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Abstract

Compounding, a prevalent word-formation
process, presents an interesting challenge
for computational models. Indeed, the re-
lations between compounds and their con-
stituents are often complicated. It is par-
ticularly so in Chinese morphology, where
each character is almost simultaneously
bound and free when treated as a mor-
pheme. To model such word-formation
process, we propose the Notch (Nonlinear
Transformation of Character embeddings)
model and the character Jacobians. The
Notch model first learns the non-linear rela-
tions between the constituents and words,
and the character Jacobians further de-
scribe the character’s role in each word.
In a series of experiments, we show that
the Notch model predicts the embeddings
of the real words from their constituents
and helps account for the behavioral data
of the pseudowords. Moreover, we also
demonstrated that character Jacobians re-
flect the characters’ meanings. Taken to-
gether, the Notch model and character Ja-
cobians may provide a new perspective on
studying the word-formation process and
morphology with modern deep learning.

1 Introduction

Recent years have witnessed a growing interest
in modeling the internal semantic dynamics
of compounds. Indeed, compounding is some-
times argued as a language universal, and it
is claimed to be protolinguistic fossils which
modern languages frequently elaborate. Com-
pounds are usually loosely defined as form-
ing words with two independent words, such
as blackboard and pineapple (Libben, 2014;
Bauer, 2009; Jackendoff, 2002). It is apparent
that the number of potential combinations is
already enormous, even in this simplest form
of the two-constituent compound.
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The productivity of compounding is par-
ticularly evident in Chinese word-formation.
Due to the debating nature of Chinese word-
hood, there is a vague boundary between word-
forming affix and bound root when treating
a Chinese character (7% zi) as a morpheme
(Huang et al., 2017; Hsieh et al., 2018; Tseng
et al., 2020). There is considerable flexibility
in Chinese characters, where morphemes can
be joined with one another either preceding
or following them. For example, the following
four words all start with the characters which
are the ends of the previous one: & zhang
150 “elder”, Hifi 140 shi “teacher”, Fili#i shi fan
“teacher-training”, #i[# fan wéi “area”. The
versatility of characters leads Hoosain (1992)
to describe Chinese text as “a continuous pa-
rade of meaningful individual characters (mor-
pheme)” (see Packard (2000) for a complete
introduction in Chinese morphology).

However, the productivity of Chinese char-
acters is hard to capture by a computational
model. A traditional natural language pipeline
starts with word segmentation, which removes
the sublexical cues (characters) in the first
step. Even for the later distributional seman-
tic model with sub-word information, such as
FastText (Bojanowski et al., 2016), it cannot
accommodate the different meanings carried
by individual Chinese characters. Recent deep
learning models, e.g., BERT (Devlin et al.,
2018), provide contextualized embeddings of
each token. But, as the final representations
are mixed (hence contextualized), it is unclear
how the embeddings could relate to the origi-
nal character tokens.

Therefore, we propose the Notch model
(Nonlinear Transformation of Character em-
beddings), and with which we derive character
Jacobians. We first train the Notch model to
learn the relationships between the constituent
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characters’” and the whole word’s meaning.
Next, we show that character Jacobians de-
rived from the model capture the different
roles of characters in the whole word. The rest
of this paper is organized as follows. First, in
section 2, we briefly review the relationship be-
tween Chinese characters and words and their
complicated behaviors in Chinese morphology.
Section 3 describes the Notch model and shows
that it not only predicts the real words but
helps account for the behavioral data of pseu-
doword. Finally, in 4, we explore the character
Jacobians and evaluate them on a Chinese af-
fixoid dataset.

2 Related works

The vague boundary between affixation and
compounding does not only occur in Chinese
word-formation. For example, Plag (2003)
points out the problem of neoclassical ele-
ments, such as the word bio-logy. While one
would tend to treat bio-, and -logy as prefixes
and suffixes, which would violate the basic as-
sumption about the word structure; that is,
there will be no root in this word. Plag ar-
gues that these words, often called combining
forms, should be best treated as compounds.

