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Abstract

Question answering on knowledge bases
(KBQA) poses a unique challenge for seman-
tic parsing research due to two intertwined
challenges: large search space and ambigui-
ties in schema linking. Conventional ranking-
based KBQA models, which rely on a can-
didate enumeration step to reduce the search
space, struggle with flexibility in predicting
complicated queries and have impractical run-
ning time. In this paper, we present ArcaneQA,
a novel generation-based model that addresses
both the large search space and the schema link-
ing challenges in a unified framework with two
mutually boosting ingredients: dynamic pro-
gram induction for tackling the large search
space and dynamic contextualized encoding for
schema linking. Experimental results on mul-
tiple popular KBQA datasets demonstrate the
highly competitive performance of ArcaneQA
in both effectiveness and efficiency.'

1 Introduction

Modern knowledge bases (KBs) contain a wealth of
structured knowledge. For example, FREEBASE (Bol-
lacker et al., 2008) contains over 45 million entities
and 3 billion facts across more than 100 domains,
while GooGLE KNOWLEDGE GRAPH has amassed over
500 billion facts about 5 billion entities (Sullivan,
2020). Question answering on knowledge bases
(KBQA) has emerged as a user-friendly solution to
access the massive structured knowledge in KBs.
KBQA is commonly modeled as a semantic pars-
ing problem (Zelle and Mooney, 1996; Zettlemoyer
and Collins, 2005) with the goal of mapping a nat-
ural language question into a logical form that can
be executed against the KB (Berant et al., 2013;
Cai and Yates, 2013; Yih et al., 2015). Compared
with other semantic parsing settings such as text-to-
SQL parsing (Zhong et al., 2017; Yu et al., 2018),
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Figure 1: KBQA is commonly modeled as semantic
parsing with the goal of mapping a question into an
executable program. (a) A high-level illustration of our
program induction procedure. The target program is in-
duced by incrementally synthesizing a sequence of sub-
programs (#1-3). The execution of each subprogram
can significantly reduce the search space of subsequent
subprograms. (b) Alignments between question words
and schema items at different steps achieved by a BERT
encoder. A pre-trained language model like BERT can
jointly encode the question and schema items to get the
contextualized representation at each step, which further
guides the search process.

where the underlying data is moderate-sized, the
massive scale and the broad-coverage schema of
KBs makes KBQA a uniquely challenging setting
for semantic parsing research.

The unique difficulty stems from two intertwined
challenges: large search space and ambiguities in
schema linking. On the one hand, transductive se-
mantic parsing models that are highly effective in
other semantic parsing settings (Dong and Lapata,
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2016; Wang et al., 2020) struggle with the large
vocabulary size and often generate logical forms
(i.e., formal queries)® that are not faithful to the
underlying KB (Gu et al., 2021; Xie et al., 2022).
Therefore, a candidate enumeration and ranking
approach is commonly adopted for KBQA (Berant
and Liang, 2014; Yih et al., 2015; Abujabal et al.,
2017; Lan et al., 2019a; Sun et al., 2020; Gu et al.,
2021; Ye et al., 2021). However, these methods
have to make various compromises on the complex-
ity of admissible logical forms to deal with the large
search space. Not only does this limit the type of an-
swerable questions, but it also leads to impractical
runtime performance due to the time-consuming
candidate enumeration (Gu et al., 2021). On the
other hand, schema linking,? i.e., mapping natural
language to the corresponding schema items in the
KB (e.g., in Figure 1, wine_sub_region is a linked
schema items), is also a core challenge of KBQA.
Compared with text-to-SQL parsing (Hwang et al.,
2019; Zhang et al., 2019; Wang et al., 2020), the
broad schema of KBs and the resulting ambiguity
between schema items makes accurate schema link-
ing more important and challenging for KBQA. Re-
cent studies show that contextualized joint encod-
ing of natural language questions and schema items
with BERT (Devlin et al., 2019) can significantly
boost the schema linking accuracy (Gu et al., 2021;
Chen et al., 2021). However, existing methods still
struggle with the large search space and need to
encode a large number of schema items, which is
detrimental to both accuracy and efficiency.

We present ArcaneQA (Dynamic Program
Induction and Contextualized Encoding for
Question Answering), a generation-based KBQA
model that addresses both the large search space
and the schema linking challenges in a unified
framework. Compared with the predominant
ranking-based KBQA models, our generation-
based model can prune the search space on the
fly and thus is more flexible to generate diverse
queries without compromising the expressivity or
complexity of answerable questions. Inspired by
prior work (Dong and Lapata, 2016; Liang et al.,
2017; Semantic Machines et al., 2020; Chen et al.,
2021), we model KBQA using the encoder-decoder

We use the terms logical form, query, and program inter-
changeably across the paper.

