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Abstract
Automatic math problem solving has attracted
much attention of NLP researchers recently.
However, most of the works focus on the solv-
ing of Math Word Problems (MWPs). In this
paper, we study on the Geometric Problem
Solving based on neural networks. Solving ge-
ometric problems requires the integration of
text and diagram information as well as the
knowledge of the relevant theorems. The lack
of high-quality datasets and efficient neural
geometric solvers impedes the development of
automatic geometric problems solving. Based
on GeoQA, we newly annotate 2,518 geo-
metric problems with richer types and greater
difficulty to form an augmented benchmark
dataset GeoQA+1, containing 6,027 problems
in training set and 7,528 totally. We further
perform data augmentation method to expand
the training set to 12,054. Besides, we design
a Dual Parallel text Encoder (DPE) to effi-
ciently encode long and medium-length prob-
lem text. The experimental results validate
the effectiveness of GeoQA+ and DPE mod-
ule, and the accuracy of automatic geometric
problem solving is improved to 66.09%.

1 Introduction

In recent years, with the continuous development
of deep learning technology in NLP, more and
more math problem solvers have been developed.
However, most of these works focus on solving
arithmetic and algebra problems (Xie and Sun,
2019; Lin et al., 2021; Wu et al., 2020). There
are few systems for geometric problem solving,
especially those based on the method of the neural
networks. The solving of geometric problems re-
quires a combination of text and diagram informa-
tion, and therefore the study of it also helps to pro-
mote the development of cross-modal problem-
solving.

∗∗Corresponding Author
1The source code and benchmark of this paper are avail-

able at: https://github.com/SCNU203/GeoQA-Plus

Figure 1: A typical geometry problem in GeoQA+
dataset and its annotating and solving process.

As shown in Figure 1, a typical geometry prob-
lem mainly consists of textual descriptions and ge-
ometric diagrams. There are three steps to solve
this problem. First, the text and diagram infor-
mation are encoded separately. Second, the solver
needs to understand the semantics of the text and
diagram information simultaneously. Third, in or-
der to solve the problem, we may need to com-
bine the information of Text-Diagram with rele-
vant theorem knowledge. For example, the prob-
lem in Figure 1 use the theorem of complemen-
tary adjacent angles of a parallelogram. Though
some previous methods attempt to solve geometric
problems automatically, the performance of their
solving system is far away from satisfactory (Seo
et al., 2014, 2015; Sachan and Xing, 2017). They
highly relied on limited handcraft rules and were
only validated on small-scale datasets, making it
hard to generalize to more complex and real-world
cases(Chen et al., 2021). In this case, we mainly
focus on building an efficient solving system based
on neural networks.

To resolve the mentioned issues, Chen et al.
(2021) proposed a geometric problems dataset
GeoQA which contains 5,010 geometric problems
and the first neural network-based geometric prob-
lems solving system NGS. However, we believe
that there are some limits to this work. First,
we think that the problem type in GeoQA is not
rich enough, and it only contains angle and length
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problems as well as a very small number of other
types. Second, we think that the problems in
GeoQA are not difficult enough, and the average
solving step of the problems in GeoQA is only
1.96. Third, the geometric problems solver NGS
can not effectively solve the problems with long
text for the lack of text feature extraction capabil-
ity.

Inspired by the exiting works (Chen et al., 2021;
Seo et al., 2014, 2015), to refresh the research on
geometric problem solving and further promote
the development of cross-modal numerical rea-
soning, we newly annotate 2,518 geometric prob-
lems containing 636 area-type problems that are
not included in GeoQA. The problems we col-
lect are more difficult. The average solving step
of our problems is 2.61, which compares to 1.96
of GeoQA. We add our new dataset to the train-
ing set of GeoQA to build a new dataset named
GeoQA+ and it contains 7,528 problems in total
and 6,027 for training. To the best of our knowl-
edge, GeoQA+ is the largest benchmark dataset
for geometry problem solving at present and it im-
proves the overall difficulty and diversity of the
original dataset. We further perform data augmen-
tation method on GeoQA+, which expand the data
size to 12,054 to obtain more diverse data. As
for the model, we design a Dual Parallel Encoder
DPE that consists of RoBERTa (Liu et al., 2019)
and a Bi-LSTM (Hochreiter and Schmidhuber,
1997) to address the limit of NGS. Our DPE mod-
ule encodes long and medium-length problem text
effectively, and we name this new geometric prob-
lems solver as DPE-NGS. We conduct a series of
experiments and the experimental results indicate
that the GeoQA+ dataset and our DPE-NGS model
show the superiority over the state-of-the-art re-
sults.

