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Abstract

Answer selection task requires finding appro-
priate answers to questions from informative
but crowdsourced candidates. A key factor im-
peding its solution by current answer selection
approaches is the redundancy and lengthiness
issues of crowdsourced answers. Recently,
Deng et al. (2020) constructed a new dataset,
WikiHowQA, which contains a corresponding
reference summary for each original lengthy
answer. And their experiments show that lever-
aging the answer summaries helps to attend the
essential information in original lengthy an-
swers and improve the answer selection perfor-
mance under certain circumstances. However,
when given a question and a set of long candi-
date answers, human beings could effortlessly
identify the correct answer without the aid of
additional answer summaries since the origi-
nal answers contain all the information volume
that answer summaries contain. In addition,
pretrained language models have been shown
superior or comparable to human beings on
many natural language processing tasks. Mo-
tivated by those, we design a series of neu-
ral models, either pretraining-based or non-
pretraining-based, to check wether the addi-
tional answer summaries are helpful for rank-
ing the relevancy degrees of question-answer
pairs on WikiHowQA dataset. Extensive au-
tomated experiments and hand analysis show
that the additional answer summaries are not
useful for achieving the best performance.

1 Introduction

Answer selection task in community question an-
swering (cQA) has been a popular research topic
in both academy and industry due to its practical
importance. In recent years, neural attention-based
approaches for this task can be roughly catego-
rized into two primary types. One type of them
(Han et al., 2019; Rücklé et al., 2019) attempts
to enhance the interactions of different granular-
ity between question and candidate answer using

the widely-adopted compare-aggregate framework
(Wang and Jiang, 2017). The another focuses on
incorporating additional input information, such
as user metadata information (Xie et al., 2020),
the subject-body relationship of community ques-
tions (Wu et al., 2018), etc. However, real-life
cQA datasets that contain open-domain and non-
factoid questions usually come along with long
multi-sentence answer texts and noise. As a result,
many previous neural answer selection approaches
that were primarily designed to retrieve short an-
swers fall short of expectations in such cases (Co-
hen et al., 2018; Rücklé et al., 2019).

Recently, Deng et al. (2020) propose to leverage
answer summaries to tackle the redundancy and
lengthiness issues of original answers in long an-
swer selection task. To this end, they created Wik-
iHowQA, the first large-scale open-domain cQA
dataset that contains lengthy answers coupled with
its summaries written by community users for non-
factoid questions starting with “How to”. Instead
of relying on crowdsourcing, WikiHowQA was
generated based on the WikiHow summarization
dataset (Koupaee and Wang, 2018) and the online
WikiHow knowledge base1. An example from the
dataset is shown in Table 1. From it, we can see that
the candidate answer details a method for decorat-
ing a school locker. And the answer summary well
summarizes the key points of the answer. Based
on this perspective, Deng et al. (2020) suggest that
we could make use of answer summaries to allevi-
ate the answer redundancy and noise issue in long
answer selection task.

However, though answer summaries are always
much shorter and more concise than the answer
texts being summarized, they present text infor-
mation in an abridged form and do not include
details. Hence, the way that leverages the answer
summaries to alleviate the answer redundancy and
noise issues may also lead to the neglect of details

1http://www.wikihow.com
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Question How to decorate a school locker ?

Answer Do you want your locker to be calm and relaxing , to relieve you from those stressful
classes ? Or do you want your locker to be fun and exciting , colorful , or maybe you
want it to show some of your rocker spirit. If you do n’t want to express anything, pick a
theme. A cool theme could be 70 ’s, giraffe ’s, dogs ... (1112 words in total)

Summary Think about the feeling you want to express. Acquire all of the materials you will need
to make your locker look amazing. Hang up some pictures. Put a sign on the door ...

Label 1

Table 1: An example from the WikiHowQA dataset. Here we only list one candidate answer and its summary.

not covered by answer summaries. Besides, un-
like user metadata information introduced by Xie
et al. (2020) or subject-body relationship of com-
munity questions used by Wu et al. (2018), answer
summaries are not supplementary to original an-
swers and the utilization of them won’t bring any
additional information gain from an information
entropy perspective. Last but not least, when given
a question and a set of long candidate answers,
Humans can easily figure out the correct answer
without the need of additional answer summaries.
Thus, it’s unclear what role do answer summaries
actually play in the WikiHowQA answer selection
task and, indeed, whether it’s beneficial to import
additional answer summaries.