3Semantic parsing implicitly entails two sub-tasks: schema
linking and composition. There is not necessarily a dedicated
step or component for schema linking. More commonly, the
two sub-tasks are handled simultaneously.

framework. However, instead of top-down decod-
ing with grammar-level constraints as in prior work,
which does not guarantee the faithfulness of the
generated queries to the underlying KB, ArcaneQA
performs dynamic program induction (Liang et al.,
2017; Semantic Machines et al., 2020), where we
incrementally synthesize a program by dynami-
cally predicting a sequence of subprograms to an-
swer a question; i.e., bottom-up parsing (Cheng
et al., 2019; Rubin and Berant, 2021). Each sub-
program is grounded to the KB and its grounding
(i.e., denotation or execution results) can further
guide an efficient search for faithful programs (see
Figure 1(a)). In addition, we unify the meaning
representation (MR) for programs in KBQA using
S-expressions and support more diverse operations
over the KB (e.g., numerical operations such as
COUNT/ARGMIN/ARGMAX and diverse graph traver-
sal operations).

At the same time, we employ pre-trained lan-
guage models (PLMs) like BERT to jointly encode
the question and schema items and get the contex-
tualized representation of both, which implicitly
links words to the corresponding schema items via
self-attention. One unique feature to note is that the
encoding is also dynamic: at each prediction step,
only the set of admissible schema items determined
by the dynamic program induction process needs
to be encoded, which allows extracting the most
relevant information from the question for each
prediction step while avoiding the need to encode
a large number of schema items. Figure 1(b) il-
lustrates the contextualization of different steps via
the attention heatmaps of BERT. In this example,
the attention of each question word over candidate
schema items serves as a strong indicator of the
gold items for both steps (i.e., wine_sub_region
for step 1 and percentage_alcohol for step 3).
The two key ingredients of our model are mutually
boosting: dynamic program induction significantly
reduces the number of schema items that need to be
encoded, while dynamic contextualized encoding
intelligently guides the search process.

Our main contribution is as follows: a) We pro-
pose a novel generation-based KBQA model that is
flexible to generate diverse complex queries while
also being more efficient than ranking-based mod-
els. b) We propose a novel strategy to effectively
employ PLMs to provide contextualized encoding
for KBQA. c) We unify the meaning representa-
tion (MR) of different KBQA datasets and support
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more diverse operations. d) With our unified MR,
we evaluate our model on three popular KBQA
datasets and show highly competitive results.

2 Related Work

Ranking-Based KBQA. To handle the large
search space in KBQA, existing studies typically
rely on hand-crafted templates with a pre-specified
maximum number of relations to enumerate can-
didate logical forms (Yih et al., 2015; Abujabal
etal., 2017; Lan et al., 2019a; Bhutani et al., 2019,
2020), which suffers from limited expressivity and
scalability. For example, Yih et al. (2015) limit the
candidate programs to be a core relational chain,
whose length is at most two, plus constraints. Ye
et al. (2021) additionally adopts a post-generation
module to revise the enumerated logical forms into
more complicated ones, however, their method still
heavily depends on the candidate enumeration step.
In addition, the time-consuming candidate enumer-
ation results in impractical online inference time
for ranking-based models. In contrast, ArcaneQA
obviates the need for candidate enumeration by
pruning the search space on the fly and thus can
generate more diverse and complicated programs
within practical running time.

Generation-Based KBQA. To relax the restric-
tion on candidate enumeration, some recent efforts
are made to reduce the search space using beam
search (Lan et al., 2019b; Chen et al., 2019; Lan
and Jiang, 2020), however, Lan et al. (2019b) and
Chen et al. (2019) can only generate programs of
path structure, while Lan and Jiang (2020) follow
the query graph structure proposed by Yih et al.
(2015). A few recent studies (Liang et al., 2017;
Chen et al., 2021) formulate semantic parsing over
the KB as sequence transduction using encoder-
decoder models to enable more flexible generation.
Chen et al. (2021) apply schema-level constraints
to eliminate ill-formed programs from the search
space, however, they do not guarantee the faithful-
ness of predicted programs. Similar to Liang et al.
(2017), our dynamic program induction uses KB
contents-level constraints to ensure the faithfulness
of generated programs, but we extend it to handle
more complex and diverse questions and also use
it jointly with dynamic contextualized encoding.

Using PLMs in Semantic Parsing. PLMs have
been widely applied in many semantic parsing
tasks, typically being used to jointly encode the in-
put question and schema items(Hwang et al., 2019;

Zhang et al., 2019; Wang et al., 2020; Scholak et al.,
2021). However, PLMs have been under-exploited
in KBQA. One major difficulty of using PLMs in
KBQA lies in the high volume of schema items in
a KB; simply concatenating all schema items with
the input question for joint encoding, as commonly
done in text-to-SQL parsing, will vastly exceed
PLMs’ maximum input length. Existing KBQA
models either use PLMs to provide features for
downstream classifiers(Lan and Jiang, 2020; Sun
et al., 2020) or adopts a pipeline design to identify
a smaller set of schema items beforehand and only
use PLMs to encode these identified items (Gu
et al., 2021; Chen et al., 2021), which can lead
to error propagation. By comparison, ArcaneQA
can fully exploit PLMs to provide contextualized
representation for the question and schema items
dynamically, where only the most relevant schema
items are encoded at each step. More recently, Ye
etal. (2021) use TS (Raffel et al., 2019) to output a
new program given a program as input, while T5’s
decoder generates free-formed text and does not
always produce faithful programs. By contrast, Ar-
caneQA only uses PLMs for encoding and uses its
customized decoder with a faithfulness guarantee.