In summary, our contributions are three-fold:

• To expand GeoQA, we newly annotate 2,518
geometric problems which are more difficult
to solve than GeoQA and has more problem
types to build a new dataset name GeoQA+,
the largest dataset for geometric problem
solving at present. In addition, we also per-
form data augmentation work on GeoQA+ to
obtain more diverse data.

• To alleviate the limit of NGS, we design
a Dual Parallel Encoder(DPE) and propose
DPE-NGS to effectively solve the geometric

problems with long and medium-length text.
Experimental results show that our model
achieves better accuracy.

• We study the text encoding work of geomet-
ric problems. We fine-tune the Pre-training
model using a sufficient amount of data for
the first time and achieve excellent model
performance.

2 Related Work

Geometric Problems Solving Having machine
to solve geometric problems has a long history in
AI (Wen-Tsun, 1986; Chou et al., 1996). Some
researchers proposed methods for geometry the-
orem proving based on rule-based methods last
century(Wenjun, 1984). Wong et al. (2007) de-
signed the first automatic solver LIM-G for geo-
metric problems, but this method was only based
on text information to solve the problems. Sub-
sequently, Seo et al. (2014, 2015) constructed the
first automatic problems solver that combines text
and diagram information with NLP methods and
computer vision technology (OCR). However, this
method relies too much on handcrafted rules, and
it was only verified on the data set with 185 prob-
lems. To improve GeoS, Sachan and Xing (2017)
replaced these handcraft constraints with geom-
etry axiomatic knowledge in the form of horn-
clause rules, but their dataset and code are not
released. Lu et al. (2021) proposed Inter-GPS
which achieved higher accuracy than all previous
geometric problem solvers based on rule-based
methods. And their dataset Geometry3k con-
tains 3,002 geometric problems. But Inter-GPS
was still designed based on the rule-based method
and Geometry3k is not suitable for training neu-
ral network-based solvers because of the complex
annotating work. Aiming to improve the per-
formance and interpretability of existing models,
Chen et al. (2021) proposed a geometric problems
dataset GeoQA, and they proposed the first geo-
metric problems solver based on neural networks
named NGS. While the GeoQA dataset is not dif-
ficult and diverse enough, and the feature extrac-
tion ability of NGS is also not good enough. To
improve the limits of existing works and promote
the development of automatic geometric problem
solving, we effectively expand GeoQA dataset and
propose DPE-NGS model.

Multimodal Reasoning Visual question an-
swering is a typical multimodal problem. The
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solving of this kind of problem often requires the
model to have a certain reasoning ability (Goyal
et al., 2017; Yu et al., 2019). On this basis, some
methods propose an implicit reasoning framework
to jointly encode multimodal information (Perez
et al., 2018; Cohen and Areni, 1991). However,
geometric problem solving is more logical and
deductive, and the solving process requires ad-
ditional knowledge of theorems, so these visual
problem answering models are not directly appli-
cable to geometric problem solving.

Pre-training Model In NLP Pre-training mod-
els have greatly advanced the development of NLP
(Song et al., 2021; Zhang et al., 2020). And it
has also been applied in the automatic solving of
MWPs (Liang et al., 2021). However, it has not
been applied to the automatic solving of geomet-
ric problems since the lack of dataset. Our exper-
imental results show that the introduction of Pre-
training models facilitates the possibility of solv-
ing geometric problems based on our newly anno-
tate dataset.

Text Data Augmentation Text data augmen-
tation methods has been widely used in NLP, like
EDA(Wei and Zou, 2019) and back translation(Yu
et al., 2018) method. We also perform the back-
translated method on GeoQA+. We first trans-
late the original data into minor languages and
then re-translate the results into the original lan-
guage. Data back translation enhances the diver-
sity of data.