In this paper, we aim to conduct an in-depth and
comprehensive analysis of this dataset and explore
whether answer summaries could be helpful for
"how-to" answer selection task. We demonstrate
that, without the aid of answer summaries, sim-
ple, carefully designed LSTM-based models and
pretraining-based models could obtain high, state-
of-the-art MAP score of 72.91% and 82.74% on
the dataset respectively. We carry out a meticulous
qualitative analysis on randomly-sampled instances
to provide data on their difficulty and quality, and
whether the utilization of answer summaries could
improve human performance. We conclude that: (i)
This answer selection task is relatively easy though
it contains long multi-sentence answer texts. (ii)
Answer summaries do not convey additional infor-
mation content and are not helpful for boosting
both model and human performance. (iii) This
dataset is noisy due to its method of data creation.

2 The Answer Selection Task

The WikiHowQA dataset introduced in (Deng et al.,
2020) is made from an online wiki-style commu-

nity website – WikiHow2. The questions contained
in the dataset are all non-factoid and start with
“How to". For a specific question, its accepted an-
swers are considered as correct, and negative can-
didates were collected by retrieving the accepted
answers to relevant questions. Each answer written
by community users details multiple steps of doing
a procedural task for a specific how-to question.
In addition, every candidate answer is associated
with a short reference summary. To be specific, the
answer selection task could be formally defined as
follows:

Given a question qi and a set of lengthy can-
didate answers Ai =

{
a
(1)
i , . . . , a

(K)
i

}
, the goal

is to select all correct answers from the candidate
answer set. In the training stage, for each candi-
date answer a(k)i , a corresponding reference sum-
mary s

(k)
i and a label y(k)i that denotes whether

the answer a(k)i can answer the question qi are pro-
vided. However, during the testing procedures, the
relevancy degree of question-answer pairs must
be measured without access to their answer sum-
maries. That is to say, answer summary is only
accessible in the training stage. The reason we fol-
low the constraint is that we want to make a fair
comparison with previous methods3.

Table 2 provides the detailed statistics of the
dataset. From it, we can see that the answer texts is
extremely long (with an average answer length of
more than 520 words). Whereas, the well-known
answer selection dataset InsuranceQA introduced
by Feng et al. (2015) only has an average answer
length of 112 words. Even in the recent Long An-
swer Selection (LSA) benchmark introduced by
Rücklé et al. (2019), which are featured in con-

2http://www.wikihow.com
3The WikiHowQA dataset could also be used as an answer

summary generation benchmark.
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Statistics
WikiHowQA

Train Dev Test
Questions 76,687 8,000 22,354
QA pairs 904,460 72,474 211,255
Avg Qlen 7.20 6.84 6.69
Avg Alen 520.87 548.26 554.66
Avg Slen 67.38 61.84 74.42

Table 2: Statistics of the WikiHowQA Dataset. The av-
erage question length (Avg Qlen) is the average number
of tokens in a question. The same applies to answer and
summary.

taining long multi-sentence answer texts, we could
only observe an average answer length of less than
290 words.

3 Methods

In this section, we describe two types of methods
we implemented. The first class of methods directly
models the relevancy degrees of question-answer
pairs without using any answer summaries infor-
mation. The second class of methods is partially
inspired by Deng et al. (2020). They jointly learn
answer selection and answer summary generation
so as to leverage short answer summary to aid in
picking out long multi-sentence answer. Differ-
ent from them, we explicitly exploit the relevancy
degrees of question-summary pair to aid in mod-
eling the interaction between question and answer.
For each class of methods, we from one side build
our model based on bidirectional LSTMs so as to
make a fair comparison with previous approaches
and from the other we build our model based on a
pretrained language model - ALBERT (Lan et al.,
2020) to advance the state of the art.

3.1 LSTM-ASM
In this subsection, we aim at building a neural
model that scores each answer in a pool of candi-
date answers according to its relevancy in regard to
the given question. Our model adopts bidirectional
LSTMs as text encoders, and we name it as LSTM-
based Answer Selection Model(LSTM-ASM). The
framework can be described in the following steps.

Given a question q =
{
w1
q , . . . , w

n
q

}
, an answer

candidate a =
{
w1
a, . . . , w

m
a

}
and the correspond-

ing label y, we first map each word to its embed-
ding. Then, the question embeddings Eq and the
answer embeddings Ea are fed into a pair of Bi-
LSTM encoders to generate contextual embeddings
Êq, Êa respectively.