3 Background

Knowledge Base. A knowledge base K consists
of a set of relational triplets I, C E X R x (EUL)
and a set of class assertions I, C £ xC, where C is
a set of classes, £1is a set of entities, Lis a set of
literals and R is a set of binary relations. Elements
in C and ‘R are also called the schema items of /C.

Meaning Representation for KBQA. Prior

work adopt different meaning representations to
represent logical forms for KBQA. For example,
Yih et al. (2015) use graph query, which represents
a program as a core relation chain with (optionally)
some entity constraints. Cai and Yates (2013)
use A-Calculus as their meaning representation.
In this paper, we follow Gu et al. (2021) to use
S-expressions as our meaning representation due
to their expressivity and simplicity. To support
more diverse operations over the KB, we extend
their definitions with two additional functions
cons and Tc, which are used to support constraints
with implicit entities and temporal constraints
respectively (see details in Appendix A). For
implicit entities, consider the question “What
was Elie Wiesel’s father’s name?”, whose target
query involves two entities: Elie Wiesel and
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Male. The entity Male is an implicit constraint
rather than a named entity,* and it is used as an
argument of cons in the target logical form: (cons
(JOIN people.person.children Elie_Wiesel)
people.person.gender Male). TC works in a
similar way, with the difference being that the
constraint should be a temporal expression (e.g.,
2015-08-10) rather than an implicit entity.

4 Approach

4.1 Overview

The core idea of our generation-based model is
to gradually expand a subprogram (i.e., a partial
query) into the finalized target program, instead of
enumerating all possible finalized programs from
the KB directly, which suffers from combinatorial
explosion. There are two common strategies to in-
stantiate the idea of gradual subprogram expansion,
depending on the type of meaning representation
being used. For a graph-like meaning representa-
tion, we can directly perform graph search over
the KB to expand a subprogram (Chen et al., 2019;
Lan and Jiang, 2020). Also, we can linearize a
program into a sequence of tokens and perform
decoding in the token space (Liang et al., 2017;
Scholak et al., 2021). Because S-expressions can
be easily converted into sequences of tokens, we
choose to follow the second strategy and take ad-
vantage of the encoder-decoder framework, which
has been a de facto choice for many semantic pars-
ing tasks. Concretely, ArcaneQA learns to synthe-
size the target program by dynamically generating
a sequence of subprograms token by token until
predicting (EOS), where each subsequent subpro-
gram is an expansion from one or more preceding
subprograms (denoted as parameters in the subse-
quent subprogram). Formally, the goal is to map
an input question ¢ = 1, ..., Z|q to a sequence
of subprograms o = o1, .ok,

1 _
e Oty o s O] =

Y1, -+, Yjo|» Where k is the number of total subpro-

koo
grams and |o| = ) |0’|. We base ArcaneQA on

=1
Seq2Seq with attention (Sutskever et al., 2014; Bah-
danau et al., 2015), in which the conditional proba-

*WEBQSP is the only dataset we consider that has this
feature. Though there might be a more systematic way to
differentiate implicit entities from named entities, we choose
an expedient way to collect implicit entities from the training
data according to whether an entity is explicitly mentioned in
the question.

bility p(o|q) is decomposed as:

lo|

plolg) = [ [ p(wly<t, a), (1)

t=1

where each token y; is either a token from the vo-
cabulary V or an intermediate subprogram from the
set S storing all previously generated subprograms.
V comprises all schema items in K, syntactic sym-
bols in S-expressions (i.e., parentheses and function
names), and the special token (£'OS). S initially
contains the identified entities in the question (e.g.,
#1 in Figure 1). Every time a subprogram is pre-
dicted, it is executed and added to S (e.g., #2 in
Figure 1).

ArcaneQA builds on two key ideas: dynamic
program induction and dynamic contextualized en-
coding (see Figure 2). At each decoding step, Ar-
caneQA only makes a prediction from a small set of
admissible tokens instead of the entire vocabulary.
This is achieved by the dynamic program induc-
tion framework (subsection 4.2), which effectively
prunes the search space by orders of magnitude and
guarantees that the predicted programs are faith-
ful to the KB. In addition, we dynamically apply
BERT to provide contextualized joint encoding for
both the question and admissible tokens at each
decoding step (subsection 4.3). In this way, we
allow the contextualized encoding to only focus on
the most relevant information without introducing
noise from irrelevant tokens.