Studying compounds and their constituents
poses interesting questions in computational
modeling. As the meaning of the compounds
may be free from its composing elements, de-
termining the meaning of a newly encountered
compound is thus difficult (Jackendoff, 2002).
One interesting attempt is to model the mean-
ings of the constituents separated from their
free-word counterparts (Giinther and Marelli,
2021; Libben, 2014). The difference between
the as-constituent and free-word representa-
tions is called semantic shift. A linear model
is then built to simultaneously estimate the
semantic shifts of the constituents and their
linear relations with the compounds by linear
algebra.

In Chinese word formation, a character may
play different morpho-semantic roles in differ-
ent words, even if they are in the same po-
sition. Therefore, it may not be straightfor-
ward to accommodate such versatility into a
single linear transformation. Yet, we could
consider the relations between the constituents
and compounds as a complex non-linear func-

tion; the linear transformation is then a local
approximation at that specific local neighbor-
hood. Here, we use the Jacobian matrix to
obtain the local linear approximation, which
is previously used to construct a saliency map
and understand network properties (Papernot
et al., 2016; Wang et al., 2016). However, be-
fore we compute and evaluate the Jacobian, we
should first build our non-linear function be-
tween constituent and word, that is, the Notch
model.

3 The Notch model

The purpose of the Notch model is two-fold.
First, it should learn the semantic relation-
ships between the variable-length character se-
quences (i.e., the constituents) and the whole
words. As the semantics of constituents and
words are both described by a semantic vector
space, the model-learned relationship is essen-
tially a function of R*™ — R™, with n being
the semantic space’s dimension and k being
the word length. Second, the model also pro-
vides the Jacobians with which we characterize
the character’s role in a given word. Therefore,
we first train the model to predict the whole
word’s embedding from the embeddings of its
constituents. !

3.1 Model training

We trained the Notch model to learn the rela-
tions between whole words and constituents
in a given embedding space. The embed-
ding space we used was the Chinese word em-
beddings from Tencent AI lab (Song et al.,
2018). The embedding dataset consisted
of two million words with 100 dimensions.
As the Tencent embedding is a more task-
oriented NLP resource, entries (both simpli-
fied and traditional Chinese) included may
contain both fine-grained words (words from
conventional word segmentation) and coarse-
grained words (short phrases or compounds
in linguistic senses) 2. Therefore, we chose
the first 500 thousand of them for the more
commonly used words. For comparison, in a
manually-segmented Taiwan Mandarin corpus

'The code is available at https://github.com/
lopentu/character-jacobian

2The steps of word  segmentation  of
Tencent embeddings are described on
https://ai.tencent.com/ailab/nlp/en/embedding.html
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of 15M characters (CKIP, 1998), the number
of unique words (word types) is 217K, and
122K of them occurred more than once in the
corpus (i.e., words that are not hapax legom-
ena).

These 500 thousand words are further ran-
domly split into 490K training words and 10K
testing words. Each word corresponds to a
100-dimension word vector. The word vec-
tors were all first normalized into unit length.
The training words comprise 1,809,674 char-
acter tokens, which are 8,749 unique charac-
ters (character types). There are 7,792 single-
character words, 119,062 two-character words,
103,099 three-character words, 166,330 four-
character words, and 93,717 words having five
or more characters.

The Notch model’s architecture was based
on a pre-trained BERT (Devlin et al., 2018)
(based on bert-base-chinese model) and fol-
lowed by a task-specific fully-connected layer.
At first, the model took a sequence of variable-
length characters as input, which were first
tokenized by character with the pretrained
bert-base-chinese tokenizer. Next, the
BERT’s encoded representation of the first
[CLS] token was further transformed with
a fully-connected layer, which is responsi-
ble for projecting the embeddings from the
BERT model space of 768-dimension into Ten-
cent’s embedding space of 100-dimension. The
model was trained with a mean-squared-error
objective, where the model tried to mini-
mize the error between the predicted embed-
dings and the actual embeddings. AdamW
(Loshchilov and Hutter, 2017) was used for op-
timization. The learning rate was le-4, 51 was
0.9, betaz was 0.999 and L2 weight decay was
0.01. The learning rate was first warmed up
for 100 steps and linearly decayed for the rest
of the training. The model was trained for one
epoch with a batch size of 32. The training
took 25 minutes on a P100 GPU.