Next, to capture the interactions between all as-
pects of question q and answer a, we feed the
contextual embeddings Êq and Êa into a match-
ing layer. Here, the matching Layer mainly de-
fine four different multi-perspective matching op-
erations: Full-Matching, Maxpooling-Matching,
Attentive-Matching, and Max-Attentive-Matching.
Each matching operation describes a way to match
each time-step of Êq against all time-steps of Êa

and match each time-step of Êa against all time-
steps of Êq. We define the four matching opera-
tions as introduced by (Wang et al., 2017) and refer
readers to it for details.

After applying a matching layer, we obtain
the question-aware answer representations Ra ∈
Rm×d and the answer-aware question representa-
tions Rq ∈ Rn×d , where d is the size of repre-
sentations. Finally, we apply another bidirectional
LSTM encoders on the Ra and Rq individually to
generate the question-aware contextual answer rep-
resentations Ha ∈ Rm×d and the answer-aware
contextual question representations Hq ∈ Rn×d.
The last time-step ofRq andHq are concatenated to
form a sketch vector Gq, which outlines the match-
ing result in the perspective of question. We also
obtain another sketch vectorGa, which outlines the
matching result in the perspective of answer. The
final aggregation vector Gqa used for prediction is
the concatenation of Gq and Ga.

To optimize our answer selection model LSTM-
ASM, we use the cross-entropy loss function:

Lqa = − [y log pqa + (1− y) log (1− pqa)] (1)

where pqa is the predicted probability:

pqa = softmax (WqaGqa + bqa) (2)

Here, Wqa and bqa are trainable parameters.

3.2 LSTM-ASMSY
Different from LSTM-ASM, here we design an-
other answer selection model that is capable of
making use of reference answer summaries as ad-
ditional information during training. Since the ad-
ditional answer summary information is only avail-
able during the training period, our model is care-
fully designed to be able to make predictions with-
out answer summaries as inputs. For simplicity, we
name this model as LSTM-based Answer Selec-
tion Model with Summary (LSTM-ASMSY). As
depicted in Figure 1, LSTM-ASMSY is composed
of two modules: a long answer selection module
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Figure 1: Architecture for LSTM-ASMSY.

and a short answer summary selection module. The
short answer summary selection module adopts the
same architecture as the LSTM-ASM model de-
fined in Section 3.1. And it just plays a role in
the training stage. Meanwhile, the long answer
selection module also have a same architecture as
the LSTM-ASM model but does not share any pa-
rameters with the short answer summary selection
module. In the following, we detail how to train
our LSTM-ASMSY model and in what way we can
only use its long answer selection module to make
predictions at inference time.

Given a question q, an answer a and its summary
s, we first feed the long answer selection module
with question q and answer a to obtain the sketch
vectorG

′
q and the final aggregation vectorG

′
qa as in

Section 3.1. Meanwhile, we feed the short answer
summary selection module with the same question
q and the corresponding answer summary s to get
the sketch vector Ĝq and the aggregation vector
Gqs in similar ways. Then, we induce the two mod-
ules to make the same prediction during training:

L′
qa = −

[
y log p

′
qa + (1− y) log

(
1− p′qa

)]
(3)

Lqs = − [y log pqs + (1− y) log (1− pqs)] (4)

where p
′
qa is the predicted probability output by the

long answer selection module, and pqs is the pre-
dicted probability output by the answer summary
selection module. They are calculated as:

p
′
qa = softmax

(
W

′
qaG

′
qa + b

′
qa

)
(5)

pqs = softmax (WqsGqs + bqs) (6)

Where W
′
qa, Wqs, b

′
qa and bqs are trainable param-

eters, y is the gold label.
Next, in consideration of the sketch vector G

′
q

represents how well all the aspects of question are
related to answer a while the sketch vector Ĝq

represents how well all the aspects of question are
matched in the perspective of the corresponding
answer summary s, we encourage the sketch vector
G

′
q and Ĝq to be as similar as possible:

Lsmi = ‖G
′
q − Ĝq‖

2
(7)

In such ways, we can not only leverage the answer
summaries to provide implicit attention guidance
during training, but also use the trained long an-
swer selection module for making predictions with-
out relying on the short answer summary selection
module.