4.2 Dynamic Program Induction

Dynamic program induction capitalizes on the idea
that a complicated program can be gradually ex-
panded from a list of subprograms. To ensure the
expanded program is faithful to the KB, we query
the KB with a subprogram to expand and a function
defined in Table 4 to get a set of admissible actions
(tokens). For example, in Figure 2, given #1 and the
function Jo1N, the admissible actions are defined
by predicting a relation connecting to the execu-
tion result of #1 (i.e., Tulum_valley), and there
are only four relations to choose from (e.g., appel-
lation and wine_sub_region). Table 1 shows a
comprehensive description of expansion rules for
different functions. With these rules, ArcaneQA
can greatly reduce the search space for semantic
parsing over the KB dynamically. The reduced can-
didate space further allows us to perform dynamic
contextualized encoding (subsection 4.3).
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Figure 2: (a) Overview of ArcaneQA. ArcaneQA synthesizes the target program by iteratively predicting a sequence
of subprograms. (b) At each step, it makes a prediction from a small set of admissible tokens .4 dynamically
determined based on the execution of previous subprograms (for faithfulness to the KB) as well as the grammar (for
well-formedness). (¢) ArcaneQA also leverages BERT to provide dynamic contextualized encoding of the question
and the admissible tokens at each step, which enables implicit schema linking and guides the dynamic program

induction process.

Within our encoder-decoder framework, this
idea is implemented using constrained decod-
ing (Liang et al., 2017; Scholak et al., 2021), i.e.,
at each decoding step, a small set of admissible
tokens from the vocabulary is determined based
on the decoding history following predefined rules.
The expansion rules in Table 1 have already com-
prised part of our rules for constrained decoding.
In addition, several straightforward grammar rules
are applied to ensure that the generated programs
are well-formed. For instance, after predicting “(”,
the admissible tokens for the next step can only
be a function name. After predicting a function
name, the decoder can only choose a preceding
subprogram to expand. After predicting “)”, the
admissible tokens for next step can only be either
“(”, indicating the start of a new subprogram, or
“(FOS)”, denoting termination. The decoding pro-
cess can be viewed as a sequential decision-making
process, which decomposes the task of finding a
program from the enormous search space into mak-
ing decisions from a sequence of smaller search
spaces.

4.3 Dynamic Contextualized Encoding

In semantic parsing, PLMs have typically been
used to jointly encode the input question and all
schema items via concatenation (Hwang et al.,
2019; Zhang et al., 2019; Wang et al., 2020).
However, direct concatenation is not feasible for
KBQA due to a large number of schema items.
Instead of obtaining a static representation for the
question and items from )V before decoding (Gu
et al., 2021; Chen et al., 2021), we propose to do
dynamic contextualized encoding at each decoding
step; for each step, we use BERT to jointly encode
the question and only the admissible tokens from
V. ArcaneQA’s dynamic program induction vastly
reduces the number of candidate tokens at each
step and allows us to concatenate the question and
the admissible tokens into a compact sequence:’

[CLS], z1, ..., z|q|, [SEP], st, ..., st [SEP]

where {s!} C V are admissible tokens at

SWe omit the wordpieces tokenization here for brevity.
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Current function

Admissible actions

JOIN {r|h € #,(h,r,t) € K.}
AND {vjveS,vN# A0tU{cle € %, (e,c) € K.}
ARGMAX/ARGMIN {rlh € #,t € L, (h,7,t) € K}
LT(LE/GT/GE) {rit< (/> /2)#,(h,rt) € K}
COUNT O}
CONS {(r,t)|h € #, (h,7,t) € K}
TC {(r,t)|h € #, (h,r,t) € Kr,t € Lis a temporal expression}

Table 1: A set of rules to expand a preceding subprogram given a function. The execution of the subprogram is
denoted as #. These expansion rules reduce the search space significantly with a faithfulness guarantee. COUNT
takes no other argument, so the only admissible token is ).

step ¢ and |{s!}| = m. After feeding the concate-
nated sequence to BERT, we obtain the question
representation Q¢ = (x1,...,Xq) by further
feeding the outputs from BERT to an LSTM
encoder. For each admissible token, we represent
it by averaging BERT outputs corresponding to
its wordpieces. In this way, we also obtain the
embedding matrix Wy € R™*%, where each row
corresponds to the embedding of an admissible
token. The contextualized representation Q¢ and
‘W, are both dynamically computed at each time
step. Words and corresponding schema items
are implicitly linked to each other via BERT’s
self-attention.

4.4 Decoding

We use an LSTM decoder. At decoding step ¢,
given the hidden state h¢_; and input c¢_1, we
obtain the updated hidden state hy by:

he = LSTMp(h¢—1, c—1) )

where our LSTM decoder is parameterized by 6.

With hy and W{—the embedding matrix of ad-
missible tokens (determined by dynamic program
induction)—we obtain the probability of generat-
ing a token from the admissible tokens:

P(yt = stlq, y<t) = [Softmax(Wihe)];  (3)

The input c¢ for the next step is obtained via the
concatenation of the contextualized embedding of
the current output token and the weighted represen-
tation of the question based on attention:

ay = softmax(Q¢hy) 4)
at = (a)" Q¢ &)
ct = [[Wlj; qg) (6)

where ; denotes concatenation, and j denotes the
index of the predicted y; in Wy.