3.2 Evaluation on real words

We evaluate the model with the top-k accura-
cies of its predicted embeddings. Specifically,
if the model’s predicted vectors have the true
embeddings as their closest k neighbors, the
model’s predictions are counted as correct.
The evaluation results are shown in Ta-
ble 1. The overall topl accuracy of the

Len. N Topl Topb ToplO
1 162 .73 .85 .86
2 2,522 .63 .78 .81
3 2,123 .66 .79 .84
4 3,375 .75 .87 .90

>5 1,818 .57 72 7
All 10,000 .67 .80 .84

Table 1: Top-k accuracies when predicting word
embeddings from the constituents. All top-k ac-
curacies are calculated based on the whole testing
set. That is, the chance levels are randomly guess-
ing a word among the 10,000 words regardless of
their word length.

Notch model’s predicted embeddings is .67,
the top 10 accuracy is .84. As the model’s pre-
dictions are compared among the 10,000 can-
didates’ word embeddings, the chance level of
the top1 and top 10 accuracy would be le-4
and le-3. The results indicate the model cap-
tures the relationships between the constituent
characters and the corresponding word embed-
dings. The accuracies vary among different
word lengths. The two-character word’s ac-
curacy is lower than the four-character one’s
(.63 vs. .75, respectively). As the Chinese
four-character words are mostly idioms known
for their semantic opaqueness, the pattern
might initially seem counter-intuitive. How-
ever, a closer look into the word embeddings
reveals that these four-character words are
mostly coarse-grained words, which act like
short-phrases. For example, Fe4 &8, which
could be considered a two-word short phrase,
Fe4k chéng zuo “riding” and H# gao tié “high-
speed rail”.

To further explore the model predictions,
Table 2 shows samples of the prediction er-
rors. The error patterns indicate that the
model predicts the meanings not only from
the character semantics but the general word-
level information. For example, the second
one is a transparent two-character word, Hfi
FR tuo chu “get rid of”; the composing char-
acters of which both have meanings related to
removal. The model thus consistently predicts
the words with related meanings. Moreover,
the predictions may also be related to word-
level properties. For instance, the third exam-
ple is the name of green tea, the meaning of
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Targets Predictions

Translations

1AM (16)
2 kR (19)
3 FEE (17)

B XIRA; 53z
KBk, MR, #1R
DU, JA L, ZEEERR SR

4 WEH (15) IER, R, ESH

5 MR (16) UL TR, SZIRES), BRI —FE

6 ZIAHET (14) 16V, BEE TR, TRASE

emcee: imperial commisioner; Lord Liu; wait upon
get rid of: discard; fade away; remove

bi-luo-chun (a green tea):

Guan Hanging, a Chinese playwright;

Romance on Lushan Mountain, a Chinese movie;
Xiaozhuang Epic, a TV drama

watch-ing: in the film; during the performance;

in the story

social distancing: mutual understanding;
communication skills; (be) like friends

solve the root of the problem (an idiom):
take credit; (totally) giving up; blamed by everyone

Table 2: The prediction errors of the Notch model. The numbers in the brackets are the location of the
targets in the predictions; that is, the number 1 indicates the prediction is correct as the Top-1 prediction.
The loose translations are provided in the last columns, where the words before the colons are target
words, followed by three predictions separated by semicolons.

which is not decomposable to its constituents.
However, while not semantically correct, the
model’s predictions are also other proper play-
wright or movie names. Similarly, the model
does not capture the word meaning for a fully
opaque term (e.g., the last one), but the pre-
dictions are related to other opaque idioms.

