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Abstract
Table-based fact verification aims to verify
whether a statement sentence is trusted or
fake. Most existing methods rely on graph
feature or data augmentation but fail to inves-
tigate evidence correlation between the state-
ment and table effectively. In this paper, we
propose a self-Labeled Keypoint Alignment
model, named LKA, to explore the correla-
tion between the two. Specifically, a dual-
view alignment module based on the state-
ment and table views is designed to discrimi-
nate the salient words through multiple inter-
actions, where one regular and one adversari-
al alignment network cooperatively character
the alignment discrepancy. Considering the
interaction characteristic inherent in the align-
ment module, we introduce a novel mixture-of-
experts block to elaborately integrate the inter-
acted information for supporting the alignmen-
t and final classification. Furthermore, a con-
trastive learning loss is utilized to learn the pre-
cise representation of the structure-involved
words, encouraging the words closer to words
with the same table attribute and farther from
the words with the unrelated attribute. Experi-
mental results on three widely-studied datasets
show that our model can outperform the state-
of-the-art baselines and capture interpretable
evidence words.

1 Introduction

Table-based fact verification aims to uncover the
factuality attribute of the sentence relying on the
available structured (Chen et al., 2020b; Wang
et al., 2021b; Gupta et al., 2020) textual evidence.
Current methods can be divided into two group-
s. The first one exploits the logical form of the
statement with graph neural networks (Zhong et al.,
2020; Shi et al., 2020, 2021). The other focuses on
extending table-aware pre-trained language mod-
els (PLMs) (Eisenschlos et al., 2020; Herzig et al.,
2020).
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Figure 1: Two examples of table-based fact verification
task. Keypoints are highlighted in yellow. (a) is a rela-
tional web table. (b) is an entity web table.

In PLM-oriented fact verification, the majority
of methods treat the statement-table pair as plain
text and then further capture latent essential infor-
mation relying on multiple Transformer (Vaswani
et al., 2017) blocks. It is intuitive that only partial
table cells are associated with the statement while
other cells are redundant (Wang et al., 2021a; Yin
et al., 2020). Due to the lack of explicit guidance
signals in the statement-table pair, the capability
of checking various statements is hindered for the
PLMs, deteriorating model performance and inter-
pretability. Taking Figure 1 as an example, the
clues are derived from the statement and some scat-
tered table cells. If the model pays attention to the
unrelated words (e.g., “sliver”, “bronze”, “total”),
the prediction would not be able to convincingly
correct. In other words, failing to align the laten-
t salient words, which are denoted as keypoints,
may lead to some misleading information being fo-
cused on as evidence. Despite impressive process,
we empirically find that few methods are commit-
ted to the keypoint alignment across the statement
words and table cells. The main reasons are: 1)
There are alignment discrepancies in the alignment
space, where one statement is associated with one
table. However, one table may be involved with
several statements; 2) The essence of alignment is
to perceive salient evidence for the final classifi-
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cation, which requires a well-designed interaction
network to aggregate the statement words and table
cells; 3) Flexible table structures hinder the rep-
resentation of words since the significant cost of
designing a general structure-aware PLM for table-
based fact verification task. In summary, exploring
keypoint alignment feature in the statement-table
pair is a major challenge.

To tackle the above deficiencies, we propose
a model called self-Labeled Keypoint Alignment
(LKA) for table-based fact verification, focusing
on aligning salient evidence and aggregating es-
sential information between the statement and ta-
ble. Specifically, we design a Dual-view Alignment
module (DA) for dealing with the discrepancy of
the alignment characteristics. An interaction net-
work is first applied for aggregating the interacted
statement and the table representation in multiple
steps. The DA then employs a regular alignment
network to learn keypoint correlation from the en-
hanced statement view and force another adversari-
al alignment network to perceive the corresponding-
ly reverse correlation (i.e., unrelated words) from
the table view. For providing aggregated infor-
mation in the interaction network, we design an
Adaptive Aggregation Experts (AAE) block. The
AAE employs a mixture-of-experts (MoE) network
(Jacobs et al., 1991) that incorporates multiple op-
erating units to sufficiently aggregate the statement
and table information. Besides, inspired by the
contrastive learning theory (Chen et al., 2020a; Pan
et al., 2021), we adopt a structure-aware contrastive
learning loss to obtain precise representation for
the structure-involved words. The amended repre-
sentation can force the statement and table closer
to its local sub-structure zone (e.g., statement, row,
column, etc.) and farther away from others. Our
contributions are summarized in three folds:

• We explore a table-based fact verification
model integrating keypoint alignment from
the statement and table views, which can con-
vert the alignment task into the optimization
of two opposite goals and effectively integrate
essential information with the MoE network.