Finally, the overall loss function to optimize is:

L = λ1 ∗ L
′
qa + λ2 ∗ Lqs + λ3 ∗ Lsmi (8)

where λ1, λ2, λ3 are tuneable hyper-parameters.

3.3 Extensions to ALBERT

ALBERT has achieved the state-of-the-art perfor-
mance on sequence pair classification task but it
can only process at most 512 tokens. However, on
the WikiHowQA answer selection task, the aver-
age length of answer texts is more than 520 words,
where each word could be broken down into more
than one sub-word token. Hence, it prevents us
from directly using ALBERT on this task. Here,
we describe a simple way to extend the original
ALBERT for handling long-form text matching.

Different from previous methods, like Long-
former (Beltagy et al., 2020), ETC (Ainslie et al.,
2020) and Big Bird (Zaheer et al., 2020), that
require pre-training a new language model, our
method does not need to train a language model
from scratch. To be specific, we simply extend the
original ALBERT to have a larger position vocab-
ulary. And we reuse all the pretrained parameters
within the original ALBERT model except the po-
sition embeddings. Besides, we initialize the first
512 position embeddings with original position em-
beddings and leave the rest random. The extended
ALBERT is named as ALBERT-based Answer Se-
lection Model (ALBERT-ASM). And we use the
final hidden vector corresponding to the first input
token ([CLS]) as the aggregate representation for
measuring the relevancy of question-answer pair.
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The way we build an ALBERT-based model
that is capable of making use of reference an-
swer summary during training is similar to Section
3.2. Specifically, we apply one extended ALBERT
model to model the relevancy of question-answer
pair and use another ALBERT model to model the
relevancy of question-summary pair. And we en-
courage the hidden vectors corresponding to the
question tokens of the two models to be as simi-
lar as possible. Similarly, we name this model as
ALBERT-ASMSY.

4 Experiments

4.1 Training Details
For training our LSTM-based models, we use 300-
dimensional GloVe word embeddings (Pennington
et al., 2014) and apply a bidirectional GRU (Chung
et al., 2014) to obtain a 100-dimensional character-
level embedding for each word. The hidden size
for all Bi-LSTM is set to 200 and the dropout ratio
is set to be 0.1. We truncate candidate answer
and its summary to 900 tokens and 100 tokens
respectively. During training, we use the popular
Adam optimizer (Kingma and Ba, 2015) and set
its learning rate to be 0.0005. The batch size is
set to 48 per gpu and the hyper-parameter λ1, λ2
and λ3 are set to 1. We apply early stopping based
on the evaluation result on the validation set. The
maximum number of epochs is set to 20 and the
patience is set to 5.

For training our ALBERT-based models, we ini-
tialize our models using the pretrained Albert-base-
v1 model 4. The maximum input sequence length
of ALBERT-ASM is set to be 512, and the maxi-
mum input sequence length of ALBERT-ASMSY
is set to be 1536, which is three times as long as
the original maximum input length. We update our
model using a batch size of 64 per gpu. And we
adopt the AdamW (Loshchilov and Hutter, 2019)
as our optimizer. Besides, we set the learning rate
to be 3e-5 and the gradient clipping parameter to
be 1.0. The maximum number of epochs is set to
3 for all the experiments. The hyper-parameter λ1,
λ2 and λ3 are set to 1.

4.2 Metrics
The performance of our models is measured in
Mean Reciprocal Rank (MRR) and Mean Aver-
age Precision (MAP), which are standard metrics
in Information Retrieval and Question Answering.

4https://huggingface.co/albert-base-v1

The MRR measures the rank of any correct answer,
while MAP examines the ranks of all the correct
answers. Generally, the higher the scores, the better
performance the model has.

4.3 Experiment Setups
We mainly compare our approaches against the
following baselines:

(1) Long answer selection methods: CA is a
widely-adopted compare-aggregate baseline for
matching sequence pairs (Wang and Jiang, 2017).
COALA is a recent baseline proposed by Rücklé
et al. (2019), which has been proven to be effective
in long answer selection task.

(2) Two-Stage methods: QPGN+AP-BiLSTM,
QPGN+CA, and QPGN+COALA are three Two-
Stage baselines, which first summarize the original
lengthy answers and then conduct answer selection
over the short generated answer summaries. Here,
the QPGN is a question-driven pointer-generator
network proposed by Deng et al. (2020), which
is used to generate answer summaries for answer
selection. AP-BiLSTM (Santos et al., 2016), CA
(Wang and Jiang, 2017), COALA (Rücklé et al.,
2019) are adopted answer selection models.