While the model’s accuracies might suggest
the words’ semantics (word embeddings) could
be almost determined from their constituents,
there are caveats in this interpretation. On
the one hand, the model inputs are character
tokens, and the model has an embedding layer
in its first layer. Therefore the model could
learn or tune character embeddings to predict
the final word embeddings. In this sense, the
model does compute the final word embed-
dings based on the constituent embeddings.
On the other hand, the BERT’s transformer
architecture keeps mixing and warping the con-
stituent embeddings in its 12 encoding layers
(Lee-Thorp et al., 2021; Tolstikhin et al., 2021;
Mai et al., 2022); therefore, the final output of
the [CLS] is no longer a simple linear combi-
nation of their constituents. That is, the con-
stituent embeddings are themselves changing
based on extra-constituent information; thus,
it is context-dependent (Baggio et al., 2012).
Finally, we are using a distributed semantic
model to operationalize word semantics, the
predictability may be the characteristic of the
vector semantic model rather than word se-
mantics itself.

Nonetheless, it is still interesting to ask

what the Notch model captures among these
constituents. Having demonstrated the Notch
model could predict the word embeddings
in real words, we next examine whether the
model could predict the embeddings of novel
constituent combinations, i.e., pseudowords.
As pseudowords, by definition, do not occur
in our linguistic uses, they cannot readily be
given word embeddings to be compared to
model predictions. Therefore, we turn to be-
havioral data in psycholinguistics to evaluate
the model’s prediction of pseudowords.

3.3 Evaluation on Pseudowords

In this experiment, we try to evaluate the
Notch model by how the predicted embed-
dings shed light on the behavioral data of
pseudowords. Although word recognition has
been well studied, pseudowords in psycholin-
guistics, especially in lexical decision tasks
(LDT), are experimental stimuli which exper-
imenters have little interest in. However, re-
gardless of real words or pseudowords, the in-
formation is accumulated over time for both
words and pseudowords in an LDT task (Yap
et al., 2015; Ratcliff et al., 2004). That is, pseu-
dowords are not devoid of meaning (Hendrix
and Sun, 2021; Chuang et al., 2021). More-
over, the behavioral data of the pseudowords
provide unique insights into lexical processes
when the word-level information does not yet
influence them.

Therefore, we derive two semantic indices
from the Notch model and use statistical mod-
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els to examine their effects on pseudoword pro-
cessing. First, we identify the 50 nearest se-
mantic neighbors of a pseudoword based on
the model predicted vectors. The neighbors
are selected among the whole 500K words in
the dataset. Next, we create a vector whose
elements are the 50 neighbor distances in as-
cending order, 7,,, where w is the given pseu-
doword. Basing on the vector m,,, we calculate
the average distance of the closest 5 neighbors,
smSimTop5, and the difference of distances be-
tween the .90 and .10 quantiles, smSimRange.
Specifically, the smSimTop5 indicates how
close the pseudoword is to a real word, and
smSimRange captures how densely populated
the pseudoword located in the word embed-
ding space. The smaller the smSimRange, the
more densely-packed the neighbors are in a
given (hyper-)sphere; the larger the value, the
more sparsely-populated the pseudoword is lo-
cated.

We use the pseudoword data from the
MELD-SCH dataset (Tsang et al., 2018).
The dataset contains lexical decision data on
25,156 words from 504 native Chinese speak-
ers. There are equal numbers of real words
and pseudowords in the dataset, i.e., 12,578
words for each word type. Each of these
word types has 1,020 one-character, 10,022
two-character, 949 three-character, and 587
four-character words. The dataset also in-
cludes additional character-level information
for each word, e.g., number of strokes, charac-
ter frequency, and number of meanings. This
additional information serves as the statistical
model’s controlled variables, or the semantic
indices’ effects may be proxies or surrogates
for other character-level effects. The inclusion
of character-level variables also implies a sin-
gle statistical model could not accommodate
words of different lengths as they require a dif-
ferent number of variables. Therefore, we se-
lect two-character words as they are the most
commonly occurred words in the MELD-SCH
and the Tencent word embedding dataset.

We include 12 explanatory variables on
this analysis,
dices derived from the Notch model, namely
smSimTop5 and smSimRange; 10 charac-
ter level indices, that is, character fre-
quency for first and second constituents

which are two semantic in-

(Cllogcf, C2logcf), number of strokes
(Clstroke, C2stroke), number of words
formed(Cllognwf, C2lognwf), number of

meanings(Clnom, C2nom), number of pronun-
ciations (Cilnop, C2nop). These variables are
used to predict error rates and response time
in their respective models 2.