3 GeoQA+ Dataset

The original GeoQA dataset contains 5,010 geo-
metric problems, 3,509 for training, 746 for vali-
dation and 755 for test. We newly annotate 2,518
geometric problems and add them to GeoQA’s
training set to form a new dataset GeoQA+ which
contains 6,027 geometric problems in training set
and 7,528 in total.

3.1 Problem and Data Description

Problem Description. Automatic geometry prob-
lem solving is defined as solving a geometry prob-
lem with diagram and text information. Text-
Diagram information are encoded by text and dia-
gram encoder separately, then the encoded results
are fused with features from both parts through the
Joint Reasoning Module. The decoder module ob-
tains the solving sequence by decoding the out-
put from Joint Reasoning Module, then executes

the sequence and gets the answer with additional
knowledge of theorems. Figure 1 shows the com-
plete problem definition, and the solving process-
ing uses the knowledge of the properties of paral-
lelograms.

Data Description. Based on the problem def-
inition, we define the data description of the ge-
ometry problem, which contains problem text t,
diagram d, problem choices c, knowledge points
k, problem answer a, solving processing explana-
tion e, and the annotate programs p. Therefore, a
geometry problem can be represented as T (t, d, c,
k, a, e, p) like Figure 1.

Program Representation. We adapt a domain-
specific language(Amini et al., 2019) to represent
the geometric problems solving process similar to
GeoQA. The program includes the operator OP ,
operand N , constant operand C, and process vari-
able V . We enrich the representation of the lan-
guage by synthesizing the data statistics of our
newly annotate data. As shown in Table 1, the op-
erators OP are divided into basic and arithmetic
operators as well as trigonometric and theorem op-
erators. The constant operands contain various
constants such as π, 180°, and 90° that are com-
monly used. Note that only operators and con-
stant operands are given in Table 1 because both
of them are fixed and will not change with differ-
ent problems. For example, when we solve for
the length of the hypotenuse of a right triangle
with two right-angled sides known, we will use
the Pythagorean theorem to solve the problems,
and we need to know the fixed expression of the
Pythagoras operation. The operand N is derived
from the operands given in the problems and the
process variable V is an intermediate variable gen-
erated during the operation, both of which vary
from problem to problem. The generated sequence
expressions of the model show the interpretability
of the solving process. We can get a general un-
derstanding of the whole problem-solving process
from Figure 1.

3.2 Dataset Comparison

The existing geometry problem datasets are gen-
erally limited by the size of the data(Seo et al.,
2015) and the complex annotating work (Lu et al.,
2021), which are not suitable for neural network
training. GeoQA is a dataset collected specifi-
cally for building a neural network-based geom-
etry problem solver. However, the limits of the
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OPR & Const Programs

Basic Equal, Double, Half

Arithmetic Add, Minus,
Multiply, Divide, Prescription

Trigonometric Sin, Cos, Tan, Arc-Sin, Arc-Cos
Theorem
& Formula

Pythagorean Add/Minus, Proportion,
Circle Area,Circle Perimeter, Cone Area

Constant 30, 60, 90, 180, 360, 540, Π, 0.618

Table 1: An overview of 19 operations of four different
types and 8 constants in the defined program set.

GeoQA dataset are the low average difficulty of
problem solving and the lack of richness of prob-
lem types. Therefore, we newly annotate a dataset
with 2,518 problems and add them to the training
set of GeoQA to form a new dataset with 7,528
problems, 6,027 problems for training. Compared
with GeoQA, our geometry problems are more
difficult, and we introduce area-type problems for
the dataset. For geometry problems, difficult prob-
lems often contain more geometric relationships
and geometric attributes than simple problems,
and we believe that learning more features of diffi-
cult samples help the model to solve difficult prob-
lems in the real world. A detailed comparison of
the data statistics of the GeoQA’s training set with
our newly annotate data is shown in Table 2.

As shown in Table 2, our newly annotate dataset
introduces 636 problems of area-type that are not
available in GeoQA which enhance the data diver-
sity of the dataset. In addition, our dataset are
more difficult with 2.61 steps of average solving
compare with 1.96 of GeoQA. More solving steps
means the problems are more difficult to solve.
Besides, our newly annotate problems also add 27
new knowledge points, and there are 77 knowl-
edge points in GeoQA+. The knowledge points
of a problem are crucial for solving the question.
During the solving process, our model will first ap-
ply a Pre-trained module to predict the knowledge
points of the problem which helps generating the
solving sequence.