4.5 Training and Inference

We train ArcaneQA with question-program pairs
using cross entropy loss. The model learns to max-
imize the probability of predicting the gold token
out of a small set of admissible tokens at each
step, which is different from training a conventional
Seq2Seq model using a static vocabulary.

During inference, ArcaneQA assumes an entity
linker to identify a set of entities from the ques-
tion at the beginning of program induction. How-
ever, the entity linker may identify false entities.
To deal with it, ArcaneQA initiate its decoding
process with different hypotheses from the set of
entities. Basically, it tries out all possible combina-
tions of the identified entities (i.e., the power set of
the identified entities), considering that our entity
linker normally can only identify no more than two
entities from a question.

5 Experimental Setup

Datasets. We evaluate ArcaneQA on three KBQA
datasets covering diverse KB queries.

GRAILQA (Gu et al., 2021) is a large-scale KBQA
dataset that contains complex questions with vari-
ous functions, including comparatives, superlatives,
and counting. It evaluates the generalizability of
KBQA at three levels: i.i.d., compositional and
zero-shot.

GrAPHQ (Su et al., 2016) also contains questions
of diverse nature. It is particularly challenging
because it exclusively focuses on non-i.i.d. gener-
alization.®

WEBQSP(Yih et al., 2016) is a clean subset of WEBQ
(Berant et al., 2013) with annotated logical forms.

8GrAPHQ originally uses FREEBASE (version 2013-07)
as their KB, while GRAILQA and WEBQ use FREEBASE (ver-
sion 2015-08-09). In Gu et al. (2021), programs in GRAPHQ
are converted into the corresponding FREEBASE 2015-08-09
version, and we will use this version in our experiments.
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All questions in it are collected from Google query
logs, featuring more realistic and complicated in-
formation needs such as questions with temporal
constraints.

The total number of questions in GRAILQA,
GrAPHQ, and WEBQ is 64,331, 5,166, and 4,737
respectively.

Evaluation Metrics. For GRAILQA, we use their
official evaluation script with two metrics, EM,
i.e., program exact match accuracy, and F1, which
is computed based on the predicted and the gold
answer set. For GrRapuQ and WEBQSP, we follow
the standard practice and report F1.

Models for Comparison. We compare ArcaneQA
with the previous best-performing models on three
different datasets. For GRAILQA and WEBQSP, the
state-of-the-art model is RnG-KBQA (Ye et al.,
2021). Though RnG-KBQA uses T5 to decode
the target program as unconstrained sequence
transduction, it still heavily depends on candidate
enumeration as a prerequisite. Therefore, it is not a
generation-based model like ours. ReTraCk (Chen
et al., 2021) is the state-of-the-art generation-based
model on GRAILQA which poses grammar-level
constraints to the decoder to generate well-formed
but unnecessarily faithful programs. For GRaPHQ,
the ranking-based model SPARQA (Sun et al.,
2020) has achieved the best results so far. It
uses BERT as a feature extractor for downstream
classifiers. In addition to the state-of-the-art
models, we also compare ArcaneQA with
BERT+Transduction and BERT+Ranking (Gu
et al., 2021), which are two baseline models on
GRAILQA that enhance a vanilla Seq2Seq model
with BERT to perform generation and ranking
respectively.

Implementation. Our models are implemented
using PyTorch and AllenNLP (Gardner et al., 2018).
For BERT, we use the bert-base-uncased version
provided by HuggingFace. For more details about
implementation and hyper-parameters, we refer the
reader to Appendix B.

6 Results

6.1 Opverall Evaluation

We show the overall results in Table 2 (for dev
set results see Appendix C). ArcaneQA achieves
the state-of-the-art performance on both GRAPHQ

and WEBQSP. For GrapHQ, there are 188 questions
in GRAPHQ’S test set that cannot be converted into
FREEBASE 2015-08-09 version, so we treat the F1 of
all those questions as 0 following Gu et al. (2021),
while the numbers in the parentheses are the ac-
tual F1 on the test set if we exclude those ques-
tions. ArcaneQA significantly outperforms the
prior art by over 10%. The improvement over
SPARQA shows the advantage of using PLMs for
contextualized joint encoding instead of just pro-
viding features for ranking. On both WeBQSP and
GRAILQA, ArcaneQA also achieves the best per-
formance or performs on par with the prior art in
terms of F1. It outperforms ReTraCk by 4.3% and
1.9% (using the same entity linking results) on WE-
BQSP and GRAILQA respectively, suggesting that
ArcaneQA can more effectively reduce the search
space with dynamic program induction compared
with ReTraCk’s grammar-based decoding. Also,
our model performs on par with the previous state-
of-the-art RnG-KBQA (i.e., same numbers on WE-
BQSP, while 0.7% lower on GRAILQA). However,
ArcaneQA under-performs RnG-KBQA in EM on
GRrRAILQA. The overall EM of ArcaneQA is lower
than RnG-KBQA by 5%, and the gap on zero-shot
generalization is even larger (i.e., around 10%), de-
spite the comparable numbers in F1. This can be
explained by that ArcaneQA learns to predict a pro-
gram in a more flexible way and may potentially
find some novel structures. This may further be
supported by the observation that ArcaneQA per-
forms better than RnG-KBQA on compositional
generalization, which requires KBQA models to
generalize to unseen query structures during train-
ing. Overall, the results demonstrate ArcaneQA’s
flexibility in handling KBQA scenarios of different
natures.