The statistical results are shown in Figure
1. The left panel shows the variable impor-
tance of 12 variables with respect to error
rates and response times. The importance
scores are estimated by the “mean decrease
in accuracy” following the permutation princi-
ple in a 100-tree random forest (Hothorn and
Zeileis, 2015). The figure shows the Notch-
derived semantic index, smSimRange, is among
the most important features in both error rate
and response time models, along with the
number of the word formed in second con-
stituents C2lognwf. The other semantic in-
dex, smSimTop5, however, is the fourth most
important feature in error rates but is the sev-
enth one in response time.

A closer look at the variable effects with
the generalized additive model (GAM) (Wood,
2011) also shows consistent patterns. + Here,
we include the semantic indices and other im-
portant variables, namely the number of words
formed and character frequency in the GAM
models. All included variables are highly sig-
nificant in the models. In particular, the par-
tial effects shown in the center and right pan-
els of Figure 1 indicate a nearly positive lin-
ear effect of both smSimRange and smSimTop5.
The patterns suggest that the Notch-derived
indices, especially smSimRange, help explain
the behavioral error rates and response times.
Specifically, when the pseudowords are in a
less populated area (large smSimRange val-
ues), the participants tend to respond slower

3Due to their distribution characteristics, the char-
acter frequency, and error rates, number of meanings,
and number of pronunciations are log-transformed. Re-
sponse time is reciprocally transformed and multiplied
by -1000 to keep the same sign and direction.

“Two GAM models have nearly the same explana-
tory variables, only RT model has an additional
Clstroke due to its importance in the random forest
analysis. smSimRange and smSimTop5 are included as
thin plate regression spline smoothing terms. Other
pairwise character-level information is included as
tensor-product smoothing terms. The worst concuvri-
ties of the semantic indices are .13 and .09. The Pear-
son correlation between smSimRange and smSimTop5 is
.20
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Figure 1: The statistical results of the Notch-model derived semantic indices: smSimDist and SimRange.

The left panel shows the variable importance.
estimated by GAM.

and make more errors. Similarly, when the
pseudowords have similar real word neighbors
(larger smSimTop5), the responses tend to be
slow and more error-prone. Although the un-
derlying lexical process is inevitably more com-
plicated, the results already demonstrate the
relevance of the Notch-model derived semantic
indices.

After real words and pseudowords evalua-
tions, we established the Notch model can
capture relationships between the constituent
and word embeddings. Such capacity would
suggest the model may learn the representa-
tions of how a character would function as a
constituent in a word. Therefore, we further
probe into the model to examine its character-
level representations.

4 Character Jacobian

In this section, we extract and evaluate
the character-level information in the Notch
model. Being a model based on BERT, the
Notch model learns the contextualized embed-
dings of each token in its input sequence. The
characteristic has been applied to the word
sense disambiguation task, where the model
is successfully employed to create sense embed-
dings (Loureiro and Jorge, 2019; Scarlini et al.,
2020). Therefore, an interesting question to
ask is, how could we extract the character-
level context-dependent information from the

The center and right panels show the partial effects

Notch model?

Specifically, this character-level information
should ideally differentiate the word contexts
the character occurs. For example, the charac-
ter & shou means “hand” as an independent
word. However, the same character could oc-
cur at the start of the word and carries differ-
ent meanings, such as % shou qi “luck” and

% shou bi “arm”. In addition, the meanings
are also different when occurring at the end of
the word: #(F ge shou “singer”, or 77 F fen
shou “break up”. That is, the character-level
information should have different representa-
tions for the same character when it is used
differently.

There are at least three different approaches
to extract character-level information from
the Notch model. The first one is to use
the BERT input embeddings directly. Since
the bert-base-chinese is a by-character to-
kenizer, the input embeddings act like char-
acter embeddings. However, this approach
does not have access to other characters in
the same word; therefore, it is not context-
sensitive as we require. The second approach
uses the token embeddings in the later lay-
ers of the BERT model, with the advantage
that the token embeddings would be context-
sensitive after layers of transformation. Yet, it
also implies that the token embeddings have
already incorporated or mixed the represen-
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Figure 2: A visualization of the Jacobian matrix.
The rectangular grid (left) is transformed into a
warped mesh (right) by a non-linear function. The
Jacobian matrix describes how the grid is trans-
formed locally, as shown by the black arrows.

tations from other tokens. Hence, it is not
straightforward to attribute the token to the
input character anymore. The third approach,
which is simultaneously context-sensitive and
character-specific, is through the Jacobian ma-
trix.

