico Mexico
Who is Mexico’s president right now 2011? Felipe Calderón Felipe Calderón
Who was the president in 2011 in the country where Cerveceria Modelo Corona light beer is made? Felipe Calderón Juan Manuel Santos

C
on

j. What year did Detroit Pistons win the championship? 2004, 1990, 1989 NBA Finals 2004, 1990, 1989 NBA Finals
Which one of the following sports championship results were 4-1: 2004, 1990, 1989 NBA Finals? 2004, 1990 NBA Finals 2004, 1990 NBA Finals
In what year did the Detroit Pistons win the sports championship where the results were 4-1? 2004, 1990 NBA Finals 2002 NBA Finals

C
om

po
. Return the team won the 2006 NFC championship Seattle Seahawks Indianapolis Colts

Where do the Seattle Seahawks play? CenturyLink Field CenturyLink Field
Which Stadium does the team that claimed the 2006 NFC championship play in? CenturyLink Field CenturyLink Field

C
om

pa
. Who is the leader of France 2012? Nicolas Sarkozy, François Hollande Nicolas sarkozy

Which one of the following started tenure after 1979: Nicolas Sarkozy, François Hollande? Nicolas Sarkozy Nicolas Sarkozy
Who was the leader of France from 1979 until 2012? Nicolas Sarkozy Nicolas Sarkozy

Table 4: Cases of predictions generated from single/multi-hop questions of different types. Correct/Incorrect
predictions are indicated in blue/orange.

multi-hop questions if they can answer all decom-
posed single-hop questions. However, there are
still 15%/12% examples where correctness on both
decomposed questions does not imply correctness
on multi-hop questions, as shown by the first two
examples in Tab. 4. The predictions generated from
the multi-hop questions are usually of the correct
type, but they diverge from the predictions gener-
ated from decomposed questions, indicating that
models do not necessarily follow the decomposed
components when answering multi-hop questions.

Multi-hop success is most correlated with suc-
cess on the last hop Even when models fail on
decomposed questions, they can still answer some
percentage of multi-hop questions correctly (4-
46%/15-75%) depending on which of the decom-
posed hops fails. Success on hop2 questions is
more correlated with success on multi-hop ques-
tions than hop1 questions (i.e., P (s = 1|s1s2 =
01) > P (s = 1|s1s2 = 10)), especially for the
oracle-book RAG model. When the model is only
able to answer the second single-hop questions,
there is still 46%/75% chance that the model can
answer the multi-hop questions in closed/oracle-
book settings respectively, indicating that genera-
tive QA models manage to take shortcuts instead of
performing real reasoning. The shortcuts could be
some superficial signals in the context or parame-
ters that generative QA models can take advantage
of to bypass the requirement of the first hop, as
shown by the third example in Tab. 4. Or for multi-
hop questions with multiple intermediate answers,
generative QA models might not need to know all
of them in order to answer the multi-hop questions,
as shown by the fourth example in Tab. 4.

Other observations Overall, the oracle-book
RAG model performs significantly better than the
closed-book UnifiedQA model on both datasets,
indicating that knowledge stored in parametric gen-

Type EM Consistency
Decompose Multi-hop
Hop1 Hop2 Hop1 Hop2 Hop1 Hop2

U
ni

fie
dQ

A overall 32.48 32.23 30.78 31.40 50.81 36.12

compo. 51.87 33.97 48.51 32.13 58.92 43.24
conj. 17.73 34.68 17.54 34.68 44.46 33.51
super. 13.09 24.08 11.52 23.04 38.74 26.70
compa. 13.24 9.59 12.79 10.50 47.49 11.42

R
A

G

overall 56.51 62.65 61.92 58.11 79.61 65.48

compo. 73.86 60.88 76.78 54.48 86.47 67.46
conj. 23.65 74.38 30.05 72.41 67.98 68.47
super. 13.33 60.00 33.33 56.67 60.00 43.33
compa. 11.76 23.53 38.24 32.35 55.88 35.29

Table 5: EM of predictions from answering chains
of decomposed questions and multi-hop questions on
ComplexWebQuestions and their consistency (%).

erative QA models is still limited and it is beneficial
to provide external evidence. Hop2 performance
is significantly higher than the hop1 performance
on conjunction, superlative, and comparative ques-
tions, which is because hop1 questions usually have
more answers than hop2 questions as shown in
Tab. 1, thus being harder.6 Both models generalize
poorly to the unseen HotpotQA dataset (Tab. 3),
indicating that the learned multi-hop reasoning ca-
pability cannot generalize across datasets.

3.3 Prediction Consistency

Predictions are not consistent between multi-
hop questions and chains of decompositions
As shown in Tab. 5, consistency is relatively low
for both models and on both hop1 and hop2, in-
dicating that generative QA models answer multi-
hop questions not necessarily in the same way as
they answer decomposed questions in sequence.
The consistency of the UnifiedQA model is lower
than the consistency of the RAG model, which is
because knowledge is limited in closed-book QA

6Note that the difference in the difficulty of hop1 and hop2
questions does not invalidate our previous conclusion about
correctness correlation since we use conditional success rate.
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SELECT ?x WHERE {

?c music.featured_artist.recordings Party Ain't Over . 

