
Proceedings of the 29th International Conference on Computational Linguistics, pages 1732–1742
October 12–17, 2022.

1732

Unsupervised Question Answering via Answer Diversifying
Yuxiang Nie123, Heyan Huang123∗, Zewen Chi123, Xian-Ling Mao123

1School of Computer Science and Technology, Beijing Institute of Technology,
Beijing, China

2Beijing Engineering Research Center of High Volume Language Information Processing
and Cloud Computing Applications, Beijing, China

3Beijing Institute of Technology Southeast Academy of Information Technology,
Fujian, China

{nieyx,hhy63,czw,maoxl}@bit.edu.cn

Abstract

Unsupervised question answering is an attrac-
tive task due to its independence on labeled
data. Previous works usually make use of
heuristic rules as well as pre-trained models
to construct data and train QA models. How-
ever, most of these works regard named entity
(NE) as the only answer type, which ignores
the high diversity of answers in the real world.
To tackle this problem, we propose a novel
unsupervised method by diversifying answers,
named DiverseQA. Specifically, the proposed
method is composed of three modules: data
construction, data augmentation and denoising
filter. Firstly, the data construction module ex-
tends the extracted named entity into a longer
sentence constituent as the new answer span to
construct a QA dataset with diverse answers.
Secondly, the data augmentation module adopts
an answer-type dependent data augmentation
process via adversarial training in the embed-
ding level. Thirdly, the denoising filter module
is designed to alleviate the noise in the con-
structed data. Extensive experiments show that
the proposed method outperforms previous un-
supervised models on five benchmark datasets,
including SQuADv1.1, NewsQA, TriviaQA,
BioASQ, and DuoRC. Besides, the proposed
method shows strong performance in the few-
shot learning setting.1

1 Introduction

Extractive question answering (extractive QA)
aims to provide answer spans extracted from the
context to answer questions. It can improve the
interaction between humans and machines in appli-
cations such as search engines and dialog systems.

Existing extractive QA methods can be divided
into two categories: supervised QA and unsuper-
vised QA. Traditionally, for supervised QA (Seo
et al., 2016), human-labeled context, questions and

∗Corresponding author
1We have released our codes and data in https://

github.com/JerrryNie/DiverseQA.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

Named
Entity

Noun
Phrase

Adjective
Phrase

Verb
Phrase

Clause Others

Answer Type Distribution

SQuADv1.1 NewsQA

Figure 1: The answer type distributions of SQuADv1.1
and NewsQA, where we notice that named entities are
just a fraction of each dataset.

answers are given to train a QA model. Since the
construction cost of labeled data is too high for su-
pervised QA, recently, researchers pay more atten-
tion to the unsupervised setting, where QA pairs are
unavailable. For example, Lewis et al. (2019) pro-
pose an unsupervised machine translation model
to generate QA pairs. Li et al. (2020), Hong et al.
(2020) and Lyu et al. (2021) try to alleviate the over-
lap between the context and the generated question.
However, most existing works regard named enti-
ties as the only answer type, which ignores the high
diversity of answers in the real world. For instance,
as shown in Figure 1, in SQuADv1.1 (Rajpurkar
et al., 2016) and NewsQA (Trischler et al., 2017),
the answer type of named entities only account for
52.4% and 41.1% respectively.

To solve the problem, an intuitive way is to ex-
tract each type of answer spans independently in
the raw text. Yet, it leads to two critical problems.
Firstly, it’s hard to determine the proportion of
each answer type in the synthetic dataset. Sec-
ondly, extracting answers without any guidance
could probably generate trivial and noisy question-
answer pairs. To tackle the problem above, we pro-
pose DiverseQA, a novel unsupervised QA method.
Specifically, the proposed method consists of three
modules: data construction, data augmentation and
denoising filter. Firstly, the data construction mod-

https://github.com/JerrryNie/DiverseQA
https://github.com/JerrryNie/DiverseQA

1733

ule employs a simple answer-extending rule to con-
struct a dataset with diverse answers. As shown
in Figure 2, a named entity (NE) is extracted and
extended into a longer answer span, which should
be a constituent of the sentence (e.g. noun phrase,
verb phrase). In this way, the proportion of each
type of answers can be obtained entirely from the
original text. Besides, NE-based extension largely
guarantees that extracted answers are meaningful.
Secondly, an answer-type dependent data augmen-
tation module is proposed. Concretely, an adjusting
vector generator is designed to produce answer-
type enhanced QA pairs in the embedding level.
Then, a discriminator classifies the embeddings
into the corresponding answer type while minimiz-
ing the KL divergence between the distribution and
its prior to fool the discriminator in an adversar-
ial way. Thirdly, the denoising filter is applied to
alleviate the noise in the synthetic QA pairs.

Extensive experiments on six benchmarks, in-
cluding SQuADv1.1 (Rajpurkar et al., 2016),
TriviaQA (Joshi et al., 2017), NaturalQuestions
(Kwiatkowski et al., 2019), NewsQA (Trischler
et al., 2017), BioASQ (Tsatsaronis et al., 2015) and
DuoRC (Saha et al., 2018) show that DiverseQA
outperforms previous unsupervised methods on
five datasets and obtains comparable results on one
dataset among unsupervised QA models. Further
analysis shows that DiverseQA can largely improve
the question-answering ability of the model on di-
verse answer types. In addition, our method shows
strong performance in the few-shot learning setting.