• The contrastive learning theory is introduced
to enhance structure-aware word representa-
tion, which provides a simple and general way
to address various structured tabular data.

• We conduct experiments on three benchmark
datasets TABFACT, INFOTABS and SEM-

TAB-FACTS. Experimental results demon-
strate that our model bring performance gains
by 0.67%/3.63%/3.07% compared with sev-
eral state-of-the-art models, and the captured
salient words can be interpreted.

2 Related Work

Unlike FEVER (Thorne et al., 2018) utilizing textu-
al evidence or FEVEROUS (Rami Aly and Mittal,
2021) using textual-table mixed evidence, table-
based fact verification (Chen et al., 2020b) concen-
trates on structured or semi-structured evidence
text. The currently popular methods employ a
tree-style neural network (Zhong et al., 2020) or
graph network (Yang et al., 2020; Shi et al., 2020)
to encode the logical form of statements. How-
ever, labeling massive accurate logical forms is
labor-intensive. Meanwhile, structure-aware mod-
els (Eisenschlos et al., 2020; Zhang et al., 2020;
Dong and Smith, 2021) have been investigated
to deal with the table-based fact verification task.
Among these approaches, TaPaS++ (Eisenschlos
et al., 2020) projects structural information of ta-
bles to a pre-trained language model by importing
row, column, numeric features into the embedding
layer. Some researchers also design novel data aug-
mentation strategies to enhance TaPaS++, such as
decomposing complex statements (Yang and Zhu,
2021), replacing non-salient tokens (Wang et al.,
2021a), or generating massive question-answer
pairs (Liu et al., 2021). However, upgrading vanilla
PLMs for precise representation requires a consid-
erable expense of pre-training or data augmenting.

In addition to the rational structured table data,
there are entity tables (Gupta et al., 2020) and ma-
trix PDF tables (Wang et al., 2021b) in table-based
fact verification scenarios. Mainstream approaches
(Gautam et al., 2021; Müller et al., 2021) employ
TaPaS++ and TABFACT data to check matrix PDF
tables while various scanning (Gupta et al., 2020)
and filtering (Neeraja et al., 2021) methods are pro-
posed to deal with entity tables. Different from
the aforementioned works, our model exploits a
novel alignment of salient words for the statement-
table pair and a structure-oriented loss for precise
representation.

3 Methodology

3.1 Formulation
In the table-based fact verification task, there are a
statement S, its corresponding structured or semi-
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structured evidence table T and label Y . All sam-
ples are denoted as D = {(Si,T i,Y i)|0 ≤ i <
I}, I = |D|. The task can be formalized as search-
ing for the best mapping y∗ = fθ(S, T ) to mini-
mize the error:

ErrD = E(si,ti,yi)∼DL(fθ(si, ti), yi), (1)

where y∗ is the predicted label, y is the ground-
truth label, fθ is a specified model in the hypothesis
space F with parameter θ.

Furthermore, as shown in Figure 1, it can be
observed that only partial cells in table T are rele-
vant to the statement S, which means these salient
words are keypoints. The alignment problem is
defined as how to identify these keypoints in the
statement-table pair. Formally, given an example
e ∈ D with m labeled tokens e = {(xj , yj)}mj=1

from X × Y , where X denotes an input space and
Y denotes an output space, yj ∈ {0, 1} indicates
token xj should be aligned or not. We consider
the binary classification as the alignment classifier
fa : X → R|y|. The accuracy of the alignment
classifier is given by:

Acc(fa) = E(xj ,yj)∈e1(fa(xj) = yj), (2)

where 1(.) is the indicator function. Then we can
define the alignment distance from statement xs

and table xt as:

dfa,f ′a∈F
(S, T ) = AccS(fa) +AccT (f

′
a)

=
1

m

m∑
j

1(fa(xsj) = ysj ) + 1(f
′
a(x

t
j)! = ytj)

,

(3)
where f

′
a is an adversarial alignment function that

discriminates the unrelated tokens. Thus the total
objective can be defined as:

min
fθ∈F

ErrD + max
fa,f

′
a∈F

d(S, T ). (4)

In this manner, the proposed model learns to mini-
mize the error performance and maximize the align-
ment distance jointly.

