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Abstract

Most of the contemporary approaches for
multi-hop Natural Language Inference (NLI)
construct explanations considering each test
case in isolation. However, this paradigm is
known to suffer from semantic drift, a phe-
nomenon that causes the construction of spuri-
ous explanations leading to wrong conclusions.
In contrast, this paper proposes an abductive
framework for multi-hop NLI exploring the
retrieve-reuse-refine paradigm in Case-Based
Reasoning (CBR). Specifically, we present
Case-Based Abductive Natural Language In-
ference (CB-ANLI), a model that addresses un-
seen inference problems by analogical transfer
of prior explanations from similar examples.
We empirically evaluate the abductive frame-
work on commonsense and scientific question
answering tasks, demonstrating that CB-ANLI
can be effectively integrated with sparse and
dense pre-trained encoders to improve multi-
hop inference, or adopted as an evidence re-
triever for Transformers. Moreover, an empir-
ical analysis of semantic drift reveals that the
CBR paradigm boosts the quality of the most
challenging explanations, a feature that has a
direct impact on robustness and accuracy in
downstream inference tasks.

1 Introduction

Multi-hop inference is the task of composing two or
more pieces of evidence from external knowledge
resources to address a particular reasoning prob-
lem (Thayaparan et al., 2020). In the context of
Natural Language Inference (NLI), this task is of-
ten used to develop and evaluate explanation-based
systems, capable of performing transparent multi-
step reasoning with natural language (Wiegreffe
and Marasovic, 2021; Jansen et al., 2018; Cam-
buru et al., 2018). While multi-hop inference has
been largely explored for extractive problems such
as open-domain question answering (Yang et al.,
2018), increasing attention is being dedicated to
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Figure 1: Performing multi-hop inference considering
each case in isolation can lead to the construction of
spurious explanations. In contrast, we propose the
adoption of a Case-Based Reasoning (CBR) paradigm
where the construction of new explanations is con-
strained by previously solved examples.

the abstractive setting, where the models are re-
quired to compose long chains of facts expressing
abstract commonsense and scientific knowledge
(Clark et al., 2018; Valentino et al., 2022).

In this setting, multi-hop inference is often
framed as an Abductive Natural Language Infer-
ence (ANLI) problem (Bhagavatula et al., 2019),
where, for a given set of alternative hypotheses
H = {h1, h2, . . . , hn}, the goal is to construct an
explanation for each hi ∈ H and select the hypoth-
esis supported by the best explanation (Thayaparan
et al., 2021a). Existing approaches address abduc-
tive inference considering each test hypothesis in
isolation, employing iterative and path-based meth-
ods (Kundu et al., 2019; Yadav et al., 2019b) or
explicit constraints to guide the generation of a
plausible explanation graph supporting the correct
answer (Khashabi et al., 2016; Khot et al., 2017).

However, this paradigm poses several challenges
in the abstractive setting as:

• The structure of the explanation is not evident
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from the decomposition of the hypothesis, that
is, the type of facts required for the inference
cannot be derived from the surface form of
the reasoning problem;

• Core explanatory facts tend to be abstract,
sharing a low number of terms with the hy-
pothesis, making it hard to correctly estimate
their relevance for the inference;

• Background knowledge sources contain a
large amount of irrelevant facts overlapping
with the hypothesis, a feature that can lead to
the generation of spurious explanations.

Consequently, existing approaches often suf-
fer from a phenomenon known as semantic drift
(Khashabi et al., 2019) – i.e., the tendency of com-
posing incorrect reasoning chains leading to wrong
conclusions as the number of required inference
steps increases. The example in Figure 1 illustrates
some of these challenges.

In contrast with the dominant paradigm, we pro-
pose to integrate Abductive Natural Language In-
ference in a Case-Based Reasoning (CBR) frame-
work (Schank et al., 2014; Das et al., 2021). CBR
systems operate under the hypothesis that similar
problems require similar solutions, addressing new
cases via analogical transfer from previous cases
solved in the past. Specifically, the Case-Based
Reasoning framework employs a retrieve-reuse-
refine paradigm to model inference over unseen
problems (Schank, 2013; De Mantaras et al., 2005).
In the context of multi-hop inference, we hypothe-
sise that the adoption of a Case-Based Reasoning
framework can help tackle some of the challenges
involved in the abstractive setting since:

• Similar natural language hypotheses tend to
require similar explanations;

• Abstract facts tend to express general explana-
tory knowledge about underlying regularities,
being frequently reused to explain a large va-
riety of phenomena;

• Prior solutions can explicitly help constraint
the search space, reducing the risk of compos-
ing spurious inference chains.