The contributions of our method are as follows:

• We propose DiverseQA, a novel method to
improve an unsupervised QA model to handle
answers beyond named entities.

• Our method outperforms previous unsuper-
vised works on five benchmarks and reaches
the comparable result on a benchmark.

• Further analysis shows that the drift of answer
length distribution and the quality of extracted
answers are important to the performance of
the model.

2 Related Work

Data Augmentation. Data augmentation meth-
ods can be regarded as regularizers to make the
model robust and reduce dependence on the train-
ing data. In computer vision domains (Krizhevsky
et al., 2012), geometric transformation and color
space transformation are effective. In natural lan-

Figure 2: An example of our data constructing module.
We extract the named entity (NE) in the Raw Sentence
and extend it into a longer sentence constituent until
meeting the stop extending condition. The final ex-
tended answer span is a VP in this example, which is
used in cloze translation for question generation.

guage processing, word removing, synonym replac-
ing and back-translation can enlarge the diversity
of examples (Xie et al., 2020). Lee et al. (2021)
proposes an embedding-level data augmentation
method to improve the performance of QA on out-
of-distribution data. This work relies on supervised
(low noise) training instances, while in the unsuper-
vised (high noise) scenario, embedding-level data
augmentation methods have not been explored yet.

Extractive Question Answering. Extractive
question answering (extractive QA) aims to out-
put an answer span given the context (containing
the answer) and the question. It has gained much
progress with the help of large labeled datasets such
as SQuAD, NewsQA, and TriviaQA. To better han-
dle these datasets, strong extractive QA models
are proposed, including BiDAF (Seo et al., 2016),
BERT (Devlin et al., 2018) and RoBERTa (Liu
et al., 2019). However, because they largely de-
pend on human-annotated data, the lack of labeled
data for some specific domains constrains the ca-
pacity of the supervised extractive QA model.

Unsupervised Question Answering. Unsuper-
vised question answering (unsupervised QA) be-
comes attractive among researchers recently (Lewis
et al., 2019). Like supervised extractive QA, given
context and question, the model needs to extract a
text span from the context to answer the question.
The difference is that in the unsupervised setting,
models need to learn to answer the question without
any human-labeled ⟨context, question, answer⟩

1734

triples, which is a more challenging task than the
supervised counterpart. Lewis et al. (2019) extracts
named entity from the context, and then trains an
unsupervised neural machine translation model to
convert the cloze question into a natural question.
Li et al. (2020) makes use of cited documents and
a refine phase to alleviate serious question-context
overlapping and improve answer diversity. Hong
et al. (2020) uses paraphrasing and trimming to
remove unanswerable questions as well as allevi-
ate the context-question similarity problem. Lyu
et al. (2021) takes advantage of a supervised sum-
marization dataset to tackle the context-question
overlapping problem. However, most of the exist-
ing works regard the named entity (NE) as the only
answer type, while other types (e.g. noun phrases,
adjective phrases, verb phrases, sub-clauses) are
nearly ignored. Although in Lewis et al. (2019),
the inclusion of noun phrases (NPs) was discussed,
the reported poor performance eventually led the
author to use the NE-based synthetic QA pairs. In
Li et al. (2020), even though generating more an-
swers is considered, most of the model-generated
answers have strong relationships with the named
entity and we will discuss it later in Section 4.3.4.

3 Method

To explore answer types beyond named entities,
we propose an unsupervised method DiverseQA,
which can be divided into three modules, data aug-
mentation, data construction and denoising filter.
Firstly, a simple but effective span extending rule
is applied in the data construction module to do
answer extraction and natural question generation
to construct a synthetic QA dataset with diverse
answers. Secondly, an answer-type dependent data
augmentation module via adversarial training is
designed to produce high-quality augmented QA
pairs. Thirdly, a denoising filter is proposed to al-
leviate high noise in the dataset. In the next few
subsections, we will introduce the three modules
in detail.

3.1 Synthetic QA Data Construction via Span
Extension

In this section, we illustrate our QA data construct-
ing module, which can be divided into two steps.
Firstly, we extract answers in the text through span
extension. Secondly, we take advantage of pseudo-
NER label to generate questions.

3.1.1 Answer Generation via Span Extension
As shown in Figure 2, given a Raw Sentence, first
of all, we extract the named entity span Hamp-
ton County. Then, we extract all the constituents
containing Hampton County. We extend the span
into a longer constituent iteratively. When the next
extending span makes up more than ω% of the
Raw sentence, we stop extending and regard the
extended span as the final answer span. In this
example, the NE is firstly extended into a longer
NP. Again, the NP is extended into the VP. As the
VP ‘is located in the southern half of Hampton
County’ is the longest constituent while making up
less than ω% (called Span Extending Threshold)
of the Raw Sentence, it becomes the answer span
of the QA pair. The intuition is that even if many
constituents are trivial, the constituent containing
the named entity and making up a proper portion
of the Raw Sentence might be meaningful to create
a high-quality QA pair.