3.2 Model Overview
The architecture of LKA is shown in Figure 2. It
consists of an encoder, a dual-view alignment mod-
ule and an MoE-level interaction network. The en-
coder maps a statement-table pair x into a hidden
representation with a vanilla PLM. Inspired by the
way humans solve the table-based fact verification

task, we design an alignment module to align the
underlying keypoint from the statement and table,
respectively. Meanwhile, an interaction network
driven by MoE is designed to aggregate interac-
tive information for further supporting keypoint
alignment and final classification. Additionally, we
utilize a contrastive loss on the PLM to yield a
more precise structure feature.

3.3 Encoder

The statement and flattened table are formatted as
e = {[CLS], state, [SEP], head, ..., rw, [SEP]},
where state indicates the statement, head indi-
cates the headline of the table, and rw indicates
the w-th row tokens. After encoding, we can ob-
tain the overall statement-table pair representation
H = PLM(e), including the statement represen-
tation Hs and the table Ht, where H ∈ Rm×d,
Hs ∈ Rs×d, Ht ∈ Rt×d, d is the dimension of the
hidden representation, m, s, and t are the length
of the statement-table pair, the statement and the
table, respectively.

3.4 Dual-view Alignment Module

As keypoints are derived from the interaction of
the statement and the table, an interaction network
is designed to explore the correlation between the
two representations. We alternate attentive memory
accesses to the statement and the table for multiple
steps. From the statement view, we formulate a
query glimpse qτs at step τ :

qτs = softmax
j=1,...,s

(Hτ
sW

s
q ·(HsjW

s
k+bj)

T )HsW
s
v,

(5)
where Ws

q,W
s
k,W

s
v ∈ Rd×d are projection ma-

trices, Hsj ∈ Rd is the j-th token vector in the
statement, bj is a bias term. Hτ

s is initialized with
Hs when τ = 0.

After interacting with the statement, the alter-
native attention probes the target table. The table
attention weights are calculated based on the table
Ht and the currently selected query glimpse qτs :

qτt = softmax
j=1,...,t

(qτsW
t
q · (HtjW

t
k + bj)

T )HtW
t
v,

(6)
where Wt

q,W
t
k,W

t
v ∈ Rd×d are projection matri-

ces, Htj ∈ Rd is the j-th token vector in the table.
The interaction network then updates the statement
on the basis of the attentive information gathered
from the current step τ , i.e., Hτ+1

s = ψ([qτs , q
τ
t ]),

where ψ(.) is a non-linear aggregation function.
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Figure 2: The framework of the proposed model LKA for table-based fact verification.

The updated statement representation aggregates
the interacted information from the statement and
table for multiple steps. By this means, the updated
statement can benefit better alignment and the final
verification.

The alignment module tries to make sense of the
critical evidence cells so as to provide interpretable
evidence for the verification. One noticeable dif-
ficulty is how to determine keypoints in the table
since accurate labeling of these keypoints is labor-
intensive. To this end, we use the same content (i.e.,
salient tokens) appearing in both the statement and
the table as weak supervised keypoints. Given a
statement-table pair example e = {t0, t1, ..., tm},
the alignment label of each token isA(ti) ∈ {0, 1},
where 0 means that token is not essential and vice
versa. For token t in example e, the alignment mod-
ule produces a likelihood probability distribution
A(t) and thus predicts the corresponding alignment
label. Since the keypoints are primarily determined
by the statement, A(t) can be predicted with the
guidance of the statement representation Hτ

s . The
A(t) is implemented by:

A(t) = Sigmoid(MLP((Hτ
s)) ∈ Rm×1. (7)