As shown in Table 3, the total number of train-
ing set in GeoQA+ is 6,027, and the average num-
ber of solving step is 2.23, which is nearly 14%
higher than the original 1.96, meaning GeoQA+
is much more difficult than GeoQA. More diffi-
cult training samples facilitate the model to learn
more statistics to improve the ability to solve dif-
ficult problems. We name this new training set as
Mix-train.

3.3 Data Augmentation

We use the back-translation method in this paper
to perform data augmentation on our Mix-train
training set. We first translate the Mix-train train-
ing set data into French and then re-translate the
results back to the original Chinese, and finally,
we get a back-translated dataset with twice the
amount of data, and we name the Back-translated
dataset Backtrans-train which contains 12,054
problems.

3.4 Data Collection and Annotation

We collect our problems from online education
websites. These problems are oriented in grades 6-
12, containing various types of problems with cor-
responding knowledge points and solving expla-
nations. We organized several graduate students
to participate in annotating these problems. Each
graduate student involved in the data annotation
was trained to ensure that the data was annotate
consistently with GeoQA. Unlike GeoQA, we al-
low the existence of problems with up to 8 solving
steps while the authors of GeoQA limit the solu-
tion steps to 4. We believe that the introduction of
difficult problems with long solving steps is ben-
eficial to enhance the inference and generalization
ability of the model.

4 Models

To improve the limit of NGS, we redesign the text
encoder module. We refer to this improved ge-
ometric problems solver as DPE-NGS, and the
overall structure of DPE-NGS is shown in Figure
2.

4.1 Dual Parallel Text Encoder

Text modeling is commonly used in NLP tasks
such as sentiment analysis, topic classification,
and problem systems (Li et al., 2020). In previous
work, for solving geometric problems, researchers
have often encoded the text by rule-based meth-
ods (Wong et al., 2007; Seo et al., 2015; Lu et al.,
2021). In NGS, an LSTM(Hochreiter and Schmid-
huber, 1997) was used to encode the problem
text and represented the text as hidden state H in
LSTM.

However, by analyzing the statistics of the prob-
lems that NGS did not get the result (No Result
problems), we found that the average problem text
length for this category is 68.55, which is much
longer than the average problem text length of 52.5
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Properties Angle Length Area\Others AVG

GeoQA-train Number 1939 1303 267 /
OP-AVG 1.83 2.10 2.03 1.96

Ours Number 1256 626 636 /
OP-AVG 2.78 2.27 2.60 2.61

Table 2: Comparison of the data statistics of GeoQA-train and our newly annotate data. OP-AVG represents the
average solving step of problems.

Figure 2: Our DPE-NGS for geometric problems solving based on Dual Parallel Text Encoder (DPE). The model
encodes text and image information separately, and then feeds them to the Joint Reasoning Module. The decoder
generates the solving sequence based on the output of Joint Reasoning Module, and the executor module finally
executes the sequence and gets the answer.

Figure 3: The architecture of our Dual Parallel Encoder. We use a two-layer Bi-LSTM and RoBERTa to encode
the problem text separately. The encoding results are fed into a fusion layer, and we use the fused encoding
information as the final text encoding result.

in GeoQA. This indicates that NGS is still lacking
in feature learning for long text problems. In this
case, we believe that the problem solving is related
to the length of the problem text. In order to dis-

tinguish different text lengths, we regard the prob-
lems with text lengths between 30∼50 as medium-
length problem, and long text problems are those
with text lengths more than 50. And there are 2961
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Angle Length Others AVG\Total

Number 3195 1929 903 6027
OP-AVG 2.21 2.15 2.45 2.23

Table 3: Statistics of the new training set in GeoQA+
(Mix-train).

long text problems and 2853 medium-length prob-
lems in Mix-train.