3.1.2 Question Generation with Pseudo-NER
Label

To construct a NE-based QA pair, the NER label
of the answer span is mapped to a question word
(Lewis et al., 2019) for generating the natural ques-
tion. However, it cannot be directly applied to
other answer types. To tackle the problem, we re-
gard the original NER label of the named entity
as the pseudo-NER label of the extended answer
span. After that, we replace the answer span with
the high-level NER mask token (Lewis et al., 2019).
The intuition is that the semantic information of the
extracted named entity can be probably consistent
with the extended constituent.

Followed Lewis et al. (2019) and Li et al. (2020),
we do the mask token mapping and cloze to natural
question conversion.

3.2 Answer-type Dependent Data
Augmentation

We firstly introduce the background of extractive
QA, and then illustrate how we design our answer-
type dependent data augmentation modules.

3.2.1 Backgrounds of Extractive Question
Answering

Given question q = (q1, q2, ..., qm) and context
c = (c1, c2, ..., cn), extractive QA models aim to
predict the start and end token of the answer span
a = (a1, a2) from the context. Assuming that
there are N observations: {c(i),q(i),a(i)}Ni=1, we

1735

Figure 3: Our data augmentation module. The Embed-
dings of the input sequence are firstly encoded into the
Hiddens. Then, the Adjustor module receives the Hid-
dens and produces an Adjusting Vector to adjust the
Embeddings by the element-wise product. Meanwhile,
the Discriminator classifies the produced vector into an
answer type to make the vector answer-type dependent.

estimate the model parameter θ by maximizing the
following function:

LMLE(θ) =
N∑
i=1

pθ(a
(i)|c(i),q(i)) (1)

3.2.2 Answer-type Dependent Embedding
Adjustment

As QA instances might have specific feature related
to answer types, motivated by Lee et al. (2021), we
design an answer-type dependent embedding-level
Adjusting Vector to create high quality instances
for model training.

The proposed adjusting vector z ∈ Rd×(m+n+r)

is sampled from the distributions qϕ(z|x, l) to aug-
ment the input sequence x ∈ Rd×(m+n+r), where
r is the special token length, d is the size of a word
embedding vector, x is the embeddings, l is an an-
swer type. We use the element-wise production
between the embedding and the Adjusting Vector
as extra data to train a QA model by maximizing
the log-likelihood function of pθ(a|x, z):

LAdjust(θ, ϕ) =
N∑
i=1

Eqϕ(z|x,l)
[
log pθ(a(i)|x(i), z)

]
+βKL

(
qϕ(z|x(i), l)||pψ(z)

)
(2)

where pψ(z) is the prior of the distribution
qϕ(z|x, l), ψ is the predetermined parameter of
the distribution. We assume it obeys multivariate
Gaussian distributions N (1, γId).

To make the embeddings answer-type depen-
dent, we train a neural network as the discrimi-
nator to classify the adjusting vector into the corre-
sponding answer type. The discriminator receives

the adjusting vector zj ∈ Rd and classifies the
vector into a corresponding answer type by using
the predicting distribution pπ(l|zj) = efl(zj)∑L

i=1 e
fi(zj)

,

where fi(zj) denotes the logit of answer type la-
bel i given zj . Due to imbalanced label distri-
bution among different answer types, followed
Menon et al. (2020), we modify the distribution
as: p′π(l|zj) = efl(zj)+log pl∑L

i=1 e
fi(zj)+log pi

, where pi is the

frequency of the answer type i and π is the pa-
rameters of the discriminator. The discriminator is
trained via optimizing the following loss:

LD(π|z) =
N∑
i=1

P∑
j=1

L∑
l=1

yilp
′
π(l|z

(i)
j) (3)

where P is the length of the input sequence, L is the
number of answer types. yil = 1 when the i-th ob-
servation is related to the answer type l, otherwise
yil = 0. To fool the discriminator, the Adjustor
needs to minimize the KL divergence between its
distribution qϕ and the prior pψ in Eqn. 2.

The Final Objective Function. The final objec-
tive function is as follows:

L(θ, ϕ, π) = LMLE(θ) + LAdjust(θ, ϕ) + αLD(π)
(4)

where α is the hyperparameter weighting between
the question-answering predicting loss and the
answer-type discriminating loss.

3.3 Denoising Filter

We design a denoising filter to further alleviate the
negative effect of the noise in the data. The filter
is composed of the Top-K Filter and the Substring
Filter. To apply them, we firstly use the QA model
to do inference on the unseen synthetic data. Then,
if the synthetic answer falls in the K answers with
the highest probability the model predicts (Top-
K Filter) or the predicted instance is a substring
of a NE-based answer span with predicting prob-
ability higher than γ (Substring Filter), we keep
it. Otherwise, we remove the instance. Then, we
use the filtered data to train our fine-tuned model.
In this process, Top-K Filter aims to choose QA
pairs with high confidence as low noise instances.
Substring Filter keeps extra NE-based QA pairs
with high predicting probabilities for training. The
idea comes from an observation that a substring of
a NE can probably represent the NE. For example,
in the sentence Apple CEO Tim Cook introduces

1736

SQuADv1.1 TriviaQA NQ NewsQA BioASQ DuoRC
Models EM/F1 EM/F1 EM/F1 EM/F1 EM/F1 EM/F1