Then the predicted label a(t) is gained by an align-
ment softmax function σ:

a(t) = σ(Ao(t)) =
exp(Ao(t))∑o=1
o=0 exp(Ao(t))

, (8)

where A1(t) = 1 − A0(t). To alleviate the
noise from the yielded label probability distribu-
tionA(ti), we add a tolerance item β onA(ti) with

random sampling and revise the alignment proba-
bility distribution as Ã(t). The formula is defined
as below:

Ã(t) =
Ao(t) +G(0, β)∑o=1
o=0Ao(t) +G(0, β)

, (9)

where Ao(t) ∈ {0, 1} is the original probability, G
is the Gaussian sampling function that can revise
A(t)’s 0-1 hard label to be more tolerant. Sequen-
tially, we use the Kullback-Leibler (KL) divergence
(Kullback and Leibler, 1951) to measure the differ-
ence between the predicted alignment probability
A(t) and the ground truth alignment label A(t):

L(A(t),A(t)) = 1

m

m∑
i=0

KL(Ã(ti)||a(ti)). (10)

Moreover, the keypoints can be recognized from
the table view by first scanning the table and then
searching the relevant statement. Thus, the align-
ment module also could align the keypoints with
the table representation. However, as shown in Fig-
ure 3, the statement is only related to one table, but
one table has involved in different statements. If
the alignment module directly aligns the different s-
tatements from the table perspective, the process of
optimization becomes more difficult due to the mul-
tiple alignment decision bounds brought by these
statements. Under this consideration, the alignmen-
t module concentrates on the non-salient tokens
when using table representation. In other words, an
adversarial network A′(t) is designed to make the
misalignment with the table representation Ht and
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predict correct alignment with the statement repre-
sentation Hτ

s . The above parallel network working
mode can be viewed as dual-view alignment. The
details of the dual-view alignment can be clarified
in Figure 3. Focusing on the alignment zones for
the A′(t) with statement representation is helpful
to learn the potential bound of alignment and non-
alignment. Specific ally, we first generate the false
alignment label A

′
(t) = 1 − A(t) and then use

the statement representation Hτ
s to predict the self-

labeled alignment probability a
′
s(t) = σ(A′s(t)) by

the adversarial network. Meanwhile, we use the ta-
ble representation Ht to predict the false alignment
probability a

′
t(t) = σ(A′t(t)).

A′s(t) = Sigmoid(MLP-adv(Hτ
s)), (11)

A′t(t) = Sigmoid(MLP-adv(Ht)). (12)

In short, the adversarial alignment can be summa-
rized as:

Ladv(A
′
(t),A′(t)) = 1

m

m∑
i=0

KL(as(ti)||a
′
s(ti))

+ KL(A
′
(ti)||a

′
t(ti)).

(13)

3.5 Adaptive Aggregation Experts Module
In this subsection, we implement the aggrega-
tion function ψ inspired by the mixture-of-experts
(MoE) (Shazeer et al., 2017) mechanism. The ag-
gregation function consists of multiple parallel neu-
ral layers, which indicate different kinds of interac-
tions for each attentive statement qτs and attentive
table qτt . The idea of mixture-of-experts is derived
from a group of networks (“experts”) that jointly
make decisions with dynamical weights. Unlike
previous approaches that treat each expert as a u-
niform structure unit (Shazeer et al., 2017; Fedus
et al., 2021), we regard the experts as a series of

operation units, which take the (qτs , qτt ) as input
{x1,x2} and effectively aggregate it in various
manners.

E(x1,x2) = {x1◦x2,x1⊗x2,x1⊕x2,x1	x2},
(14)

where ◦,⊗,⊕,	 denote the concatenation, the
element-wise multiplication, the element-wise ad-
dition and the element-wise subtraction operations,
respectively. The MoE block routes the token pair
(x1,x2) to the determined expert from an expert
set {Ei(x1,x2)}Ni=1 by an MLP neural network.
The output of the MLP h(x1,x2)j is normalized
via a softmax function over the availableN experts.
The gate-value for expert i is given:

pi(x1,x2) =
eh(x1,x2)j∑N
j e

h(x1,x2)j
. (15)

Accordingly, the output of the MoE block is the
linearly weighted combination of each selected ex-
pert’s computation on each token by the gate value:

Hτ+1
s =

∑
i∈N

pi(q
τ
s , q

τ
t )Ei(q

τ
s , q

τ
t ). (16)

By this means, the updated statement repre-
sentation Hτ+1

s can aggregate the attentive in-
formation and flow into the next interaction step.
Moreover, we average the final step Hτ

s and con-
catenate it with the overall statement-table pair
representation H [CLS] to predict the label y∗ =
MLP(mean-pooling(Hτ

s);H [CLS]).