6.2 In-Depth Analyses

To gain more insights into ArcaneQA’s strong per-
formance, we conduct in-depth analyses on the two
key designs of ArcaneQA.

Dynamic Program Induction. One vanilla im-
plementation of ArcaneQA without dynamic pro-
gram induction is BERT+Transduction, i.e., its
search space and vocabulary during decoding is
independent of previous predictions. As shown in
Table 2a, when using the same entity linking re-
sults, ArcaneQA outperforms BERT+Transduction
by 30.4% in overall F1 and is twice as good on
zero-shot generalization. One major weakness of
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Overall LLD. Compositional Zero-shot
Model EM F1 EM F1 EM F1 EM F1
QGG™ (Lan and Jiang, 2020) — 36.7 — 40.5 — 33.0 — 36.6
BERT+Transduction® (Gu et al., 2021)  33.3 36.8 51.8 539 31.0 36.0 25.7 29.3
BERT+Ranking™ (Gu et al., 2021) 50.6 58.0 59.9 67.0 45.5 53.9 48.6 55.7
ReTraCk (Chen et al., 2021) 58.1 65.3 84.4 87.5 61.5 70.9 44.6 52.5
RnG-KBQA™ (Ye et al., 2021) 61.4 67.4 78.0 81.8 55.0 63.2 56.7 63.0
ArcaneQA* 58.8 67.2 77.8 81.6 58.0 66.1 50.4 61.8
RnG-KBQA (Ye et al., 2021) 68.8 74.4 86.2 89.0 63.8 71.2 63.0 69.2
ArcaneQA 63.8 73.7 85.6 88.9 65.8 75.3 52.9 66.0
w/o contextualized encoding 49.7 59.1 77.6 82.1 50.5 59.4 36.5 48.5
(a) GRAILQA
Model F1
Model F1 o
NSM (Liang et al., 2017) 69.0
UDEPLAMBDA (Reddy et al., 2017) 17.7 ?Bg{A-C’(]Sgi (Iﬂ"} ett ‘111 ;8113)*1) 2(7)‘2
extka utani et al., .
PARA4QA (Dong et al., 2017) 20.4 QGG (Lan and Tiang. 2020) 240
SPARQA (Sun et al., 2020) 21.5 ReTraCk (Chen et al., 2021) 71.0
BERT+Ranking (Gu et al., 2021) 25.0 (27.0) CBR (Das et al., 2021) 72.8
RnG-KBQA (Ye et al., 2021) 75.6 (74.5%)
ArcaneQA 31.8 (34.3) Arcane "
. . aneQA 75.6 (75.6%)
w/o contextualized encoding 20.7 (22.4) wlo contextualized encoding 68.8
(b) GRAPHQ (c) WEBQSP

Table 2: Overall results on three datasets. ArcaneQA follows entity linking results from previous methods (i.e.,
RnG-KBQA’s results on GRAILQA, QGG’s results on WEBQSP, and Gu et al. (2021)’s results on GRAPHQ) for fair
comparison. Model names with * indicate using the baseline entity linking results on GRAILQA. ¥ In addition to
using WEBQSP’s official evaluation script, which sometimes considers multiple target parses for a question, we also
report the performance when only the top-1 target parses are considered.

BERT+Transduction is that it predicts many pro-
grams that are not faithful to the KB, executing
which will lead to empty answers. Note that post-
hoc filtering by execution (Wang et al., 2018) can
only help to a limited degree due to the KB’s broad
schema, while this type of mistake is rooted out in
ArcaneQA by design.

Different from our search space pruning
achieved with dynamic program induction, ranking-
based models such as BERT+Ranking prunes un-
faithful programs from their search space by rank-
ing a set of faithful programs enumerated from the
KB. These models typically make compromises on
the complexity and diversity of programs during
candidate enumeration. We break down the perfor-
mance of ArcaneQA on GRAILQA’s validation set
in terms of question complexity and function types
and show the fine-grained results in Table 3. The
comparison with BERT-Ranking demonstrates the
scalability and flexibility of our dynamic program
induction. We also compare with RnG-KBQA,
which adopts exactly the same candidate enumera-
tion module as BERT+Ranking, but it is enhanced
with a T5-based revision module to edit the enumer-
ated programs into more diverse ones. We observe

that RnG-KBQA performs uniformly well across
different programs except for programs with su-
perlative functions (i.e., ARGMAX/ARGMIN), i.e., the
F1 of it is lower than ArcaneQA by over 50%. This
is because in their candidate generation step, there
is no superlative function enumerated. Despite the
effectiveness of their T5-based revision, their per-
formance still heavily depends on the diversity of
candidate enumeration, which restricts the flexibil-
ity of their method.