The problem text of a geometry problem usually
contains many geometric elements expressed, and
there are relational dependencies between these
geometric elements. As the problem shown in Fig-
ure 1, in this example, parallelogram ABCD is
the first geometric element that mentions in the
text, and ∠D appears later. But in the process of
solving the problem, we need to combine the two
conditions that ABCD is a parallelogram (paral-
lelogram neighbors are complementary) and ∠D =
58° to derive the next condition ∠BAD = 122° to
solve the problem. This is a back-and-forth pro-
cess in which the key information of a geometry
problem interacts with each other. Therefore, we
cnsider that we should encode the problem text in
a bidirectional way.

Based on the analysis above, we redesign the
text encoder and we first introduce the Pre-training
model RoBERTa (Liu et al., 2019) as text encoder.
RoBERTa is a Bert-based(Devlin et al., 2019) Pre-
training model that has been widely used and
has greatly advanced various works in NLP. As
shown in Table 4, when using RoBERTa as text
encoder alone, the model solves 53.10% of long
text problems and 69.74% of medium-length prob-
lems. Moreover, we also consider encoding prob-
lem text with a Bi-LSTM(Hochreiter and Schmid-
huber, 1997) with two layers alone. In this case,
the model solves 52.49% of long text problems
and 70.25% of medium-length text problems. As
the results show that the model has a different abil-
ity to solve problems with different lengths of text
when using RoBERTa or Bi-LSTM as text encoder
alone. Specifically, the model solves more long
text problems when RoBERTa is used as the en-
coder, and it performs better in solving medium-
length text problems when using Bi-LSTM as en-
coder.

As the experimental results show, we believe
that different encode module have different fea-
ture extraction capabilities for various lengths of
text during automatic geometry problem solving.

Text Encoder long(%) medium-length(%)

LSTM(NGS) 50.37 69.48
RoBERTa 53.10 69.74
Bi-LSTM 52.49 70.26

DPE 57.48 72.56

Table 4: The ability of the model for different length
text problems when using different modules as en-
coders

To fully extract the features of problems text, we
consider combining RoBERTa and Bi-LSTM to
form a parallel text encoder. We input the prob-
lems text into RoBERTa and Bi-LSTM to encode
the text separately. We denote the encoding re-
sult of RoBERTa as Hp = [h0;...;hn], and we rep-
resent the encoding result of Bi-LSTM as Yp =
[y0;..;yn]. After obtaining the encode outputs Hp

and Yp from RoBERTa and Bi-LSTM, we com-
bine the two sets of features by feeding Hp and Yp
into an Information Convergence layer, and obtain
the fusion feature Cp = [c0;...;cn]. We use Cp to
represent the final text encoding result:

Cp = [Hp, Yp].

And we name this Dual Parallel Encoder module
DPE, the structure of our encode module is shown
in Figure 3.

Our model solves 57.84% long text problems
and 72.56% medium-length problems with DPE
as text encoder. Experimental results validate the
effectiveness of our DPE encoder. The perfor-
mance of models for solving problems with long
or medium-length text when using different mod-
ules as text encoder is shown in Table 4.

4.2 Diagram Encoder
To get the diagram information of problems,
we adapt the diagram encoder module based on
ResNet (He et al., 2016) from NGS. Two auxil-
iary tasks (as shown in Figure 2) are applied to
pre-train the diagram encoder, which significantly
enhance the feature extraction capability of the di-
agram encoder. We formalize the feature matrix
extracted by the diagram encoder as Hd.

4.3 Joint Reasoning Module
After obtaining the text feature Cp and diagram
feature Hd, we feed them into the Joint Reasoning
Module. In this paper, we use a common atten-
tion module named co-attention(Yu et al., 2019)
with an attention mechanism for cross-modal data
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fusing and reasoning. This module consists of 12
self-attention units and 6 guide-attention units. We
use the Dual Parallel Encoder output Cp from the
text encoder and Hd from the diagram encoder as
the input of Joint Reasoning Module. This mod-
ule fuses and reasons the text-diagram information
and outputs FD, which contains abundant text and
diagram information. We further concatenate Cp

and FD to get FR for decoding program.