Supervised Models
Match-LSTM 64.1/73.9 -/- -/- -/- -/- -/-
BiDAF 66.7/77.3 -/- -/- -/- -/- -/-
BERT-base 81.2/88.5 69.4/74.3◁ 66.1/77.9◁ 49.4/64.4◁ -/- -/-
BERT-large 84.2/91.1 75.7/80.2◁ 69.0/80.8◁ 56.0/71.0◁ -/- -/-

Trained with Supervised Summarization Dataset
Lyu et al. (2021) 65.6/74.5 36.7/43.0 46.0/53.5 37.5/50.1 32.0/43.2 38.8/46.5

Unsupervised Models
Lewis et al. (2019) 44.2/54.7 19.1/23.8† 27.5/35.1† 19.6/28.5‡ 18.9/27.0† 26.0/32.6†
RefQA 62.5/72.6 48.6/58.2‡ 43.4/55.7‡ 33.6/46.3 42.5/58.9‡ 38.0/49.4‡
DiverseQA 67.6/76.9 52.5/60.8 41.3/56.3 37.5/51.3 47.2/61.4 46.9/56.3

Table 1: Results (EM/F1) of our method and various baselines on six different datasets. ‘†’ denotes results taken
from Lyu et al. (2021). ‘‡’ denotes results from our reimplementation of RefQA(Li et al., 2020). ‘◁’ denotes our
fine-tuned BERT on supervised data. Because the pre-processed training sets of BioASQ and DuoRC in MRQA are
not released, we don’t fine-tune BERT on them.

two new products, “Tim Cook” is a NE referred to a
specific person. Besides, “Tim” or “Cook” can also
refer to him. Therefore, when the model predicts a
substring of a NE with a high probability, it might
refer to the original NE as the answer.

4 Experiments

4.1 Experiment Setup
Unsupervised QA Dataset Construction. We
use Wikiref (Li et al., 2020) as the original text to
construct QA pairs.

To extract answer spans, firstly, we use Spacy2

to extract all of the named entities and their NER
labels in the passage. Then, we apply Berkeley
Neural Parser (Kitaev and Klein, 2018) to parse
each sentence and extract a longer constituent con-
taining a named entity with the constraint of ω%
sentence length as the final answer span. Here, we
set ω = 80. In our experiment, we consider named
entity (NE), noun phrase (NP), adjective phrase
(ADJP), verb phrase (VP), and sub-clause (S) as
the candidate answer types. The dataset consists of
908,511 QA pairs. We randomly sample 300,000
to initially train a QA model, 600,000 to split them
into N =6 parts (followed the empirical results in
Li et al. (2020)) for the filtering phase.

Question Answering Model Settings. We use
BERT as the backbone of our QA model. We use
Adam (Kingma and Ba, 2014) as the optimizer. The
learning rate is 3e-5 and the batch size is 24. The
max sequence length is 384 and the doc stride is
128. The discriminator is set as a one-layer network.

2https://spacy.io

We set L = 5, α = 1, β = 1. We use BERT-large-
uncased-whole-word-masking, train the model for
2 epochs, save the checkpoint every 1,000 training
steps and use the dev set to evaluate them for early
stopping. Then, we continuously train the model
with filtered data via the denoising filter, where
K = 1 and the substring threshold γ = 0.1.

4.2 Results

We evaluate our model on SQuAD v1.1, NewsQA,
TriviaQA, NaturalQuestions (NQ), BioASQ and
DuoRC. We compare DiverseQA with supervised
approaches (Wang and Jiang, 2016; Seo et al., 2016;
Devlin et al., 2018), unsupervised approaches
(Lewis et al., 2019; Li et al., 2020) and the ap-
proach using a supervised summarization dataset
(Lyu et al., 2021). We use Exact Match (EM) and
F1 score as our metrics. We use the pre-processed
data provided in MRQA (Fisch et al., 2019).

The experimental results on six different bench-
marks are shown in Table 1. The model trained on
the synthetic QA data created by our DiverseQA
reaches the state-of-the-art on five benchmarks,
which shows the competitive performance of the
proposed method in a wide range of domains. How-
ever, we find that our model underperforms on Nat-
uralQuestions (NQ) dataset on exact match (EM).
It is because the answers in this dataset are all
entities, which means the model that only learns
information from named entity3 can have good per-
formance. After all, the model only needs to choose
a proper entity from an entity set rather than extract

3Although ‘named entity’ and ‘entity’ are different, they
share the common features in most aspects.

https://spacy.io

1737

a possible span from the whole context, which fi-
nally leads to a good EM value. But as we know,
named entities (or entities) are not the only answer
type in the real world. Therefore, it’s unfair for our
method. Because Lyu et al. (2021) (the line under
‘Trained with Supervised Summarization Dataset’
in Table 1) makes use of supervised summarization
dataset XSUM (Narayan et al., 2018) to train the
model, which is not a purely unsupervised method,
we don’t compare our method with it.

4.3 Analysis

We conduct experiments in this section to further
understand our method. BERT-base-uncased is
used to complete each experiment.

4.3.1 Effects of Different Components of
DiverseQA

We conduct experiments on different components
of DiverseQA. A brief illustration is as follows:

NeAnsQA Only extract NE as the answer type.