(3) Joint Learning methods: ASAS (Deng et al.,
2020) is the recent state-of-the-art model that tack-
les the tasks of answer selection and answer sum-
mary generation in a joint manner.

For our own approaches, we evaluate the fol-
lowing models: LSTM-ASM, LSTM-ASMSY,
ALBERT-ASM, and ALBERT-ASMSY. Besides,
we also assess the performance of our models when
they are fed with gold answer summary at test on
purpose.

4.4 Main Results
Table 3 presents experiment results. In this ta-
ble, we detail all model-specific inputs and their
performance for each model. For example, our
model LSTM-ASMSY jointly train an answer sum-
mary selection module and a long answer selec-
tion module during training and only adopt the
trained long answer selection module for mak-
ing predictions in consideration of the unavailabil-
ity of answer summary at test. Hence, the input
to LSTM-ASMSY during training is a question-
answer-summary triplet while its input at test is a
question-answer pair.

From Table 3, we mainly note the following ob-
servations: (1) LSTM-ASM achieve a new state-of-
the-art result with an improvement of 18.67 MRR
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Models Inputs (training stage) Inputs (test stage) MAP MRR

CA Q, A Q, A 50.22 52.14
COALA Q, A Q, A 50.03 51.96
QPGN+AP-BiLSTM Q, A, S Q, Generated S 52.37 53.43
QPGN+CA Q, A, S Q, Generated S 52.46 53.73
QPGN+COALA Q, A, S Q, Generated S 51.97 53.02
ASAS Q, A, S Q, A 55.22 56.86

Ours: LSTM-ASM Q, A Q, A 72.91 75.53
Ours: LSTM-ASMSY Q, A, S Q, A 72.40 74.97
Ours: ALBERT-ASM Q, A Q, A 82.74 85.01
Ours: ALBERT-ASMSY Q, A, S Q, A 82.65 84.97

Ours: LSTM-ASM† Q, A Q, S 64.99 67.75
Ours: LSTM-ASMSY† Q, A, S Q, S 64.42 67.20
Ours: ALBERT-ASM† Q, A Q, S 73.78 76.66
Ours: ALBERT-ASMSY† Q, A, S Q, S 73.69 76.62

Ours: LSTM-ASM† Q, S Q, S 65.77 68.50
Ours: ALBERT-ASM† Q, S Q, S 75.51 78.37

Table 3: Performance of different models on the WikiHowQA answer selection task. Here, Q, A and S denotes
question, answer and summary respectively. Results marked † are the performances of our models when we
purposely feed them with gold answer summary during test.

and 17.69 MAP over the best reported results in
(Deng et al., 2020), which they obtained with a
joint learning method, named ASAS. This demon-
strates that LSTM-ASM can serve as a new strong
baseline that uses LSTM as text encoders on this
task. (2) LSTM-ASM has a better performance
than LSTM-ASMSY and ALBERT-ASM also out-
performs ALBERT-ASMSY, which show that mak-
ing use of the additional answer summaries does
not help to solve the answer selection problem.
(3) From the last two rows of Table 3, we could
see that, if we train our model LSTM-ASM and
ALBERT-ASM with question-summary pairs and
also test them using question-summary pairs 5, we
could see a significant performance drop. This sig-
nifies that answer summaries are less informative
than original lengthy answers when modeling the
relevancy degrees of question-answer pairs. Also,
it explains that leveraging additional answer sum-
maries information may not result in a performance
gain. (4) ALBERT-ASM and ALBERT-ASMSY
have a much better performance than all LSTM-
based models. This shows that better contextual-
ized word representations brought by pretrained
language models could be very effective in this

5Here, we do it on purpose for checking the informative-
ness of answer summary.