To investigate these hypotheses, we present a
Case-Based Abductive NLI (CB-ANLI) model that
retrieves and adapts natural language explanations

from training examples to construct new explana-
tions for unseen cases and address downstream in-
ference problems. Specifically, this paper provides
the following main contributions:

• To the best of our knowledge, we are the first
to propose an end-to-end case-based abdu-
tive framework for multi-hop and explanation-
based NLI;

• We empirically demonstrate the efficacy of
the CB-ANLI on commonsense and scientific
reasoning tasks, showing that the proposed
model can be effectively integrated with differ-
ent sentence encoders and downstream Trans-
formers, achieving strong performance when
compared to existing multi-hop and explain-
able approaches;

• We investigate the impact of the retrieve-reuse-
refine paradigm on semantic drift, and how
this affects accuracy and robustness of the
model. Our results show that the case-based
framework boosts the quality of the expla-
nations for the most challenging problems,
resulting in improved downstream inference
performance.

2 Case-based Abductive NLI

For a given set of alternative natural language hy-
potheses H = {h1, h2, . . . , hn}, the goal of Ab-
ductive NLI is to construct an explanation for each
hi ∈ H and select the hypothesis supported by
the best explanation. Given an hypothesis hi (e.g.,

“Two sticks getting warm when rubbed together is
an example of a force producing heat”), we con-
struct an explanation justifying hi by extracting
and composing inference chains between multiple
explanatory facts retrieved from an external corpus.

To generate and score an explanation for hi, we
adopt a Case-Based Reasoning (CBR) paradigm
composed of three major phases, retrieve-reuse-
refine, which can be summarised as follows (see
Fig. 2):

1. Retrieve: In the retrieve phase, we employ a
sentence encoding mechanism to search over
two distinct embedding spaces. A first em-
bedding space (Facts Embeddings) is adopted
to retrieve a set of candidate explanatory sen-
tences for the hypothesis. A second embed-
ding space (Cases Embeddings) is used to re-
trieve similar cases solved in the past whose
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Figure 2: Overview of the proposed CBR framework. We adopt a retrieve-reuse-refine paradigm to construct and
score explanations for a set of mutually exclusive hypotheses (a) and address NLI tasks via abductive inference by
selecting the hypothesis supported by the best explanation.

explanations can be useful to guide the search
for a new solution.

2. Reuse: In the reuse phase, we condition the
relevance of a given fact on the set of expla-
nations retrieved from the most similar cases.
Specifically, we reuse previously solved cases
to estimate the explanatory power of a fact,
representing the extent to which a given sen-
tence appears in explanations for past hypothe-
ses.

3. Refine: In this phase, the list of candidate
explanatory facts is refined to build the final
explanation. We model the construction of an
explanation via multi-hop inference between
hypothesis and candidate facts, composing
abstractive inference chains to estimante the
plausibility of the candidate explanatory sen-
tences.

Given a set of alternative hypotheses, we adopt
the CBR framework for explanation generation,
and subsequently leverage the score assigned
to each explanation to address downstream NLI
tasks. Additional details on the retrieve-reuse-
refine phases are described in the following sec-
tions.

3 Explanation Generation

3.1 Retrieve

We perform k-NN search over two distinct em-
bedding spaces: (a) an embedding space encod-
ing individual commonsense and scientific facts
that can be used to construct new explanations
(Facts Embeddings); (b) an embedding space of
true hypotheses associated with their respective ex-
planations (Cases Embeddings). An explanation
for a given hypothesis hi is a composition of facts
Ei = {f1, . . . , fn} form the Facts Embeddings.

To perform k-NN search, we employ a sentence
encoder e(·). Specifically, we use e(·) to derive a
vector for the test hypothesis h and adopt cosine
similarity to efficiently score and rank facts and
hypotheses in the embedding spaces, retrieving the
top-k instances. We perform our experiments using
a sparse (BM25 (Robertson et al., 2009)) and a pre-
trained dense encoder (Sentence-BERT (Reimers
and Gurevych, 2019)) adopting a search index for
efficient retrieval (IndexIVFFlat in FAISS (John-
son et al., 2019)). We adopt the WorldTree corpus
(Jansen et al., 2018) as background knowledge (ad-
ditional details in Section 5).
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3.2 Reuse
Previous work has shown that explanatory facts
expressing underlying regularities tend to create
explanatory patterns across similar hypotheses
(Valentino and Freitas, 2022; Valentino et al., 2021,
2022). Following this line of research, we conjec-
ture that explanations from similar cases can be
reused to constraining the search space for unseen
hypotheses and improve downstream NLI.