4.1 Jacobian matrix

The Jacobian matrix is a matrix whose ele-
ments are the first-order partial derivatives of
a vector-valued function:

AR (X) OF(X)
o1 T OTn
VEX) = | s
OFm (X) OFm(X)
o1 te OTn

As the Notch model’s inputs are discrete
characters, we need first to convert the input
characters to vectors to compute the Jacobian.
Therefore, we leverage the input embeddings
in the BERT embedding layer and convert the
characters to vectors without introducing ad-
ditional parameters. The converted embed-
dings are from the raw embeddings that are
not yet involved with positional and sequence
type encodings. The converted vectors are
then used as the model input. Therefore, the
Notch model could be considered as a function
that brings the input vectors from the space of
R7%8* where k is the word length, to the word
embedding space of R7%®,

The Jacobian of the input characters could
be considered as the linear projection matrix
that best approximates the non-linear trans-
formation at a specific location in space. In-
formally, it describes how a slight perturba-
tion of the character’s input vector nudges the

word vectors in the embedding space. Fig-
ure 2 shows a simple illustration of a non-
linear function transforming a rectangular grid
into a warped mesh. Note that in the fig-
ure, although the transformation is non-linear,
each transformed arrows are still tangent to
its transformed grid. The Jacobian provides
a way to describe how each black arrow are
warped in its specific location.

Moreover, as the function (i.e., the Notch
model) is context-sensitive to its input charac-
ters, the Jacobian automatically encodes the
context in which the character occurs. In ad-
dition, the Jacobian is the first derivative of
the character embeddings. We can directly at-
tribute the matrix to that character. Thus,
the Jacobian matrix satisfies the requirements
of character-level information.

The downside of this approach would be
that obtaining Jacobian matrices is relatively
computationally expensive. As opposed to
the input embedding and token embedding ap-
proach, which only requires a vector of 768 di-
mensions (i.e., the model dimension) for each
character in each context, the Jacobian ap-
proach will require a 100 x 768 matrix and ad-
ditional steps to compute. However, the issue
should be alleviated with the advancement of
algorithms (Baydin et al., 2022) and the hard-
ware.

In the following evaluation, we only focus
on the two-character word hence the charac-
ter Jacobian, J(¢), is defined by the Jacobian,
VF(c):

8F(I/1, VQ)

(ci) & N —
J VF(¢) 0

where v; and v, are the corresponding input
vectors.

4.2 Evaluation on affixoids clustering

In this evaluation, we aim to examine to what
extent the character Jacobians captures the
characters’ role in the words. The dataset
we used is the “Common Affixoids Database”
compiled by the CKIP group at Academia
Sinica, Taiwan. The dataset includes differ-
ent roles of a character, consisting of prefixes,
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Figure 3: The distribution of normalized cluster scores, o. under different conditions. The inset figure
shows the median of o.. The dashed line marks the position of .05 for the visual reference.

suffixes, or morphological roots. ®. Characters
with different roles or different meanings will
have separate entries. There are 2,471 unique
characters and 4,893 entries in the dataset.

Among these entries, we first identified a set
of characters that have more than one entry
in the dataset. For example, 2 had one en-
try indicating land or clay, such as 7 til
shi “earth and stones” or 132 tii ti “embank-
ment”; also, it had another entry indicating
“native or local”, such as T %1 ti gou “na-
tive dog” or -3 tu zhu “indigenous people”.
We extracted at least two instances (i.e., ex-
ample words) for each entry and at most five
instances whose word frequencies were larger
than one. As a result, we selected 796 unique
characters and 1,765 entries. Among these en-
tries, there are 7,072 instances.