4.4 Program Decoder

We use an LSTM(Hochreiter and Schmidhuber,
1997) with attention as the Decoder module,
which generates the programs sequentially under
the guidance of Reasoning module output FR. Let
yt(1 ≤ t ≤ T ) be the target program to be gener-
ated and Pt as the next program token. In the train-
ing process, we use the negative log-likelihood
function as the loss function:

Lg(θ) =
1

T

n∑
t=1

logPt(yt|x, y1, ...yt−1; θ),

where θ is the parameter of the entire solver model
except for Diagram Encoder, and x is the input of
the problem text and the diagram feature extracted
from the Diagram Encoder.

4.5 Program Executor

The decoder module generates N program se-
quences [g1,...,gn], and the size of N equals to
beamsize (beamsize = 10). The executor module
selects the first sequence that successfully solves
the problem as the prediction sequence. If all the
results obtained by computing sequences are not
included in the problem options, then the problem
will be classified as a No Result problem instead
of randomly selecting an answer.

5 Experiments

5.1 Experiment Setup

We conduct experiments on GeoQA and GeoQA+,
and we adapt answer accuracy as the evaluation
metric. We use the GeoQA-test containing 755
geometric problems as test set. In addition, since
most previous work on automatic solving of ge-
ometric problems requires additional acceptance
of input from OCR, but none of these works has
published their associated codes, they are not com-
pared with our methods in this experiment.

Implementation Details. We mention three
datasets above: the original training set GeoQA-
train with 3,509 problems, Mix-train with 6,027
problems after mixing GeoQA-train with our
newly annotate dataset, and the Backtrans-train
dataset with 12,054 problems after performing
data augmentation on Mix-train. To verify the ef-
fectiveness of our datasets, we train our DPE-NGS
and NGS with these three datasets separately and
test the accuracy of the models on GeoQA-test.
In addition, we train two models with GeoQA-
train and test the generalization performance on
the new test set(the same size as GeoQA-test) ran-
domly extracted from our newly annotate data.
Besides, we also compare the performance of a
MWPs solver Seq2Prog(Amini et al., 2019), and
BERT2Prog: Seq2Prog with BERT as encoder
based on GeoQA-train2. The learning rate of
ResNet is 1e−5, 1e−3 for Bi-LSTM encoder, and
2e−5 for RoBERTa encoder, 1e−5 for the rest.
The batch size is 32 and the training epoch is 100.

5.2 Experimental Result

The effectiveness of our dataset. As shown in
Table 5, when two models are trained with Mix-
train or Backtrans-train, both models show better
performance compared to the models train with
GeoQA-train. The experiment results prove the
effectiveness of our newly annotate dataset. In
addition, the dataset after data augmentation is
also helpful for accuracy improvement. We be-
lieve that because our dataset is more difficult and
richer in problem types that expand the training set
and makes up for the lack of difficult problems in
GeoQA, which helps the models learn more prob-
lem features and thus improve the model’s perfor-
mance.

The effectiveness of our model. As shown
in Table 5, our DPE-NGS outperforms all mod-
els for every training set. DPE-NGS with multi-
modal reasoning ability becomes the existing best-
performing model (66.09%) on GeoQA-test set
while train with Back-trains. We further analyze
the percentage of No Result type problems gen-
erated by the models and found that DPE-NGS
produces fewer No Result type problems than the
NGS model as shown in Table 6. We believe it is
because our DPE-NGS has better feature extrac-
tion ability for long text type problems. We also
compare the accuracy of the two models for prob-

2Results obtained from the paper of Chen et al. (2021).



1518

Traingsets Model Total(%) Angle(%) Length(%) Others(%) No Result(%)

GeoQA-train

BERT2Prog 50.3 63.4 33.2 38.9 /
Seq2Prog 52.6 63.6 39.2 37.0 /

NGS3 60.52 71.53 48.40 40.74 14.94
DPE-NGS 62.65 74.88 47.70 50.0 12.68

Mix-train NGS 61.19 72.25 47.70 46.30 12.72
DPE-NGS 65.96 75.60 54.42 51.85 11.90

Backtrans-train NGS 63.31 72.97 53.0 42.60 14.03
DPE-NGS 66.09 76.08 55.12 46.30 10.73

3 Results obtained from Chen’s open source website: https://github.com/chen-judge/GeoQA

Table 5: Accuracy of the models on GeoQA-test using different training set.