Specifically, given an unseen hypothesis h and
a fact fi, we adopt the explanations retrieved from
the top-K similar hypotheses in the Case Embed-
dings to estimate the explanatory power of fi:

pw(h, fi) =

K∑
hk∈kNN(h)

sim(e(h), e(hk)) · 1(fi, hk) (1)

1(fi, hk) =

{
1 if fi ∈ Ek

0 if fi /∈ Ek
(2)

where kNN(h) = {h1, . . . , hK} represents the
list of k-nearest hypotheses of h retrieved accord-
ing to the cosine similarity sim(·) between the em-
beddings e(h) and e(hk), and 1(·) is the indicator
function verifying if fi is included in the explana-
tion Ek for the hypothesis hk. Therefore, for each
hypothesis hk in the set of k-nearest neighbours,
the model sums up the quantity sim(·) only if fi is
used to explain hk. Since sim(e(h), e(hk)) repre-
sents the similarity between h and hk, the more fi
explains past hypotheses that are similar to h the
higher the explanatory power of fi. To condition
the list of candidate explanatory facts on previously
solved cases while controlling for relevance with
respect to the test hypothesis h, we compute the
final explanatory relevance of each fi by interpo-
lating the explanatory power with the similarity
between the embeddings e(h) and e(fi):

er(h, fi) = λ · sim(e(h), e(fi)) + (1− λ) · pw(h, fi) (3)

The explanatory relevance score is used to re-rank
and filter the list of candidate facts for the subse-
quent phase.

3.3 Refine
In the refine phase, the model considers the set of
candidate facts retrieved in the previous stage to
construct the final explanation for h. We model the
construction of an explanation through multi-hop
inference between hypothesis and candidate facts

via the composition of explicit inference chains. To
this end, we represent facts and hypothesis as bags
of distinct concepts CP (si) = {cp1, . . . , cpn}
(e.g., “friction is a kind of force” is represented as
the set {friction, force}, details in the appendix),
and connect two generic sentences si and sj by
means of shared concept in CP (si) ∩ CP (sj).

To link the hypotheses to potentially abstract ex-
planatory sentences, we construct an explanation
graph in different stages, starting with the hypothe-
sis h as the only node. In the first stage, the model
extends the graph with the facts that share direct
concepts with h and that express taxonomic rela-
tions or synonymy. This step can be seen as an
abstraction/grounding mechanism aimed at linking
the hypothesis to core explanatory facts (Jansen
et al., 2018; Thayaparan et al., 2021a) (e.g., linking
stick to object and friction to force in Figure 2).

In the second stage, the model extends the graph
with all the remaining candidate explanatory facts
that share at least one concept with previously
added nodes. We consider these facts as central
explanatory nodes. After constructing the graph,
we estimate the semantic plausibility of the central
facts fi:

sp(h, fi) =

∑
cpj∈CP (h) path(cpj , fi)

|CP (h)| (4)

where path(cpj , fi) is equal to 1 if there exists at
least one path in the graph connecting the concept
cpj in the hypothesis to a concept in fi, 0 other-
wise. Therefore, the semantic plausibility of a fact
is modelled as the percentage of concepts in the
hypothesis h that have at least one path in the graph
leading to fi.

4 Abductive Inference

To derive the final explanation for a given hypothe-
sis while conditioning on previously solved cases,
we sum the explanatory relevance computed during
the reuse phase with the semantic plausibility com-
puted during the refine phase, pruning the graph
considering only the top n central explanatory sen-
tences and their linked grounding nodes (Fig. 2.3).

Given a set of alternative hypotheses H =
{h1, . . . , hn}, we adopt the model for abductive
inference by generating an explanation for each
hypothesis and selecting as an answer the one sup-
ported by the best explanation. To this end, we
assign a score to each hypothesis hi in H equal to
the sum of the scores of the central facts included
in the explanation for hi.
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Model Overall Easy Challenge Explanation

Sparse Retrieval

BM25 (k = 1) (Clark et al., 2018) 41.21 44.96 32.99 yes
BM25 (k = 2) 43.62 48.54 32.73
BM25 (k = 3) 45.87 50.76 35.05

Dense Retrieval

S-BERT (k = 1) (Reimers and Gurevych, 2019) 44.91 50.99 31.44 yes
S-BERT (k = 2) 45.79 51.45 33.25
S-BERT (k = 3) 44.51 49.82 32.73

Path-based

PathNet (Kundu et al., 2019) 41.50 43.32 36.42 yes

Transformers

BERT-large (Devlin et al., 2019) 46.19 52.62 31.96 no
RoBERTa-large (Liu et al., 2019) 50.20 57.04 35.05 no

Case-based Abductive NLI

CB-ANLI BM25 (n = 1) 52.13 56.34 42.78 yes
CB-ANLI BM25 (n = 2) 55.17 60.42 43.56
CB-ANLI BM25 (n = 3) 52.69 58.56 39.69

CB-ANLI S-BERT (n = 1) 54.45 61.23 39.43 yes
CB-ANLI S-BERT (n = 2) 52.77 59.60 37.62
CB-ANLI S-BERT (n = 3) 51.64 58.67 36.08

Table 1: Accuracy on WorldTree (test-set) for easy and challenge questions. The parameter n corresponds to the
number of central explanatory sentences considered by the models to compute the scores for each hypothesis.