For each character, we compute the char-
acter Jacobians of each instance in different
entries. For example, 1. has two entries,
and each entry has two instances, then we
compute four character Jacobians for each in-
stance. These Jacobians are then compared
to each other to obtain a distance measure.
Here we use the L1-norm. If the character Ja-
cobians indeed capture the characters’ roles in
different instances, the distances between char-
acter Jacobians of the same entry should be
closer to those from other entries. That is, we
could evaluate the character Jacobians by mea-
suring the clustering performance implied by
their pairwise distances. Here, we assess the
clustering with the averaged silhouette score

5The dataset is publicly available at http://turing.
iis.sinica.edu.tw/affix

(Rousseeuw, 1987).

Furthermore, to establish a reference, we
build a null distribution for each averaged sil-
houette score with random permutations. We
randomly permute the instance labels 1,000
times for each character and compute one sil-
houette score. That is, we calculate the same
averaged silhouette score as if the meanings
of the characters no longer group the example
words. These permuted scores will form a null
distribution to which the silhouette score will
be compared. Finally, we compute normal-
ized cluster scores o, for each character to indi-
cate the clustering performance. The normal-
ized cluster scores are defined by 1 — Py (X),
that is, the probability of obtaining the val-
ues higher than the observed silhouette scores
assuming the null hypothesis is true. A lower
0. would indicate the corresponding silhouette
score is less likely to result from the random
chance, hence, the better clustering.

In addition to the character Jacobian of
the target character (CharJac-Target, e.g.
+ in d:£), we also include five conditions
for comparison. The CharJac-nonTarget
refers to the character Jacobian of the char-
acter in non-target position (e.g. £ in +
£1).  This condition show the roles of the
other character in the same word. Next, the
NotchVec-Word and TencVec-Word are com-
puting the same silhouette scores but using
the word vectors from the Notch predictions
and Tencent embeddings respectively. These
conditions provide the baseline for word-level
semantics. Finally, the TencVec-nonTarget
and InputEmb-nonTarget both compute the
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scores based on the embeddings of the char-
acter at non-target position. The former
one uses the single-character word embeddings
from Tencent dataset, while the later one uses
the input embeddings from the first layer of
Notch model. These two conditions serve
as the baselines for the information the non-
target character could provide in clustering.

The results are shown in Figure 3. It can
be seen the two conditions of character Jaco-
bian have distinct distributions compared to
other conditions. The inset plot in Figure 3
further shows the median of o, for each con-
dition. It is apparent that the character Ja-
cobians, regardless of the target or non-target
position, could form the clusters better, as in-
dicated by the lower values compared to other
conditions. The comparison across conditions
additionally reveal that the clustering results
cannot be achieved by the word-level semantic
(the NotchVec-Word and TencVec-Word condi-
tion), or by considering the character as single-
character alone (the TencVec-nonTarget and
InputEmb-nonTarget). The results demon-
strate that character Jacobian captures an im-
portant aspect of the character’s role in the
word.

5 Conclusion

In this paper, we present the Notch model,
from which we derive the character Jacobians.
In a series of experiments, we show that the
model predicts the embeddings of the real
words from their constituents and helps ac-
count for the behavioral data of the pseu-
dowords. In addition, we also show that char-
acter Jacobians capture characters’ roles in the
words, which reflect the meanings of the char-
acters.

The approach to study compounding by
modeling the word embeddings and explor-
ing their Jacobians could also be applied to
other languages. Multilingual language mod-
els and word embeddings are readily available
in the community. However, the most interest-
ing question is how to study compounding if
the language’s writing system may introduce
spaces in the compounds, such as the case
in English. The commonly-used word embed-
dings only include entries with no interword
spaces. That is, there will be entries for earth-

quake, airport, but no entries for rush hour,
coffee mug. Moreover, it could be argued that
the interword spaces bear significance in cog-
nitive processing (Juhasz et al., 2005). It will
be thus an interesting future work to system-
atically study compounding in this case.

Character Jacobians open up new possibili-
ties to study Chinese characters or morphology
with deep learning models. However, as the
Jacobian is an abstract mathematical object,
other future works include further investigat-
ing its relation with morphological rules and
lexical categories and how it connects to the
distributional semantics.
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