Model GeoQA-train(%) Mix-train(%) Backtrans-train(%)

NGS 14.94 12.72 14.03
DPE-NGS 12.68 11.90 10.73

Table 6: The percentage of No Result generated by the two models using different training set.

OP=1(%) OP=2(%) OP=3(%) OP=4(%)

NGS 76.70 58.42 47.10 38.33
DPE-NGS 78.95 63.57 50.0 56.67

Table 7: The accuracy of NGS and DPE-NGS for dif-
ferent difficulty problems using Mix-train. OP=N rep-
resents the solving steps of problems. More solving
steps means the problem is more difficult.

Model Total(%) Angle(%) Length(%) Others(%)

NGS 49.14 53.85 45.90 43.07
DPE-NGS 51.52 54.64 49.18 47.69

Table 8: Accuracy of two models on our test set when
train with GeoQA-train.

lems with different difficulty levels, as shown in
Table 7, where our DPE-NGS outperforms NGS
on all problems with different solving steps.

Generalization Performance of Models. We
use the GeoQA-train dataset as training set for
both models and test the generalization perfor-
mance on our new test set. As shown in Ta-
ble 8, since our annotate data are more difficult,
neither model achieves a high accuracy, but our
DPE-NGS still performs better than NGS, and our
model achieves 51.52% compared to 49.14% of
NGS indicating that our model shows better gen-
eralization performance.

5.3 Ablation Study

To verify the rationality of our model struc-
ture design and the validity of the text encod-
ing method. We consider four combinations: 1)
NGS, with unidirectional LSTM as text encoder;

2) NGS (RoBERTa), NGS with RoBERTa as en-
coder; 3) NGS (RoBERTa + LSTM) with an en-
coder consisting of RoBERTa and a unidirectional
LSTM; 4) DPE-NGS, our improved NGS model,
with a Dual Parallel Text Encoder consisting of
RoBERTa and a Bi-LSTM.

As shown in Table 9, we can see that using
only RoBERTa as a text encoder can not im-
prove the performance of the model when train
with GeoQA-train, but the accuracy improves
considerably when train with our dataset(Mix-
train:64.77%, Backtrans-train:65.03%). We be-
lieve that the geometry problem text description
is far different from the common linguistic de-
scription because it contains more geometric ex-
pressions, so the RoBERTa module should be fine-
tuned with a larger geometric dataset, which also
reflects that our new dataset is helpful to apply the
Pre-training model to geometric problems solving.
In addition, we also see that the model based on
RoBERTa and unidirectional LSTM is much less
effective than our DPE-NGS which demonstrates
the effectiveness of our DPE module structure.

Figure 4: A typical case. A No Result type problem
with a complex diagram.
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Trainsets GeoQA-train(%) Mix-train(%) Backtrans-train(%)

Models

NGS 60.52 61.19 63.31
NGS(RoBERTa+LSTM) 59.87 62.12 63.84

NGS(RoBERTa) 58.28 64.77 65.03
DPE-NGS 62.65 65.96 66.09

Table 9: Ablation study of different text encoder architecture designs. The content in parentheses indicates the
encoder components that the model used.

5.4 Case Analysis
In our best experiment, there are still 10.73%
problems for our model that can not get the an-
swer. As shown in Figure 4, it’s a typical prob-
lem in the No Result category. The diagram of
this problem contains nine vertices that can form
more than ten line segments and numerous geo-
metric elements. We believe that the diagram is
too complex for our Diagram Encoder to extract
useful features from it. And this further leads to
our inability to select useful diagram information
for Joint and Reasoning work with text informa-
tion, which ultimately affects the model’s under-
standing of the whole problem scenario.

6 Conclusion

In this work, we newly annotate 2,518 geometric
problems which are more difficult and with richer
problem types to expand GeoQA and form a new
benchmark dataset GeoQA+, the largest geometric
problem dataset at present. Moreover, we propose
a new text-encode method(DPE) to improve the
limits of NGS. The experimental results show that
both GeoQA+ and DPE-NGS have contributed to
the accuracy improvement, and we have improved
the baseline accuracy in automatic geometry prob-
lem solving from 60.7% to 66.09%. In the future,
we will focus on the understanding of problem di-
agram by enhancing the ability of diagram features
extraction as well as the representation of diagram
information.
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