5 Empirical Evaluation

Experimental Setup. We evaluate the Case-
based Abductive NLI (CB-ANLI) framework on
WorldTree (Jansen et al., 2018) and AI2 Reasoning
Challenge (ARC) (Clark et al., 2018), two multiple-
choice science question answering datasets de-
signed to test abstractive commonsense and sci-
entific inference. To perform the experiments, we
transform each question-candidate answer pair into
a hypothesis following the methodology described
in (Demszky et al., 2018).

The knowledge bases required for the inference
are populated using the WorldTree corpus (Jansen
et al., 2018). The corpus contains a large set of
commonsense and scientific facts (≈ 10K) that are
used to construct explanations for multiple-choice
science questions. The explanations include an av-
erage of 6 facts (and as many as ≈ 20), requiring
challenging multi-hop inference to be generated.
We store the individual facts for deriving the Facts
Embeddings and consider the training questions (≈
1K) and their explanations as the set of previously
solved cases (Cases Embeddings). For the refine
phase, we dynamically extract the concepts in facts
and hypotheses using WordNet (Miller, 1995) with

NLTK1. Additional details are described in the ap-
pendix2.

Sentene Encoders. We evaluate CB-ANLI using
sparse and dense sentence encoders without addi-
tional training. The sparse version adopts BM25
vectors (Robertson et al., 2009), while the dense
version employs Sentence-BERT (large) (Reimers
and Gurevych, 2019; Thakur et al., 2020).

5.1 WorldTree

In this section, we present the results achieved
on the WorldTree test-set (1247 questions). We
report the accuracy of the case-based framework
with different numbers n of central facts in the
explanations. We compare the proposed frame-
work against different categories of approaches:
Retrieval Solvers, Path-based Solvers, and Trans-
formers. The results in terms of question answering
accuracy are reported in Table 1.

Retrieval Solvers. We employ stand-alone
BM25 and Sentence-BERT (large) as sparse and
dense retrieval solvers (Clark et al., 2018). Given

1https://www.nltk.org/_modules/nltk/
corpus/reader/wordnet.html

2Code available at the following url: https://github.
com/ai-systems/case_based_anli

https://www.nltk.org/_modules/nltk/corpus/reader/wordnet.html
https://www.nltk.org/_modules/nltk/corpus/reader/wordnet.html
https://github.com/ai-systems/case_based_anli
https://github.com/ai-systems/case_based_anli
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RoBERTa + Retriever Over. Easy Chal.

None 50.20 57.04 35.05

BM25 (k = 1) 57.06 60.88 48.57
BM25 (k = 2 ) 61.07 66.82 48.32
BM25 (k = 3) 61.23 65.54 51.12

S-BERT (k = 1) 55.85 61.46 43.41
S-BERT (k = 2) 60.91 66.82 47.80
S-BERT (k = 3) 56.96 62.04 45.73

CB-ANLI BM25 (n = 1) 61.71 66.82 50.38
CB-ANLI BM25 (n = 2) 63.48 69.38 50.38
CB-ANLI BM25 (n = 3) 62.43 67.77 50.63

CB-ANLI S-BERT (n = 1) 59.99 65.54 47.45
CB-ANLI S-BERT (n = 2) 63.32 67.98 52.97
CB-ANLI S-BERT (n = 3) 62.27 67.63 50.38

Table 2: Results for RoBERTa large fine-tuned on
WorldTree and augmented with different explanation
retrieval models.

an hypothesis h, the solvers retrieve the top k rele-
vant facts for h using cosine similarity. The cosine
similarity scores are then summed up to determine
the best hypothesis. These baselines use the same
encoders adopted by our model. However, we ob-
serve that CB-ANLI is able to outperform both
sparse and dense retrieval models by up to ≈ 10%
accuracy, demonstrating the decisive role of the
proposed case-based paradigm.

Path-based Solvers. We consider PathNet
(Kundu et al., 2019) as a multi-hop inference
baseline. This model constructs inference paths
connecting question and candidate answer, and
subsequently scores them through a neural encoder
to derive the correct answer. We reproduce
PathNet using the source code available online3.
Contrary to CB-ANLI, PathNet does not adopt a
Case-Based Reasoning framework to construct
the explanations, considering each test hypothesis
in isolation. We observe that CB-ANLI can sig-
nificantly outperform PathNet with up to ≈ 13%
improvement overall and ≈ 7% on challenge
questions.