3.6 Training Objectives
Objective 1. To capture the alignment features,

we minimize the KL-divergence from the statement
and table views, respectively.

Lalign = L(A(t),A(t)) + Ladv(A
′
(t),A′(t))

(17)
Objective 2. Inspired by the contrastive learning

theory (Chen et al., 2020a), we design a structure-
aware loss, enabling the PLM to grasp the structural
attributes of the statement-table pair.

The definitions of the positive correlation for
these different tables are different. The reason is
that the rational and matrix PDF table cells in the
same column have a similar natural attribute. Rec-
ognizing the column relationship is helpful for ta-
ble encoding (Yin et al., 2020; Chen et al., 2020b).
For the entity table, a row is comprised of a prop-
erty cell and its corresponding content. There is
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no structural correlation among the rows. (Gupta
et al., 2020) also confirms that modeling the link
between the property and the content could provide
a more accurate representation. Subsequently, the
structure features can be learned by the objective
of contrastive learning:

Lcl =
1

m

m∑
i=1

[d (tai , t
p
i )− d (t

a
i , t

n
i ) + ξ]+ ,

(18)
where m is the length of the example, a, p, n are
the anchor, positive and negative token features,
respectively. d(·, ·) is the distance function, ξ is a
margin parameter, and [x]+ is the max(x, 0) func-
tion. In a nutshell, the contrastive loss Lcl helps to
enhance the distance space’s intra-structure com-
pactness and inter-structure discreteness.

Objective 3. Finally, we use cross-entropy loss:

Lce =
∑
x,y∈D

−logPθ(y|x). (19)

Total objective. The overall loss consists of the
above three objectives with hyperparameters λ1
and λ2, as well as a balance loss Lmoe (Shazeer
et al., 2017) of adjusting the ratio of selected ex-
perts:

Ltotal = Lce + λ1Lalign + λ2Lcl + Lmoe. (20)

4 Experiments

4.1 Dataset and Metrics

To evaluate the validity of LKA, we adopt three
standard datasets with various table structures1.
For labels, each statement in TABFACT and SEM-
TAB-FACTS is labeled as entailed or refuted2,
while INFOTABS divides statements into three
kinds: entailment, contradiction and neutral. We
leverage accuracy (Acc.) as the evaluation metric
on TABFACT and INFOTABS, as well as microF1
score for SEM-TAB-FACTS.

4.2 Experimental Details

The computation environment is implemented with
Python 3.6, PyTorch 1.8.0, CUDA 10.2 and cuD-
NN 8.0. Recall that all the experiments are running
on a CentOS 7 server with the Intel(R) Xeon(R)
Gold 6240 @ 2.60GHz CPU and one NVIDIA
TESLA V100 GPU.

1Dataset statistics are attached to Appendix.
2Since neutral examples are not given, we conduct the

2-way experiment for a fair comparison.

The optimizer is AdamW and the warmup rate
is 0.06. Following traditional natural language un-
derstanding task GLUE3, we fine-tune the DeBER-
TaV14 backbone for the DeBERTaV1 baseline and
our LKA with the MultiNLI5 corpus in one epoch
before formal training. The hyperparameters are
adjusted depending on the performance of the vali-
dation dataset. We set the word embedding and the
hidden embedding size of the PLM to 1024. For
TABFACT, we run five epochs with a batch size
of 4, an initial learning rate of 1e-5, an attention
head of 16 and each head of 64 in the attentive
interaction network. Three epochs with a batch
size of 8 and a learning rate of 1e-5 are adopted in
INFOTABS and SEM-TAB-FACTS. In the three
datasets, the Dropout is set to 0.1, the number of
steps in the interaction network is 3. The tolerant
item β, and the balanced factor λ1, λ2 are set to
be 0.1, 0.08, 0.1, respectively. We set the d(·, ·)
with Euclidean Distance and the margin parameter
ξ with 0.1 in the contrastive learning loss. In the
interaction network, we search the number of steps
T in [1, 2, 3, 4, 5, 6]. According to the best results
of these different parameters settings, we chose the
T =3.