DiverseAnsQA Take the data-extending strategy
proposed to build a dataset with diverse answers.

RandomAnsQA Each answer span in Rando-
mAnsQA dataset has the same length with that of
DiverseAnsQA while the answer span is randomly
extended from the original NE-based answer.

Adjusting Vector It imposes the adjusting vector
produced by the ‘Adjustor’ module on the embed-
dings of input tokens as an augmentation instance.

Answer-type Discriminator The module is to
classify the adjusting vector into an answer type.

Top-K Filter Apply the Top-K Filter described
in Section 3.3.

Substring Filter Apply the Substring Filter de-
scribed in Section 3.3.

As shown in Table 2, the result illustrates that
each component can improve the performance of
our model. The difference between NeAnsQA and
DiverseAnsQA shows that the use of our data con-
struction strategy can greatly improve the perfor-
mance of the model. It also demonstrates the im-
portance of diverse answer types in unsupervised
QA. Because answer length distribution is changed
from NeAnsQA to DiverseAnsQA, we design Ran-
domAnsQA to get rid of this extra factor. It shows

EM F1

NeAnsQA 49.2 59.3
RandomAnsQA 48.7 62.0

DiverseAnsQA 52.1 64.0
+ Answer-type Classifier* 51.3 63.6
+ Adjusting Vector 52.3 64.0
+ Answer-type Discriminator 52.9 64.6
+ Top-K Filter 54.7 65.6
+ Substring Filter 55.0 66.2

Table 2: Ablations on each component of DiverseQA
method on the SQuADv1.1 development set. Compo-
nents below the component with ‘*’ are not added upon
the ‘*’ component.

ω% 20% 40% 60% 80% 100%

F1 63.0 63.6 65.4 66.2 62.2

Table 3: F1 scores of different Span Extending Thresold
evaluated on SQuADv1.1 dev set.

that DiverseAnsQA still outperform RandomAn-
sQA by a large gap, which demonstrates the ef-
fectiveness of the proposed QA data construction
strategy. The result of Adjusting Vector and Answer-
type Discriminator shows that although adding the
adjusting vector can slightly improve the perfor-
mance, answer-type discriminator can continuously
improve the performance, showing that adding the
answer-type constraint to the distribution of the ad-
justing vector can benefit the performance of the
model. To verify the necessity of the Discriminator,
we also use a simple ‘Answer-type Classifier’ to
classify input sequences into different answer types.
The result shows that a simple classifier is not ade-
quate to improve the method. In addition, the gains
by adding the Top-K Filter reveal the importance of
the filtering phase in the training process. What’s
more, Substring Filter can further gain the perfor-
mance of the model. What’s more, the results in the
last row of Table 2 show that the Substring Filter is
useful.

4.3.2 Effects of Span Extending Threshold

We experiment with several Span Extending
Threshold to construct the synthetic dataset. Table
3 shows that the optimal value is 80%. It illustrates
that neither a too strict nor a too loose span extend-
ing condition can produce a high quality dataset.

1738

1 2 3 5 8 10 15 20
Top-K

53.8

54.0

54.2

54.4

54.6

54.8

55.0
EM

65.2

65.4

65.6

65.8

66.0

66.2

F1

EM
F1

Figure 4: Results of using K answers with the highest
predicting probabilities in the denoising filtering phase.

γ 0.0 0.1 0.2 0.4 0.6 0.8

F1 65.2 66.2 65.2 65.2 64.9 65.0

Table 4: F1 scores of different Substring Filter threshold
evaluated on SQuADv1.1 dev set.

4.3.3 Effects of Denoising Filter

We conduct experiments on the K answers with the
highest predicting probabilities as well as Substring
Filter threshold γ, which will be used in the con-
tinuing training. Figure 4 shows that when K=1,
the performance reaches the best. It means that
when the model-predicted answer with high proba-
bility matches the span extracted via our extending
strategy, the corresponding QA pair is probably of
high quality and can be further reused to improve
the performance of the model. Table 4 shows that
when γ=0.1, the produced NE-based QA pairs with
predictions of substring can be beneficial.

Furthermore, we make comparison between the
proposed Denoising Filter and the Refining Phase
(Li et al., 2020). Table 5 shows that firstly, Di-
verseQA largely outperforms RefQA without any
filter. Secondly, the proposed Denoising Filter can
be effectively used in the second phase of both Re-
fQA and DiverseQA, showing its strong adaptation
to different methods, while Refining Phase can only
make improvement in RefQA. Thirdly, although
the F1 score of RefQA with Denoising Filter is
slightly lower than that of Refining Phase, it makes
large improvement on the EM metric, demonstating
the advantage of the proposed Denoising Filter.