Models MAP MRR

LSTM-ASM

Full model 72.91 75.53
Max_tokens: 200 69.70 72.70
Max_tokens: 400 71.06 73.74
Max_tokens: 600 72.67 75.27

ALBERT-ASM

Full model 82.74 85.01
Max_tokens: 512 81.79 84.05

Table 4: Model performances as a function of the
length of input answers (averaged over three runs with
different random seeds). “Max_tokens" denotes the
maximum number of tokens of original lengthy an-
swers to keep.

long answer selection task. Meanwhile, these re-
sults also indicate that our method of extending
ALBERT to do long answer selection is effective.
(5) From row 11 to row 14, we can see that, when
we train our models as usual but feed them with
gold answer summary at test, we can observe se-
vere performance degradation. This which further
verifies that, question aspects covered by original
answers are not always covered by their correspond-
ing answer summaries to some extent.
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Annotation Source Accuracy

question-answer pairs 93%

question-summary pairs 78%

Table 5: Human performances on the 100 sampled ex-
amples. The accuracy is the ratio of correct annotation.

In Table 4, we present the performances of our
models as a function of the length of answers. From
it, we can observe that the maximum length limit
of answers has a big impact on the performance of
our models. Both LSTM-ASM and ALBERT-ASM
tend to exhibit better performance when we in-
crease the maximum length limit of answers. This
indicates that the WikiHowQA answer selection task
does require the ability to deal with long answer.

5 Data Analysis

5.1 Human Performance
We randomly sampled 100 examples, namely 100
question-answer-summary triplets, from the test
portion of the dataset for analysis. We first trans-
form the 100 question-answer-summary triplets
into 100 question-answer pairs and 100 question-
summary pairs. Then, we divide our annotators
into two groups, namely group 1, group 2. Each
group consists of two annotators. Finally, we ask
annotators of group 1 to label the question-answer
pairs and ask annotators of group 2 to label the cor-
responding question-summary pairs 6. Since the
WikiHowQA dataset was created in an automatic
and heuristic way, to make a fair evaluation, we
also ask a graduate student who majors in linguis-
tics to annotate the 100 examples and use these
annotations as gold labels.

Table 5 show the annotation results. From it, we
can see that annotators that use question-answer
pairs as annotation source, are able to achieve an
accuracy of 93% on this sampled subset. Whereas,
when annotators use question-summary pairs as
annotation source, they only obtain an accuracy of
78%, which is substantially lower than the previous
one. This verifies that, on the WikiHowQA dataset,
picking out the correct answers by measuring the
relevancy degrees between question and its answer
summary is much harder for human annotators.

In order to investigate whether additional an-
swer summaries could help to boost the annotation

6We eliminate the annotation divergence by following the
inter-annotator agreement.

Gold Reference G1 G2 Percentage

0 0 0 0 66%

0 0 0 1 16%

0 0 1 1 1%

1 0 1 1 5%

1 1 0 1 1%

1 1 1 1 11%

Table 6: The percentage of each annotation category.
Here, we omit the categories with zero proportion.

Questions:  How to change your name in ohio?
Answer:  In florida, the name change process starts with 
checking your criminal history. In order to do this, you 
must have your fingerprints submitted for a state and 
national criminal records check. The fingerprints will be 
taken by the florida department of law enforcement …
Summary:  Have a background check. Gather 
information for the petition. Fill out and sign the petition. 
File your petition. Attend your hearing. ..
Gold Label: 0  Reference Label: 0  Group 1: 0  Group 2: 1
———————————————————————
Questions:  How to buy affordable furniture?
Answer:  Sales happen all the time at retailers, especially 
around the holidays. While major holidays have their own 
sales, furniture retailers have especially large sales 
around president’ s day, labor day, and memorial day. 
Take advantage of these sales to score larger furniture 
items and matching sets. January and July are also good 
times to shop… 
Summary:  Shop seasonally. Check retail store websites. 
Use coupons. Search for clearance sales.
Gold Label: 1  Reference Label: 0  Group 1: 1  Group 2: 1  

Figure 2: Some examples of annotation divergence.

performance, we also ask another two annotators
to directly use the 100 question-answer-summary
triplets as annotation source. After comparing these
annotation results with the annotation results given
by group 1, we find that the two results are al-
most exactly the same everywhere. This shows
that additional answer summaries can not assist in
improving the annotation performance either.