4.3 Baseline Models

We compare our model LKA with the advanced
baselines for TABFACT, i.e., TaPaS++ (Eisensch-
los et al., 2020), Decomp. (Yang and Zhu, 2021),
SalienL. (Wang et al., 2021a), TaPEx (Liu et al.,
2021). For INFOTABS, we employ the baselines
TabFact, TabAttn proposed in (Gupta et al., 2020)
and KG_Info(Neeraja et al., 2021) to estimate our
model. We utilize the advanced baselines Volta
(Gautam et al., 2021) and TAPAS (Müller et al.,
2021) for SEM-TAB-FACTS.

4.4 Results and Analysis

Table 1 presents the results of various verification
models on the TABFACT dataset. From Table 1,
we can observe that our model LKA surpasses ma-
trices from 0.16% to 1.50% compared to TaPEx,
illustrating the boosted ability brought from the pro-
posed alignment learning strategy. Moreover, our

3GLUE: A Multi-Task Benchmark and Analysis Platform
for Natural Language Understanding

4https://github.com/huggingface/
transformers/blob/master/src/
transformers/models/deberta

5https://cims.nyu.edu/~sbowman/
multinli/

https://github.com/huggingface/transformers/blob/master/src/transformers/models/deberta
https://github.com/huggingface/transformers/blob/master/src/transformers/models/deberta
https://github.com/huggingface/transformers/blob/master/src/transformers/models/deberta
https://cims.nyu.edu/~sbowman/multinli/
https://cims.nyu.edu/~sbowman/multinli/
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Models Val Test Test Test Test
simple complex small

TaPaS++ 81.1 81.1 92.6 75.7 84.2
Decomp. 82.7 82.7 93.6 77.4 84.7
SalienL. 82.7 82.1 93.3 76.7 84.3
TaPEx(BART) 81.6 81.2 91.9 75.6 83.9
TaPEx 84.6 84.2 93.9 79.6 85.9
DeBERTaV1 83.28 83.26 92.53 79.15 85.14

Ours 84.77 84.87 94.06 80.31 87.40

Human N/A N/A N/A N/A 92.1

Table 1: Comparisons on the TABFACT (%)

Models Val Testα1 Testα2 Testα3

TabAttn 63.63 62.94 49.37 49.04
TabFact 77.61 75.06 69.02 64.61
KG_Info 79.44 78.42 71.97 70.03
TaPaS++ 74.94 73.22 61.83 60.88
TaPEx 77.38 76.50 67.55 66.38
DeBERTaV1 81.16 80.88 73.61 72.77
Ours 82.66 82.05 74.94 73.55
Human 79.78 84.04 83.88 79.33

Table 2: Comparisons on the INFOTABS (%)

model reduces the gap between the machine and hu-
man performance to 4.7% on the small test dataset.
Meanwhile, LKA achieves the best performance
without complicated data augmentation compared
with TaPEx. Since most approaches in TABFACT
do not have results on INFOTABS and SEM-TAB-
FACTS, we run the best approach TaPEx for com-
parison. As shown in Table 2, LKA outperforms
the up-to-date baseline KG_Info from 2.97% to
3.63% on various evaluation subsets. Simultane-
ously, LKA improves the verification scores on the
DeBERTaV1 backbone. Furthermore, we find that
TaPEx and TaPaS++ do not perform as well on en-
tity table data INFOTABS as they do on TABFACT.
The reason is that the two models are designed to
handle rational tables and they have difficulty in
adapting to tabular data with varying structures.
Considering that approaches on SEM-TAB-FACTS
mainly use ensemble models for prediction, we
only report the single-model performance in their
paper to ensure evaluation fairness. LKA outper-
forms TaPEx by 3.07% on the test dataset.