Transformers. We compare CB-ANLI against a
BERT large (Devlin et al., 2019) and a RoBERTa
large (Liu et al., 2019) baseline fine-tuned on the
multiple-choice question answering task. We ob-
serve that on WorldTree the proposed approach is
competitive with both RoBERTa and BERT (up to
≈ 5% and ≈ 9% improvement respectively).

3https://github.com/allenai/PathNet

Explainable Models Accuracy

TupleInf (Khot et al., 2017) 23.83
TableILP (Khashabi et al., 2016) 26.97
DGEM (Clark et al., 2018) 27.11
KG2 (Zhang et al., 2018) 31.70
Unsupervised AHE (Yadav et al., 2019a) 33.87
Supervised AHE (Yadav et al., 2019a) 34.47
ET-RR (Ni et al., 2019) 36.61
ExplanationLP (Thayaparan et al., 2021a) 40.21
AutoROCC (Yadav et al., 2019b) 41.24
Attentive Ranker (Pirtoaca et al., 2019) 44.72

Case-based Abductive NLI

CB-ANLI BM25 (n = 1) 33.45
CB-ANLI BM25 (n = 2) 34.39
CB-ANLI BM25 (n = 3) 33.79

CB-ANLI S-BERT (n = 1) 36.77
CB-ANLI S-BERT (n = 2) 35.75
CB-ANLI S-BERT (n = 3) 34.30

CB-ANLI S-BERT (n = 1) + RoBERTa 44.02
CB-ANLI S-BERT (n = 2) + RoBERTa 47.86
CB-ANLI S-BERT (n = 3) + RoBERTa 42.40

Table 3: Performance on the AI2 Reasoning Challenge
(ARC). We compare CB-ANLI with published explain-
able approaches that are fine-tuned only on ARC.

Transformers with Explanations We evaluate
CB-ANLI as an evidence retrieval model by com-
bining it with downstream Transformers. To per-
form this experiment, we augment the input of
RoBERTa large with the explanations constructed
for each hypothesis, and fine-tune the model to
maximise the score for the correct answer. Table 2
reports the accuracy achieved with RoBERTa large
when adopting CB-ANLI and stand-alone baselines
as evidence retrievers. In general, we observe that
evidence retrieval plays an important role for im-
proving the performance of RoBERTa, and that the
use of CB-ANLI can generate useful explanations
for inference in combination with downstream lan-
guage models.

5.2 ARC Challenge

To evaluate the generalisation of CB-ANLI on a
broader set of challenge questions, we run addi-
tional experiments on the AI2 Reasoning Challenge
(ARC) (Clark et al., 2018). Here, we keep the same
configuration of hyperparameters. Table 3 reports
the results achieved on the test-set (1172 challenge
questions).

We observe that CB-ANLI with Sentence-BERT
can generalise better on ARC. We attribute these re-
sults to the ability of Sentence-BERT to go beyond
lexical overlaps, supporting generalisation on new

https://github.com/allenai/PathNet
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Figure 3: Impact of the case-based framework on semantic drift. K represents the number of similar cases consid-
ered for computing the explanatory power (Worldree dev-set).

hypotheses with different surface forms. To show
the impact of evidence retrieval on ARC, we fine-
tune RoBERTa with the explanations constructed
by the Sentence-BERT version.

For a fair comparison, we compare CB-ANLI
against published explainable approaches that are
fine-tuned only on ARC, without additional pre-
training on related datasets (e.g. OpenBookQA
(Mihaylov et al., 2018), RACE (Lai et al., 2017)).
The results show that CB-ANLI S-BERT is third in
the ranking, outperforming explanation-based sys-
tems based on Integer Linear Programming (ILP)
(Khot et al., 2017; Khashabi et al., 2016) and pre-
trained embeddings (Yadav et al., 2019a). At the
same time, CB-ANLI obtains competitive results
when compared with most of the fine-tuned neu-
ral approaches, including ET-RR (Ni et al., 2019).
Moreover, when combined with RoBERTa, CB-
ANLI achieves the best results among the consid-
ered approaches, improving on AutoROCC (Yadav
et al., 2019b) and Attentive Ranker (Pirtoaca et al.,
2019).

5.3 Ablation Study

We carried out an ablation study to investigate the
impact of the CBR framework on downstream in-
ference performance. To this end, we consider
different versions of CB-ANLI by removing the
impact of the reuse and refine phase. For the first,
we remove the explanatory power term in equation
3. For the latter, we simply skip the refine phase
ignoring the explanation graph construction and
the semantic plausibility score to filter the central
explanatory facts. The results of the study, reported
in Table 4, demonstrate the key role of each phase
to achieve the final inference performance.