Dynamic Contextualized Encoding. To  show
the key role of dynamic contextualized encoding,
we use GloVe (Pennington et al., 2014) to provide
non-contextualized embeddings for both questions
and tokens in V. We fix GloVe embeddings during
training to make the model less biased to the
training distribution (Gu et al., 2021) for GRAILQA
and GraPHQ, which address non-i.i.d. generaliza-
tion, while for WeBQSP, we also update the word
embeddings during training. Results in Table 2a
show the importance of dynamic contextualized
encoding, i.e., without contextualized encoding,
the overall F1 decreases by 14.6%, 11.1%, and
6.5% on three datasets respectively. We also notice
that dynamic contextualized encoding is more criti-
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Function None Count Comparative  Superlative
BERT+Ranking  59.1/66.0  43.0/53.2 0.0/14.5 0/6.0
RnG-KBQA 77.5/81.8 73.0/77.5 55.1/76.0 13.8/22.3
ArcaneQA 70.8/77.8  62.5/68.2 54.5/75.7 70.5/75.6
# of relations 1 3 4
BERT+Ranking 57.4/61.5 39.8/54.7 0.0/22.9 0.0/25.0
RnG-KBQA 75.7/79.2  65.4/74.8 28.6/44.4 100.0/100.0
ArcaneQA 74.9/80.9 59.9/71.1 27.6/37.7 100.0/100.0

Table 3: Fine-grained results (EM/F1) on GRAILQA’s dev set. None denotes programs with only AND and JOIN.

cal for non-i.i.d. generalization, i.e., on GRAILQA
the F1 on i.i.d. generalization only decreases by
6.8%, while it decreases by 15.9% and 17.5%
on compositional and zero-shot generalization.
Without contextualized encoding, identifying the
correct schema items from the KB in non-i.i.d.
setting is particularly challenging. Schema linking
powered by dynamic contextualized encoding is
the key to non-i.i.d. generalization, which is a
long-term goal of KBQA.

6.3 Efficiency Analysis

We compare the running time of ArcaneQA and
ranking-based models in the online mode (i.e., no
offline caching) to mimic the real application sce-
nario. To make the comparison fair, we configure
all models to interact with the KB via the same
Virtuoso SPARQL endpoint. We run each model
on 1,000 randomly sampled questions and report
the average running time per question on a GTX
2080 Ti card. As shown below, our model is faster
than BERT+Ranking and RnG-KBQA by an or-
der of magnitude, because ArcaneQA dynamically
prunes the search space and does not run the time-
consuming queries for enumerating two-hop candi-
dates.

BERT+Ranking RnG-KBQA ArcaneQA
115.5 82.1 5.6

Time (s)

7 Conclusions

We present a novel generation-based KBQA model,
ArcaneQA, which simultaneously addresses the
large search space and schema linking challenges
in KBQA with dynamic program induction and
dynamic contextualized encoding. Experimental
results on several popular datasets demonstrate the
advantages of ArcaneQA in both effectiveness and
efficiency. In the future, we will focus on develop-
ing generation-based KBQA models with stronger

zero-shot generalizability. In addition, exploring
other pre-trained language models such as T5 (Raf-
fel et al., 2019) for generation-based KBQA is also
an interesting direction.
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A Meaning Representation

We provide a detailed description of our defined
functions for S-expressions in Table 4. We provide
annotations in S-expressions for several KBQA
datasets, including WEBQSP, GrRAPHQ, and Cow-
PLEXWEBQ (which we did not use for experiments).
All data files annotated by us can be found in our
Github Repo.

B Implementation Details

B.1 Entity Linking Results

For GrRAILQA, we use the entity linking results pro-
vided by Ye et al. (2021); for GrRaPHQ, we use the
entity linking results provided by Gu et al. (2021);
for WeBQSP, we follow the entity linking results
provided by (Lan and Jiang, 2020). In addition,
we find that answer types can be a strong clue
for GRAILQA, so we also predict a set of FREEBASE
classes for GRAILQA as a special type of entity using
a BERT-based classifier. All entity linking results
can be found in our Github Repo.

B.2 Entity Anonymization

After identifying a set of entities, we do entity
anonymization for WEBQ, i.e., we replace the en-
tity mention with the type of the corresponding
entity. For example, mention “Barack Obama” will
be replaced by “US president”. However, the en-
tity linker might identify some false positive men-
tions, and anonymizing these mentions would lead
to some critical information loss. To address this
problem, we identify a set of common false posi-
tive mentions that contain important information
about the question in training data. Such words
include “government”, “zip”, etc. For mentions
include these words, we do not do anonymization.
Doing entity anonymization is a common practice
on WEBQ, which can normally bring some gain of
around 1 to 2 percent in F1, while for GRaiLQA and
GraPHQ, we did not observe any improvement, so
we keep the original entity mentions for these two
datasets.