In summary, LKA achieves the best results in
the three scenarios, which indicates the prominent
generalization ability of LKA. Besides, although
data augmentation is important to boost perfor-
mance, the results of DeBERTaV1 demonstrate that
a stronger pre-trained language model has potential
to tackle various table data and the structure-aware

Models Val Test

Volta 74.35 73.87
TAPAS 78.33 75.33
TaPEx 77.53 75.47
DeBERTaV1 79.12 75.94
Ours 80.34 78.54

Table 3: Comparisons on the SEM-TAB-FACTS(%)

Val_TABFACT Test_TABFACT Val_INFOTABS Test 1_INFOTABS
Performance on various datasets
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Figure 4: Different aggregation methods in the Interac-
tion network. (%)

loss further enhances the advantage. Owing to the
table structure similarity between TABFACT and
SEM-TAB-FACTS, we then only conduct experi-
ments and analyses on TABFACT and INFOTABS.

4.5 Effort of DA

We take a closer look at the dual-view alignment
(DA) module by exploiting how the minimization
(↓) and maximization (↑) of the KL-divergence be-
tween the prediction and the self-labeled alignment
affect the final verification performance. As shown
in Table 4, we adopt various alignment settings
to investigate the alignment discrepancy. We can
conclude that: 1) Comparison of the first three
rows indicates the dual-view alignment networks
are generally superior to the single ones, since the
two views can provide complementary alignment
information to be aware of salient words. 2) Per-
formance of the third row is mostly lower than the
last four rows, which demonstrates the alignment
network f cannot resist the negative effect of align-
ment discrepancy as well as implies the rationality
of the adversarial alignment network f

′
. 3) The last

row represents the performance of the dual-view
alignment module. The highest metrics indicate
that using the adversarial network and table repre-
sentation to align unimportant points, and using the
adversarial network and statement representation
to align important points are effective to alleviate
alignment discrepancy.
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Statement Table TABFACT INFOTABS
Val Test Val Testα1

↓ Lf – 84.23 84.31 81.83 81.22
– ↓ Lf 83.95 84.03 81.66 81.05
↓ Lf ↓ Lf 84.31 84.25 82.05 81.38

↓ Lf + ↓ Lf ′ ↓ Lf ′ 84.45 84.21 82.77 81.22
↓ Lf + ↑ Lf ′ ↑ Lf ′ 84.68 84.59 82.17 81.56
↓ Lf + ↑ Lf ′ ↓ Lf ′ 84.62 84.65 82.21 81.23
↓ Lf + ↓ Lf ′ ↑ Lf ′ 84.77 84.87 82.66 82.05

↓ L∗ means to align salient tokens, while ↑ L∗ is to align
non-important tokens, f and f

′
are the alignment network

and the adversarial networks, respectively.

Table 4: Efforts of various settings under the alignment
module(%)

4.6 Effort of AAE
To further exhibit the superiority of the MoE-level
aggregation module, we compare it with the follow-
ing three aggregation methods: 1) MLP (Multilay-
er Perceptron) acts as a fuse block to concatenate
the attentive representation from the statement and
table; 2) Self-Attn (Self-Attention network) adopts
the attentive statement representation as query, the
attentive table as key and value for aggregation; 3)
regular MoE employs multiple MLP layers to fuse
the representations.

The comparison is illustrated in Figure 4. MoE
performs better than MLP and Self-Attn, which
demonstrates the advantage of aggregation deci-
sions. In addition, the proposed AAE achieves the
optimum performance on the overall metric among
all methods. AAE exceeds MLP, Self-Attn and
regular MoE about 0.57%/0.78%, 0.48%/0.27%
and 0.38%/0.50% on the TABFACT/INFOTABS
in terms of test dataset, respectively. One possi-
ble reason is that, unlike vanilla MoE where each
“expert” employs the same MLP, AAE projects d-
ifferent meta-operation units into MoE. In other
words, under the supervision of loss signals, the in-
teracted statement and table learn to adaptively fuse
information with fundamental operations, such as
“addition”,“subtraction”,“multiplication”, imitating
the process of making decisions by humans.