?c people.person.places_lived ?y .

?y people.place_lived.location ?x .

?x location.location.containedby Georgia .}

SELECT ?x WHERE {

?x music.featured_artist.recordings Party Ain't Over .}

SELECT ?x WHERE {

Usher people.person.places_lived ?y . 

?y people.place_lived.location ?x . 

?x location.location.containedby Georgia .}

Return the artist

who recorded

Party Ain't Over.

Where in Georgia

does Usher live?

Which part of 

Georgia does the

artist that recorded 

Party Ain’t Over

live?

NL Questions SPARQL Queries

Figure 3: NL questions and corresponding SPARQL
queries. Mentions of the same entity are in the same
color.

models, and navigating in parameters implicitly is
probably harder than searching chains of evidence
in context explicitly. Consistency on the first hop
is usually higher than consistency on the second
hop, which is because inconsistent intermediate
predictions (â1) will propagate to the second hop,
leading to accumulated inconsistency.

4 Improving Zero-shot Multi-hop
Reasoning Capability

In this section, we first examine LMs’ zero-shot
capacity for multi-hop reasoning when they are not
trained on multi-hop NL questions. Compositional
generalization ability (Lake and Baroni, 2018) is
required in this case to generalize from single-hop
to multi-hop questions. Unsurprisingly, generative
QA models perform poorly in this setting, with
almost half performance degradation. Since multi-
hop NL questions are expensive to obtain, one nat-
ural question is “is it possible to improve the multi-
hop reasoning ability using only single-hop NL
questions, or even without any NL questions?”

We design two methods to achieve this goal. Mo-
tivated by the fact that UnifiedQA and RAG models
are initialized with language models pre-trained on
massive text corpora, which endows them with the
ability to identify semantically similar expressions,
our first method uses concatenated decomposed
NL questions (i.e., [q1, q∗2]) to approximate the real
NL multi-hop question q, and fine-tunes models on
them.

The second is inspired by recent progress in
teaching LMs complex reasoning capabilities by
executing logical forms neurally. For example, Liu
et al. (2021) formulate the execution of SQL over
tables as a seq2seq task where the input is a log-
ical form string associated with a table and the
output is answers (Liu et al., 2021). We hypothe-
size that in our multi-hop QA setting, the ability

to perform multi-hop reasoning can also be poten-
tially learned from logical forms without reliance
on any NL question. To this end, we propose to use
SPARQL, which is a standard query language over
knowledge bases, as our logical forms. We then
examine whether the ability to answer questions
expressed in these SPARQL queries is transferable
to NL multi-hop questions. The advantage of using
SPARQL for training is that SPARQL queries can
be easier and cheaper to obtain or generate than
NL. For example we can use existing query logs,7

or use manual SPARQL queries as templates and
replace entities/relation to generate more queries.8

Our observation sheds light on potential improve-
ment on multi-hop reasoning using many SPARQL
query-answer pairs.

4.1 Experimental Settings
Each NL multi-hop question in the ComplexWe-
bQuestions dataset is associated with a SPARQL
query based on the Freebase schema. We follow
similar heuristics described in § 2.2 to generate
SPARQL queries for the first- and second-hop NL
questions. Each single- and multi-hop SPARQL
query is used as a pseudo input question after
replacing entity identifiers with their names, as
shown in Fig. 3. In order to answer the above re-
search questions, we design the following settings:

• No fine-tuning (Default): This setting uses
the original model without fine-tuning.

• Single- and Multi-hop NL (SM-NL): The nor-
mal setting discussed in § 3.2 where we train
the model using both single- and multi-hop
NL questions. This serves as the upper bound
of the zero-shot performance.

• Single-hop NL (S-NL): Only use decom-
posed single-hop NL questions for training.

• Single- and Multi-hop SPARQL (SM-
SPARQL): Only use SPARQL queries.

• S-NL with Concatenation (S-NL+Concat):
Use concatenated decomposed NL questions
in addition to S-NL.

• SM-NL+Concat+SM-SPARQL (Combo.):
Combine the previous two settings to lever-
age both NL and SPARQL for training.

4.2 Experimental Results
Tab. 6 includes results for all the above experi-
mental settings. Compared to the oracle multi-hop
performance, performance of only using single-
hop NL questions (S-NL) drops by almost half on

7https://bit.ly/3wRRIPZ
8https://bit.ly/3ciOFqy

https://bit.ly/3wRRIPZ
https://bit.ly/3ciOFqy
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Setting Supervision Hop1 Hop2 Multi-
Single Multi hop

U
ni

fie
dQ

A

Default 0.71 15.37 6.56
S-NL 33.28 49.33 17.02

+Concat 31.91 48.25 25.69
SM-SPARQL � � 19.04 34.67 24.84
Combo. � � 32.76 48.51 27.14
SM-NL 32.91 49.13 33.25