B.3 Hyper Parameters

For ArcaneQA, we are only able to train our model
with batch size 1 due to the memory consumption,
so we choose a workaround to set the number of
gradient accumulations to 16. We use Adam op-
timizer with an initial learning rate of 0.001 to
update our own parameters in BERT-based models.
For BERT’s parameters, we fine-tune them with a

learning rate of 2e-5. For ArcaneQA w/o BERT,
we train it with batch size 32 and an initial learning
rate of 0.001 using Adam optimizer. For both mod-
els, the hidden sizes of both encoder and decoder
are set to 768, and the dropout rate is set to 0.5.
All hyper-parameters are manually tuned accord-
ing to the validation accuracy on the development
set. specifically, we do manual hyper-parameter
search from [le-5, 2e-5, 3e-5], [8, 16, 32], [0.0,
0.2, 0.5] to tune the learning rate of fine-tuning
BERT, steps of gradient accumulation and dropout
rate respectively.

B.4 Number of Model Parameters

Total numbers of trainable parameters of
ArcaneQA and ArcaneQA w/o BERT are
123,652,608 and 261,900 respectively. The reason
that the trainable parameters of ArcaneQA w/o
BERT are so few is that we freeze the GloVe
embeddings for non-i.i.d. generalization. The
number of parameters becomes 121,205,100 if we
take the GloVe embeddings into account.

B.5 Other Details

We summarize some other details in our implemen-
tation that are critical to reproduction.

We identify the literals in GRAILQA and GrRaPHQ
using hand-crafted regular expressions. There are
two types of literals, i.e., date time and numerical
value. Our regular expressions can identify around
98% of all literals.

During dynamic program induction of Ar-
caneQA, we follow the rules in Table 1 to run
SPARQL queries to retrieve the admissible schema
items. However, in some rare cases, the execu-
tion of a subprogram may contain a tremendous
number of entities For example, the execution of
(JOIN USA people.person.nationality) COnN-
tains over 500,000 entities, and running SPARQL
queries for all entities in them is infeasible. As a
result, we only run SPARQL queries for 100 enti-
ties sampled from the execution results. One better
choice could be to use some more efficient indexing
to query the KB instead of using SPARQL.

We construct the vocabulary V for different
datasets in different ways. For GraiLQA, follow-
ing Gu et al. (2021), we construct the vocabulary
using schema items from FREEBASECoMMONSs. For
GraPHQ, we construct the vocabulary using schema
items from the entire FREEBASE. For WEBQ, because
it evaluates i.i.d. generalization, so we construct
the vocabulary from its training data.
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Function Arguments Returns

JOIN a set of entities u C (€ U £) and arelation r € R all entities connecting to any e € u via r
AND two set of entities ul C £ and u2 C £ the intersection of two entities sets.
ARGMAX/ARGMIN a set of entities v C £ and a numerical relation r € R a set of entities from w with the maximum/minimum value for
LT (LE/GT/GE) a numerical value © C £ and a numerical relation r € R all entities with a value < (< / > / >)u for relation r
COUNT a set of entities u C & the number of entities in u
CONS a set of entities a set of entities u C &, arelation r € R, and a constraint ¢ € (EU L)  all e € u satisfying (e, 7, ¢) € K,
TC a set of entities a set of entities u C &, arelation r € R, and a temporal constraint ¢ € £  all e € u satisfying (e, r,c) € K,

Table 4: Detailed descriptions of functions defined in our S-expressions. We extend the definitions in Gu et al.
(2021) by introducing two new functions CONS and TC. Also, we remove the function R and instead represent the
inverse of a relation by adding a suffix “_inv” to it. Note that, for arguments in AND function, a class ¢ € C can also
indicate a set of entities which fall into c.

Overall LLD. Compositional Zero-shot
Model EM F1 EM F1 EM F1 EM F1
BERT+Ranking (Gu et al., 2021) 51.0 58.4 58.6 66.1 40.9 48.1 51.8 59.2
RnG-KBQA (Ye et al., 2021) 714 76.8 86.7 89.0 61.7 68.9 68.8 74.7
ArcaneQA 69.5 76.9 86.1 89.2 65.5 73.9 64.0 72.8

Table 5: The results on the validation set of GRAILQA. The overall trend is basically consistent with the test set.

C Results on the Validation Set of
GRAILQA

We show the results of ArcaneQA, BERT+Ranking,
and RnG-KBQA on the validation set of GRAILQA
in Table 5. We observe that ArcaneQA achieves a
better F1 than RnG-KBQA. Overall, the trend is
consistent with the test set. We also observe that
the EM of ArcaneQA on zero-shot generalization
is significantly higher than the test set, which is
interesting and remains for further investigation.
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