4.3.4 Effects of Diverse Answer Types

We experiment on the SQuADv1.1 dev set parti-
tioned by answer types. For a fair comparison, the
re-implement of RefQA shares the raw text (from
which we generate QA pairs and train the model)

No Filter Refine Denoise

RefQA 49.2/59.3 52.0/62.6 53.3/62.2
DiverseQA 52.1/64.0 52.1/64.0* 55.0/66.2

Table 5: EM/F1 scores of RefQA and DiverseQA with
different continuously training strategy. “Refine” de-
notes the Refining phase in RefQA. “Denoise” denotes
the proposed Denoising Filter. ‘*’ means that the model
cannot make any improvement on the specific continu-
ous training strategy.

and the random seed with ours.
Although Li et al. (2020) claims that their refine

phase can generate diverse answers, the result in
Table 6 shows that DiverseQA outperforms the per-
formance of RefQA on nearly every kind of answer
type, especially on VP and S by large margins. It is
because the refine phase proposed in RefQA heav-
ily relies on the QA model training with purely NE-
based QA pairs. Therefore, the trained model could
probably generate certain variants of NEs, which
are short and used to continuously train the model,
leaving relatively long answer spans like VPs and
Ss out. Besides, we observe that the performance
of DiverseQA is lower than RefQA on ADJP in the
exact match (EM). It is because the ADJP merely
accounts for 0.3% (in Appendix A) in the whole
synthetic dataset generated by DiverseQA, while
the refining phase in RefQA may probably gener-
ate many variants of NEs, which could be ADJPs4.
Consequently, the model in RefQA might train with
too many ADJP-like QA instances and prefer to
choose the ADJPs as answer types, leading to the
result in Table 6. Since in our method, we only con-
sider NE, NP, ADJP, VP, S as our answer spans, it’s
important to know how well our method performs
on other types of answers out of consideration. The
result in the ‘Others’ column of Table 6 demon-
strates that the proposed model can generalize to
other unseen answer types and outperform RefQA
by a large gap.

In addition, we ablate the proposed span extend-
ing strategy and Answer-type Discriminator sepa-
rately to explore the performance of the two com-
ponents. The result in the last two rows of Table 6
shows that the two components can both contribute
to the performance of model on most of answer

4For instance, in ‘he was still being paid more than $
10,000 as a legal advisor to the Chicago’, span ‘10,000’ is a
named entity with NER label ‘MONEY’ while ‘$ 10,000’ is a
variant of the named entity as well as an ADJP.

1739

NE NP ADJP VP S Others Overall
Models EM/F1 EM/F1 EM/F1 EM/F1 EM/F1 EM/F1 EM/F1

RefQA 67.0/75.4 47.9/60.4 31.9/41.4 4.1/18.3 22.7/35.0 36.7/52.2 52.0/62.6

RandomAnsQA 58.8/70.7 43.2/58.8 25.0/39.7 9.4/25.6 21.4/39.0 36.8/53.4 48.7/62.0
DiverseAnsQA 62.3/72.4 47.2/61.3 26.5/39.3 13.2/29.3 22.9/41.0 38.5/54.6 52.1/64.0

DiverseQA 67.5/75.7 49.1/62.8 27.9/42.5 13.3/30.4 29.1/42.6 41.4/57.2 55.0/66.2
w/o Extension 71.5/77.3 48.5/60.2 24.5/35.1 1.6/12.1 21.9/30.6 34.4/47.0 52.0/60.6
w/o Discriminator 66.9/74.7 47.6/60.1 28.4/40.5 9.7/28.0 26.3/40.9 40.4/54.7 53.6/63.9

Table 6: EM/F1 scores of different models on the SQuADv1.1 dev set. Columns are each dev set associated with the
type of answer. ‘Others’ means other types of answers out of our consideration. ‘Extension’ represents our answer
span extending module. ‘Discriminator’ denotes the proposed Answer-type Discriminator.

Context: The Town of Estill is located in the
southern half of Hampton County .

Question: Where of
the southern half in The
town of Estill is located

Question: Where of the
town Estill

The answer in RefQA:
Hampton County

Our answer: is located
in the southern half of
Hampton County

Table 7: An example of RefQA (left half) and our QA
pairs (right half).

types. Besides, we notice that the performance
of “w/o Extension” on the NE obtains the best. It
is because that under this setting, the model will
only learn from NE-based QA pairs. Therefore, it
prefers to choose a NE from the context, which can
gain its performance on NE-based QA pairs.

What’s more, we also show an example to make
the comparison between the QA pair in DiverseQA
and that of RefQA in Table 7. In the example, the
question ‘Where of the town Estill’ needs more
reasoning process to be answered correctly than
the question generated in RefQA. As in the pro-
posed method, when the generated answer becomes
longer, the generated question becomes shorter.
Therefore, it’s also necessary to keep the ques-
tion and answer length unchanged while exploring
the effectiveness of answer diversity. In Table 6,
the results of RandomAnsQA and DiverseAnsQA
demonstrate the usefulness of the proposed answer
extension method when both the question and an-
swer length distributions are unchanged. More
examples are shown in Appendix D.

4.3.5 Effects of Answer Length Distribution
In the proposed method, the first module is to ex-
tend the span into a longer constituent. Although it
indeed introduces new answer types and gains per-
formance, answer length distribution also changes

1-5 6-10 11-15 16-20 21-25 >25
0

20

40

EM

NeAnsQA
RandomAnsQA
DiverseAnsQA

1-5 6-10 11-15 16-20 21-25 >25
Number of Tokens in the Answer Span

0

20

40

60
F1

NeAnsQA
RandomAnsQA
DiverseAnsQA

Figure 5: Comparison among NeAnsQA, RandomAn-
sQA and DiverseAnsQA (Section 4.3.1). SQuADv1.1
dev set is partitioned by answer length for evaluation.

simultaneously. Therefore, we further explore how
the drift of answer length distribution affects the
model’s performance.