Paradigm Overall Easy Challenge

CB-ANLI BM25

Retrieve-Reuse-Refine 55.17 60.42 43.56
Retrieve-Reuse 49.00 55.18 35.30
Retrieve-Refine 43.46 46.57 36.60

CB-ANLI S-BERT

Retrieve-Reuse-Refine 54.45 61.23 39.43
Retrieve-Reuse 47.79 53.55 35.05
Retrieve-Refine 42.66 47.48 32.21

Table 4: Ablation Study on WorldTree (test-set) by re-
moving the impact of the reuse and refine phases.

5.4 Impact on Semantic Drift

In this section, we investigate the impact of the
CBR paradigm on semantic drift and how this af-
fects the results on downstream reasoning tasks. To
this end, we measure the performance of CB-ANLI
when retrieving a different numberK of previously
solved hypotheses (notice that when K = 0 the
model is equivalent to a non-case-based method).
To evaluate the quality of the generated explana-
tions, we leverage the WorldTree corpus as a gold
standard, computing the explanation accuracy as
the percentage of the best central explanations re-
trieved by the model that are part of the gold expla-
nations in WorldTree. Since the explanations in the
test-set are not publicly available, we perform this
analysis on the dev-set.

Figure 3 (a) illustrates the change in answer and
explanation accuracy on WorldTree with an increas-
ing number K of similar cases. The graph demon-
strates that the improvement in answer prediction
is associated with improved explanation genera-
tion capabilities. Specifically, by conditioning the
inference on an increasing number of similar hy-
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Test Question Prediction Constructed Explanation (K = 20, n = 1) Accurate

What force is needed to help stop a child from slipping on ice? (A)
gravity, (B) friction, (C) electric, (D) magnetic

(B) friction (1) counter means reduce; stop; resist; (2) ice is a kind of object; (3)
slipping is a kind of motion; (4) stop means not move; (5) friction
acts to counter the motion of two objects when their surfaces are
touching

Y

What causes a change in the speed of a moving object? (A) force, (B)
temperature, (C) change in mass (D) change in location

(A) force (1) a force continually acting on an object in the same direction that
the object is moving can cause that object’s speed to increase in a
forward motion

N

Weather patterns sometimes result in drought. Which activity would
be most negatively affected during a drought year? (A) boating, (B)
farming, (C) hiking, (D) hunting

(B) farming (1) affected means changed; (2) a drought is a kind of slow environmen-
tal change; (3) farming changes the environment

N

Beryl finds a rock and wants to know what kind it is. Which piece of
information about the rock will best help her to identify it? (A) The size
of the rock, (B) The weight of the rock, (C) The temperature where the
rock was found, (D) The minerals the rock contains

(A) The size of
the rock

(1) a property is a kind of information; (2) size is a kind of property;
(3) knowing the properties of something means knowing information
about that something. (4) the properties of something can be used to
identify; used to describe that something

Y

Jeannie put her soccer ball on the ground on the side of a hill. What
force acted on the soccer ball to make it roll down the hill? (A) gravity,
(B) electricity, (C) friction, (D) magnetism

(C) friction (1) the ground means Earth’s surface; (2) rolling is a kind of motion; (3)
a roll is a kind of movement; (4) friction acts to counter the motion
of two objects when their surfaces are touching

N

Table 5: Examples of explanations constructed by CB-ANLI. The underlined choices represent the correct answers.
Accurate indicates whether the central fact (bold) is part of the gold explanation in the WorldTree corpus.

potheses, CB-ANLI is able to construct more accu-
rate explanations, a feature that has a direct impact
on downstream inference performance in question
answering.

Figure 3 (b) shows the accuracy of the model
on hypotheses requiring longer explanations when
compared to a non-case-based version (K = 0).
In general, a higher number of facts in the gold
explanation is associated with a higher probability
of semantic drift (Jansen and Ustalov, 2019). The
graph confirms a strong relation between expla-
nation accuracy and question answering accuracy,
and demonstrates that the improvement obtained
through the case-based framework is particularly
evident on the most challenging inference problems
(10+ facts in the explanations). This results al-
low us to conclude that the Case-Based Reasoning
framework has a key role in alleviating semantic
drift during multi-hop inference.