5.2 Comprehensive Analysis

To get a comprehensive understanding of the above
phenomenon, we further conduct an in-depth anal-
ysis. Specifically, for each example, we make a
comparison among its gold label (Gold), its refer-
ence label (Reference, given by the dataset itself),
its label annotated by group 1 (G1) and its label
annotated by group 2 (G2). Table 6 provides our
estimate of the percentage for each category.
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From Table 6, we have the following observa-
tions: (i) For most of the examples, the gold labels,
the reference labels, the labels annotated by group
1, and the labels annotated by group 2 are the same
(All are zeros or ones), which indicates that the
WikiHowQA answer selection task is relatively easy
though it contains long multi-sentence answer texts.
(ii) From the second row of table 6, we could see
that 16 out of 100 samples are labeled correctly by
annotators in group 1 but mislabeled by annotators
in group 2. After carefully checking these exam-
ples, we observe an interesting finding from them.
Specifically, most of these errors may have been
caused by a lack of some specific details. A repre-
sentative example of this category is presented at
the top of Figure 2. From it, we can see that the an-
swer summary explains how to change one’s name
in a general way while the answer explains “How
to Change Your Name in Florida". This kind of
annotation divergence is mainly due to the fact that
the answer summary is relatively abstract and gen-
eral while the answer contains all the clues. There-
fore, we deem that the relevancy degree between
question-summary pair is not enough for human
annotators to make correct decisions in some cases.
(iii) 5 examples of this sample set are labeled as ‘1’
by annotators both in group 1 and group 2. And
the reference labels of these examples are ‘0’ but
their gold label are ‘1’. By carefully checking these
examples, we are confident that human annotators
are correct. This clearly shows that the dataset is
noisy to a certain extent. We present one of the
representative examples at the bottom of Figure 2.
From the example, we could see that both the an-
swer candidate and the answer summary describe
a way to shop for furniture on a reasonable budget,
which exactly answer the question “How to buy
affordable furniture ?". However, the reference la-
bel given by the dataset is ‘0’, which largely may
be due to that the dataset itself was created in an
automatic and heuristic way.

6 Related Work

Long Answer Selection WikiPassageQA (Han
et al., 2019) and LSA (Rücklé et al., 2019) are
the two most well-known long answer selection
benchmarks. On WikiPassageQA dataset, the state-
of-the-art, non-pretraining-based method is pro-
posed by Han et al. (2019). In their method,
they derive contextualized uni-gram representation
from n-grams and demonstrate that enabling multi-

granular matches between question and answer n-
grams are the key factors. On LSA benchmark,
Rücklé et al. (2019) shows that a relevance match-
ing approach based on the compare-aggregate
framework with a coverage-based constraint works
best among various LSTM-based methods.

In the midst of the pretraining-based methods,
the best one is a self-supervised text matching
model (Rücklé et al., 2020) which incorporates
self-supervised with supervised multi-task learning
on 140 source domains. It achieves state-of-the-art
performances on both WikiPassageQA dataset and
LSA benchmark.
Analysis of QA Tasks Several studies have in-
vestigated aspects of the design of QA datasets.
Chen et al. (2016) conduct an examination of the
CNN/Daily Mail reading comprehension dataset
and conclude that this dataset is quite noisy and
the required reasoning and inference level of this
dataset is very simple. Sugawara et al. (2017) pro-
pose two classes of metrics (prerequisite skills and
readability) to the quality of reading comprehen-
sion dataset. And they find that the readability of
reading comprehension datasets does not directly
affect the question difficulty. Yue et al. (2020) carry
out a thorough analysis of the emrQA dataset (Pam-
pari et al., 2018). And they discover that, though
Pampari et al. (2018) claims that 39% of the ques-
tions may need knowledge to answer, their analysis
shows that only a very small portion of the errors
(2%) made by a state-of-the-art model might result
from missing external domain knowledge.

In cQA, Liu et al. (2008) do a comprehensive
analysis of questions and answers on cQA services
and find that some questions usually have several
best answers. And they show that customized
question-type focused summarization techniques
helps to improve cQA answer quality. Yang et al.
(2011) analyze the not-answered questions in cQA
and give a try on making predictions whether ques-
tions will receive answers.

7 Conclusion

In this paper, we carefully study the recent Wiki-
HowQA answer selection task. Our models, either
LSTM-based or ALBERT-based, outperform the
previous state-of-the-art method by a large margin.
More importantly, we do a careful hand-analysis of
a small subset of the dataset. Overall, we think the
WikiHowQA dataset is a valuable dataset, which
provides a promising avenue for research on non-
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factoid, long answer selection task. Nevertheless,
we argue that: (i) this dataset is still noisy due to its
method of data creation. (ii) For "how-to" answer
selection task, the additional answer summaries
can neither help to improve model performance
nor can effect human annotation. (iii) the answer
selection task is relatively easy though it contains
long multi-sentence answer texts.
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