R
A

G

Default 7.99 12.65 7.62
S-NL 59.83 68.55 34.03

+Concat 61.06 64.13 53.93
SM-SPARQL � � 49.51 58.48 51.60
Combo. � � 57.37 62.53 53.07
SM-NL 58.72 65.11 60.32

Table 6: EM on NL questions in zero-shot multi-hop
evaluation, where , , � denotes NL, concatenation,
and SPARQL respectively. Oracle performance using
multi-hop NL questions has a gray background. Best
zero-shot multi-hop performance is in bold.

both UnifiedQA (33.25 ) 17.02) and RAG models
(60.32 ) 34.03), indicating that without learning
on multi-hop questions, compositional generaliza-
tion does not naturally emerge in generative QA.
Single-hop concatenation is a good approxima-
tion of multi-hop questions Surprisingly, by
simply concatenating single-hop NL questions and
fine-tuning on them, multi-hop performance in-
creases by a large margin (17.02 ) 25.69/34.03 )

53.93), indicating that simple concatenation is an
effective approximation for multi-hop questions.
We hypothesize that LMs pre-trained on noisy text
have the paraphrasing ability to generalize from
concatenated simple sentences to complex sen-
tences at least to some degree.
Models generalize from SPARQL to NL ques-
tions SPARQL queries explicitly specify compo-
sitional structure using pre-defined grammar and
canonicalized entities/relations, while NL ques-
tions express this process in a more flexible way.
Despite this gap, models trained solely on SPARQL
queries are able to generalize to NL questions at test
time on both single- and multi-hop questions, with
a performance drop of 7-15 on both single- and
multi-hop questions compared to (SM-SPARQL
vs. SM-NL), which is far better than no fine-tuning
(Default). This indicates that when answering
NL questions, the ability learned from mapping
SPARQL queries to answers can be reused by the
model, similar to the observation on table-based
QA (Liu et al., 2021). As demonstrated in other
tasks such as table-based QA (Jiang et al., 2022)
and text-to-SQL (Wu et al., 2021), converting the
SPARQL queries into NL questions and training

models on them can potentially mitigate the gap
and further improve the performance, which we
plan to explore in future works.

Combining concatenation and SPARQL im-
proves further In this setting, we attempt to
combine the merits of using concatenated single-
hop NL questions, which are more natural, and
SPARQL queries, which are more explicit with
respect to the reasoning process. Compared to
training on two types of supervision separately (S-
NL+Concat and SM-SPARQL), training on both
jointly (Combo.) improves the multi-hop perfor-
mance of UnifiedQA (25.69 )27.14) while slightly
hurting the performance of RAG (53.93 )53.07).
We hypothesize that closed-book models are less
constrained compared to oracle-book models due
to the existence of the additional context, therefore
closed-book models can benefit from the stronger
supervision from a combination of two methods.
Note that there is still a large gap between fine-
tuning on multi-hop NL questions (SM-NL) and
zero-shot settings, which indicates the potential for
better approximations or modeling techniques.

5 Related Work

Multi-hop QA models Most multi-hop QA mod-
els proposed so far are pipeline methods that gen-
erate sub-questions to retrieve evidence iteratively
(Qi et al., 2019; Ding et al., 2019; Qiu et al., 2019;
Das et al., 2019; Asai et al., 2020; Min et al., 2019b;
Perez et al., 2020; Xiong et al., 2020). The final an-
swers are generated either by reading each retrieved
evidence independently and recomposing the gen-
erated intermediate answers (Min et al., 2019b;
Perez et al., 2020), or by taking all evidence as
input at once (Qi et al., 2019; Das et al., 2019; Asai
et al., 2020). Instead, we focus on understanding
the multi-hop reasoning capabilities of end-to-end
generative QA models in this paper.

Analysis of multi-hop reasoning Several works
studying multi-hop reasoning in extractive QA
models found that they can leverage superficial sig-
nals to extract answers even when the context does
not contain all supporting facts (Chen and Durrett,
2019; Min et al., 2019a; Trivedi et al., 2020; Jiang
and Bansal, 2019; Niu et al., 2020; Lee et al., 2021).
While they examine from the perspective of dataset
bias, we directly query models with both multi-hop
and component single-hop questions, using both
closed- and open-book generative QA models. An-
other work that studied multi-hop QA models using
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both multi-hop and single-hop questions is Tang
et al. (2021). While they use pipeline extractive
QA models, we focus on end-to-end generative QA
models and investigate correctness, consistency,
and compositional generalization ability.

6 Conclusion
In this paper, we examined the multi-hop reason-
ing capabilities of generative QA models, finding
that overall models take shortcuts when answering
multi-hop questions, not demonstrating convinc-
ing multi-hop reasoning capability. When trained
only on single-hop questions, models generalize
poorly to multi-hop questions, while approxima-
tion using the concatenation of single-hop ques-
tions and SPARQL queries improves the multi-hop
performance significantly. Further directions in-
clude better approximations of multi-hop questions
and advanced modeling techniques that encourage
compositional ability.
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