As shown in Figure 5, the performance of NeAn-
sQA is lower than RandomAnsQA and DiverseAn-
sQA. When the answer length becomes larger (>10
tokens), the gap is even larger. This demonstrates
that model trained only with NE-based QA pairs
lacks the ability to handle QA pairs with long an-
swers. Besides, it can be found that the perfor-
mance of RandomAnsQA is lower than DiverseAn-
sQA on each answer length. It means that without
the influence of answer distribution, the proposed
span extending strategy can generate higher quality
instances than that of randomly extending strategy.

4.4 Few-Shot Learning

We conduct experiments in the few-shot learning
setting. For a fair comparison, we use our best-
trained model without the data augmentation com-
ponent, our re-implementation of RefQA, and a
BERT model, all of which use the BERT-large-
whole-word-masking as the backbone.

Figure 6 shows that our model reaches the best

1740

1 10 100 1000 5000 10000 87599
Number of Labeled Data

0

25

50

75
EM Bert-Large

RefQA
DiverseQA

1 10 100 1000 5000 10000 87599
Number of Labeled Data

25

50

75

F1 Bert-Large
RefQA
DiverseQA

Figure 6: Few-shot results (EM and F1) using different
sizes of SQuADv1.1 training data, comparing among
DiverseQA, RefQA (Li et al., 2020) and BERT-large-
uncased-whole-word-masking.

result trained on various sizes of supervised data
ranging from 1 to 50,000, demonstrating the strong
ability of our method in the low-resource scenario.

5 Conclusion

We propose DiverseQA, an unsupervised QA
method comprising a synthetic QA dataset with
diverse answers, an answer-type-dependent data
augmentation process via adversarial training, and
a denoising filter to improve the performance of a
QA model. Our method reaches the state-of-the-art
on five benchmarks and shows strong performance
in the few-shot learning setting.

Acknowledgements

The work is supported by National Key R&D
Plan (No. 2020AAA0106600), National Natural
Science Foundation of China (No. U21B2009,
62172039 and L1924068). We would like to ac-
knowledge Yuming Shang for the helpful discus-
sions.

References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Adam Fisch, Alon Talmor, Robin Jia, Minjoon Seo,
Eunsol Choi, and Danqi Chen. 2019. Mrqa 2019
shared task: Evaluating generalization in reading
comprehension. In Proceedings of the 2nd Workshop
on Machine Reading for Question Answering, pages
1–13.

Giwon Hong, Junmo Kang, Doyeon Lim, and Sung-
Hyon Myaeng. 2020. Handling anomalies of syn-
thetic questions in unsupervised question answering.

In Proceedings of the 28th International Conference
on Computational Linguistics, pages 3441–3448.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke
Zettlemoyer. 2017. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1601–1611.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Nikita Kitaev and Dan Klein. 2018. Constituency pars-
ing with a self-attentive encoder. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2676–2686, Melbourne, Australia. Association
for Computational Linguistics.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. 2012. Imagenet classification with deep convo-
lutional neural networks. Advances in neural infor-
mation processing systems, 25:1097–1105.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, et al. 2019. Natural questions: A benchmark
for question answering research. Transactions of the
Association for Computational Linguistics, 7:452–
466.

Seanie Lee, Minki Kang, Juho Lee, and Sung Ju Hwang.
2021. Learning to perturb word embeddings for out-
of-distribution qa. arXiv preprint arXiv:2105.02692.

Patrick Lewis, Ludovic Denoyer, and Sebastian Riedel.
2019. Unsupervised question answering by cloze
translation. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4896–4910.

Zhongli Li, Wenhui Wang, Li Dong, Furu Wei, and
Ke Xu. 2020. Harvesting and refining question-
answer pairs for unsupervised qa. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 6719–6728.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Chenyang Lyu, Lifeng Shang, Yvette Graham, Jennifer
Foster, Xin Jiang, and Qun Liu. 2021. Improving
unsupervised question answering via summarization-
informed question generation. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 4134–4148.

Aditya Krishna Menon, Sadeep Jayasumana,
Ankit Singh Rawat, Himanshu Jain, Andreas
Veit, and Sanjiv Kumar. 2020. Long-tail learning via
logit adjustment. arXiv preprint arXiv:2007.07314.

https://doi.org/10.18653/v1/P18-1249
https://doi.org/10.18653/v1/P18-1249

1741

Shashi Narayan, Shay B Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1797–1807.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392.

Amrita Saha, Rahul Aralikatte, Mitesh M Khapra, and
Karthik Sankaranarayanan. 2018. Duorc: Towards
complex language understanding with paraphrased
reading comprehension. In Proceedings of the 56th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1683–
1693.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2016. Bidirectional attention
flow for machine comprehension. arXiv preprint
arXiv:1611.01603.

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Harris,
Alessandro Sordoni, Philip Bachman, and Kaheer
Suleman. 2017. Newsqa: A machine comprehension
dataset. In Proceedings of the 2nd Workshop on
Representation Learning for NLP, pages 191–200.