5.5 Faithfulness and Error Analysis

Finally, we present an analysis of the faithful-
ness of the model, investigating the relation be-
tween correct/wrong answer prediction and accu-
rate/inaccurate explanations. Overall, we found
that a total of 81.25% of the correct answers are
derived from accurate explanations. This situation
is illustrated in the first example in Table 5. On the
other hand, a total of 18.75% of correct answers
are derived from inaccurate explanations (second
and third rows in the table). However, as shown
in the second example, we observe that CB-ANLI
can sometimes find alternative ways of construct-
ing plausible explanations, considered inaccurate
only because of a mismatch with the corpus an-
notation. The example number 4 shows the case

in which an accurate explanation is not sufficient
to discriminate the correct answer. We found this
cases to occur for a total of 31.71% of incorrect an-
swers. Finally, the last row describes the situation
in which wrong answers are caused by inaccurate
or spurious explanations (for a total of 68.29% of
the wrong answers). This analysis demonstrates the
interpretability and faithfulness of the framework,
showing that its behaviour can be typically traced
back to the quality of the generated explanations.

6 Related Work

Multi-hop inference for abstractive tasks is chal-
lenging as the general structure of the explanations
cannot be derived from the surface form of the
NLI problem. Previous work has demonstrated
that models in this setting are affected by semantic
drift – i.e., the construction of spurious explana-
tions leading to wrong conclusions (Fried et al.,
2015; Khashabi et al., 2019).

Existing approaches frame multi-hop inference
as the problem of building an optimal graph, condi-
tioned on a set of semantic constraints (Khashabi
et al., 2018; Khot et al., 2017; Jansen et al., 2017;
Khashabi et al., 2016; Thayaparan et al., 2021a), or
adopting iterative methods, using sparse or dense
encoding mechanisms (Yadav et al., 2019a,b; Pir-
toaca et al., 2019; Kundu et al., 2019). Our model
is related to previous work that leverages anno-
tated explanations to reduce semantic drift (Xie
et al., 2020; Jansen et al., 2018). However, this
line of work is still limited to explanation regenera-
tion (Jansen and Ustalov, 2019; Cartuyvels et al.,
2020; Valentino et al., 2021, 2022; Thayaparan
et al., 2021b), while the applicability of these re-
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sources for downstream multi-hop NLI problems
is yet to be explored. In this paper, we move a step
forward, exploring how the impact of annotated ex-
planations on semantic drift translates in improved
downstream performance.

Our approach is related to previous work on
Case-Based Reasoning (CBR) (Schank et al., 2014;
Schank, 2013; De Mantaras et al., 2005). Similar to
the retrieve-reuse-refine paradigm adopted in CBR
systems, we employ encoding mechanisms to re-
trieve explanations for cases solved in the past, and
adapt them in the solution of new problems. Re-
cent work in NLP investigates the use of a similar
paradigm via k-NN retrieval on training examples.
Khandelwal et al. (2020b,a) adopt k-NN search to
retrieve similar training examples and improve pre-
trained language models and machine translation
without additional training. Similarly, Das et al.
(2021, 2020) propose a CBR framework for knowl-
edge base reasoning, while Kassner and Schütze
(2020) reuse similar cases to improve BERT (De-
vlin et al., 2019) on cloze-style QA. To the best of
our knowledge, this is the first application of Case-
Based Reasoning for explanation-based multi-hop
Natural Language Inference (NLI).

The work presented in this paper is related to
hybrid neuro-symbolic approaches for inference
with natural language (Liu et al., 2020; Minervini
et al., 2020; Jiang and Bansal, 2019; Chen et al.,
2019; Dua et al., 2019; Xu et al., 2021; Weber
et al., 2019). In this context, most of the exist-
ing approaches combine neural models with sym-
bolic programs or reasoning modules. For instance,
Jiang and Bansal (2019) propose the adoption of a
Neural Module Network (Andreas et al., 2016) for
multi-hop question answering by designing four
atomic neural modules (Find, Relocate, Compare,
NoOp). Weber et al. (2019) propose a methodol-
ogy to perform multi-hop inference using a Prolog
prover via the integration of sentence encoders and
a weak unification mechanism. Differently from
the methodology discussed in this paper, previous
neuro-symbolic approaches have been generally ap-
plied to extractive tasks, where the inference steps
(and, therefore, the explanation’s structure) can be
derived from a direct decomposition of the ques-
tions (Thayaparan et al., 2020).

7 Limitations

The adopted model of explanatory power relies on
the availability of human-annotated explanations

with specific features (e.g., explanatory facts reused
across different training instances). However, these
resources might not be available in real-world sce-
narios and are generally costly to develop. More-
over, since the explanatory power model relies on
similarity measures and indicator functions, the
model’s ability to generalise might be sensitive to
the incompleteness of the knowledge bases and the
availability of representative explanations. We be-
lieve these limitations can be potentially alleviated
by exploring the role of more abstract sentence rep-
resentations within the CBR paradigm (Bergmann
and Wilke, 1996).