George Tsatsaronis, Georgios Balikas, Prodromos
Malakasiotis, Ioannis Partalas, Matthias Zschunke,
Michael R Alvers, Dirk Weissenborn, Anastasia
Krithara, Sergios Petridis, Dimitris Polychronopou-
los, et al. 2015. An overview of the bioasq large-scale
biomedical semantic indexing and question answer-
ing competition. BMC bioinformatics, 16(1):1–28.

Shuohang Wang and Jing Jiang. 2016. Machine compre-
hension using match-lstm and answer pointer. arXiv
preprint arXiv:1608.07905.

Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong,
and Quoc Le. 2020. Unsupervised data augmenta-
tion for consistency training. Advances in Neural
Information Processing Systems, 33.

Appendix

A The Distribution of Extracted Answers

The distribution of our extracted answer types (NE,
NP, ADJP, VP, S) is shown in Table 8. The frequen-
cies of each answer type are used in the modified
predicting distribution described in Section 3.2.2.
Since previous works consider named entities as
the only answer type (i.e. NE acounts for 100% of
all the answers), we don’t show the answer type
distribution of them. Besides, as the answer span
generated by the trained QA model in the refining
phase of Li et al. (2020) fails to follow the rule of

#Instances %Frequency

NE 716,716 78.9%
NP 161,178 17.7%
ADJP 2,563 0.3%
VP 23,420 2.6%
S 4,634 0.5%

Table 8: The statistics of extracted answer types in the
synthetic dataset constructed using DiverseQA.

constituent parsing, we cannot obtain its answer
type distribution in terms of sentence constituents.

B Algorithms

We describe the whole training procedure as fol-
lows:

Algorithm 1: Training Procedure
Data: Synthetic QA dataset D, a BERT

modelM with answer-type
dependent data augmentation module,
a denoising filter composed of a
Top-K filter and a Substring Filter
with threshold γ.

Result: A fine-tuned modelM′.
1 Split D into DI and DF ;
2 Fine-tuneM with DI ;
3 Split DF equally into {DFi}Ni=1;
4 for i← 1 to N do
5 S ← ∅;
6 foreach element e in DFi do
7 Obtain the probability pe usingM;
8 if pe is in the Top-K highest

probabilities then
9 S ← S ∪ {e}

10 end
11 if the answer of e is a subtring of the

extracted one and pe ≥ γ then
12 S ← S ∪ {e}
13 end
14 end
15 Fine-tune model M with dataset S;
16 end

C Answer Length Distribution

We randomly sample 10,000 instances from
SQuADv1.1, the dataset of RefQA, and the dataset
of DiverseQA respectively, and count the answer
length distributions, which are shown in Figure 7. It

1742

Context: Joss Whedon has endorsed Mitt Romney (in a way) and now “ The Simpsons ” Mr.
Burns , owner of Springfield ’s nuclear power plant , titan of corporate capitalism and honcho
in the Springfield Republican Party , has come out with his own backhanded endorsement of
the Republican nominee .
Question:Who As the chief of “Springfield Re-
publican Party” endorsed Mitt Romney in 2012
US Presidential Election .

Question: Who As the chief of endorsed Mitt
Romney in 2012 US Presidential Election .

Answer: Burns Answer: Mr. Burns

Context: In 1931 , the Singers gave the Museum of Fine Arts to the community along with a
substantial collection of American and European art .
Question: Who American and art of a substan-
tial collection with along the Singers gave the
Museum of Fine Arts to the community .

Question: Who art of a substantial collection
with along the Singers gave the Museum of Fine
Arts to the community .

Answer: European Answer: American and European

Context: Why do the new prequels sometimes contradict the history set forth in THE DUNE
ENCYCLOPEDIA compiled by, Dr. Willis E. McNelly ?, THE DUNE ENCYCLOPEDIA
reflects an alternate “ DUNE universe ” which did not necessarily represent the “ canon ”
created by Frank Herbert ."
Question:Who by written to accompany the
“Dune” books

Question: Who by written to accompany the
“Dune” books

Answer: Willis E. McNelly Answer: Dr. Willis E. McNelly

Context:GDP per capita in the city increased by 2.4 per cent and employment by 4.7 per cent
compared to the previous year .
Question: How much by GDP per capita in the
city increased

Question: How much in GDP per capita

Answer: 2.4 per cent Answer: increased by 2.4 per cent

Table 9: Examples of the QA pairs of RefQA (left half) and that of DiverseQA (right half).

1-5 6-10 11-15 16-20 21-25 >25
0.0

0.2

0.4

0.6

0.8

1.0 SQuADv1.1
RefQA
DiverseQA

Figure 7: Answer length distributions.

shows that firstly, the proposed DiverseQA method
can construct dataset with a similar answer length
distribution to the annotated dataset SQuADv1.1.
Secondly, the dataset only with NE-based QA pairs
(like RefQA) is not able to cover long form an-
swers (it accounts for 0% QA pairs in the answer

length ranges ‘11-15’, ‘21-25’ and ‘>25’)5, which
is harmful to the performance of model on long
answers.

D Generated QA Instances

Examples of generated QA instances are shown in
Table 9.

5The dataset of DiverseQA accounts for 0.16%, 0.13% and
0.03% in the ranges ‘16-20’, ‘21-25’ and ‘>25’. And it is not
displayed properly in Figure 7.