In the current implementation of CB-ANLI, the
refine phase adopts specific assumptions to model
the abstraction process required for explanation
generation. This process, in fact, is performed by
assuming that abstraction at the concept level trans-
lates in a correct mapping between hypotheses and
central explanatory sentences. However, contex-
tual linguistic elements can still affect the overall
meaning of the specific concept being abstracted,
inducing the inclusion of spurious links between
sentences. While contextual elements are consid-
ered during the precedent phases through the use
of contextualised embeddings and similar cases,
additional work is still required to guarantee the
correctness of the abstraction process.

8 Conclusion

This paper presented CB-ANLI, a model that inte-
grates multi-hop and Case-Based Reasoning (CBR)
in a unified framework. We demonstrated the ef-
ficacy of the framework in complex abstractive
and multi-hop NLI tasks. We believe this work
can open new lines of research on hybrid neuro-
symbolic models for explanation-based NLI, and
plan to investigate the efficacy of the framework on
architectures that adopt richer symbolic represen-
tations in combination with neural models, further
exploring the role of abstraction in Case-Based
Reasoning for improving robustness, generalisa-
tion, and explainability in NLI.
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André Freitas. 2020. A survey on explainability
in machine reading comprehension. arXiv preprint
arXiv:2010.00389.



1567

Mokanarangan Thayaparan, Marco Valentino, and
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A Hyperparameters

We adopted the following hyperparameters for CB-
ANLI:

CB-ANLI BM25:

1. λ = 0.83

2. K = 200

CB-ANLI S-BERT:

1. λ = 0.97

2. K = 40

For the implementation of Sentence-BERT we
adopt the following package https://pypi.org/

project/sentence-transformers/ considering
the bert-large-nli-stsb-mean-tokens model.

B Concepts Extraction

The concepts in facts and hypotheses are
extracted using WordNet with NLTK:
https://www.nltk.org/_modules/nltk/

corpus/reader/wordnet.html. Specifically,
given a sentence, we define a concept as a maximal
sequence of words that corresponds to a valid
synset in WordNet. This allows us to consider
multi-words expressions such as “living thing”
that frequently occur in the scientific domain.

https://pypi.org/project/sentence-transformers/
https://pypi.org/project/sentence-transformers/
https://www.nltk.org/_modules/nltk/corpus/reader/wordnet.html
https://www.nltk.org/_modules/nltk/corpus/reader/wordnet.html
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C Transformers Setup

For the implementation of the Transformer model,
we fine-tuned RoBERTa (roberta-large) for binary
classification (bc) to predict a set of scores S =
{s1, s2, ..., sn} for each candidate hypothesis in
H = {h1, h2, ..., hn}. The model receives as
input an hypothesis hi along with the explanation
Ei for hi. The model is optimised via cross-entropy
loss to predict 1 for the correct hypothesis and 0
for the alternative hypotheses:

bc([CLS] || hi || [SEP] || Ei) = si (5)

The binary classifier is a linear layer operating on
the final hidden state encoded in the [CLS] to-
ken. To answer the question q, the module selects
the candidate answer ca associated to the hypoth-
esis with the highest score – i.e. a = argmaxi si.
The model is implemented using Hugging Face
(https://huggingface.com/) and fine-tuned us-
ing 4 Tesla V100 GPUs for 8 epochs in total. We
adopted the following hyperparameters:

• batch size = 16

• learning rate = 1e-5

• gradient accumulation steps = 1

• weight decay = 0.0

• adam epsilon = 1e-8

• warmup steps = 0

• max grad norm = 1.0

D Source Code

The code adopted in the experiments is avail-
able at the following URL: https://github.com/
ai-systems/case_based_anli.

E Data

The WorldTree corpus adopted in the experi-
ments can be downloaded at the following url:
http://cognitiveai.org/dist/worldtree_

corpus_textgraphs2019sharedtask_

withgraphvis.zip. The AI2 Reasoning Chal-
lenge (ARC) dataset can be downloaded at the fol-
lowing URL: https://allenai.org/data/arc.
For the experiments on ARC, we adopted
WorldTree V2 as our background knowledge:
http://cognitiveai.org/explanationbank/

https://huggingface.com/
https://github.com/ai-systems/case_based_anli
https://github.com/ai-systems/case_based_anli
http://cognitiveai.org/dist/worldtree_corpus_textgraphs2019sharedtask_withgraphvis.zip
http://cognitiveai.org/dist/worldtree_corpus_textgraphs2019sharedtask_withgraphvis.zip
http://cognitiveai.org/dist/worldtree_corpus_textgraphs2019sharedtask_withgraphvis.zip
https://allenai.org/data/arc
http://cognitiveai.org/explanationbank/