4.7 Ablation
In order to evaluate the impact of each component
of LKA, we ablate it into the following four vari-
ants: 1) w/o Align-Inter removes the regular and
adversarial alignment networks, and the interac-
tion network; 2) w/o Align deletes the regular and
adversarial alignment networks; 3) w/o Inter re-
moves the interaction network; 4) w/o CL prunes

Models TABFACT INFOTABS
Val Test Val Testα1

w/o Align-Inter 83.98 83.66 81.50 81.22
w/o Align 84.35 84.39 82.05 81.44
w/o Inter 84.56 84.32 82.11 81.22
w/o CL 84.65 84.46 82.38 81.72
LKA (Ours) 84.77 84.87 82.66 82.05

Table 5: Ablation analysis of LKA (%)

away the structure-aware contrastive learning loss.
As shown in Table 5, we can conclude that

removing each component would decrease from
0.33% to 1.21% in Accuracy on the test dataset,
which verifies the effectiveness of each component
and the reasonable integrity of the LKA. 1) w/o
Align-Inter: w/o Align-Inter reflects the lowest
performance in all simplified variants, decreasing
1.21% and 0.83% on Test, respectively. The experi-
ment results elaborate the validity of our LKA cap-
turing the interactive information and the dual-view
alignment. 2) w/o Align: w/o Align underperforms
LKA, showing 0.48% and 0.61% degradation on
Test, respectively. It elaborates the necessity of
the LKA capturing the alignment information from
the statement and the table views. 3) w/o Inter:
removing the interaction network decreases 0.55%
and 0.83% on Test compared to LKA. The reduc-
tion conveys the effectiveness of integrating the
attentive representations from the statement and
table. 4) w/o CL: When eliminating the structure-
aware contrastive loss, there are 0.41% and 0.33%
accuracy decrease on Test. It reveals that the intro-
duced contrastive loss can improve performance by
capturing structure information.

4.8 Case Study

To promote the understanding of LKA, we illus-
trate two random examples in Figure 5. The dual-
view alignment module captures the highlighted
words to interpret the evidence fragment. From
Figure 5, it can be seen that the proposed align-
ment module is able to capture essential word-
s with more informative semantics (i.e.,“Bruno
Abakanowicz”, “born”, “Born”, “France”, “Eng-
land” for S1, “Bruno Abakanowicz”, “inventor” for
S2). Although some underlying keypoints are ig-
nored, LKA can gain available evidence fragments
such as “France”, “Lithuania” for S1 with the MoE-
level interaction module. Furthermore, we project
the output of PLM into a 2-D dimension vector
with TSNE (Van der Maaten and Hinton, 2008)
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Title
Bruno 

Abakanowicz

Born

6 October 1852

Ukmerge, 

Lithuania (then 

part of Russian 

Empire)

Died

29 August 1900  

(aged 47) 

 Saint-Maur-des-

Fosses, France

Occupation

 mathematician, 

inventor, 

electrical 

engineer

r0：

r1：

r2：

r3：

Table Two opposite statements and their heatmaps

S2：Bruno Abakanowicz was known as an inventor.

Bruno Abakanowicz was born in England.S1：

Scatter distribution

Figure 5: Case analysis via one contradiction and one entailment example on INFOTABS. Due to limited space,
we only report the alignment weight heatmap from the statement view. Deeper red color means larger weight in
alignment. The padding grids and tokens weighting close to zero are highlighted in green.

for the S1. We conclude that distributions of local
sub-structure (e.g., statement, 0-th row, 1-th row)
are more condensed than that of the setting with
no contrastive loss. The condensed distribution
verifies that the proposed LKA can perceive the
structure feature of the statement-table pair.

5 Conclusion

This paper takes full advantage of alignment signal-
s to facilitate a self-labeled learning procedure from
the statement and table views. More importantly,
an MoE-level aggregation module is designed to
explore the valuable information. Besides, a con-
trastive learning loss is introduced to promote the
awareness of table structure. Future research could
be extended as follows: 1) Exploring alignmen-
t mechanism in the table-based question-answer
tasks; 2) Developing fact verification approaches
in the multi-evidence table setting.
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A Dataset Details

In this section, we describe more detailed settings
about the experiments to aid in reproducibility. We
also anonymously submit the source code and pre-
dicted results on the three datasets to the submis-
sion system.

Relational table dataset TABFACT6 contains
about 118K natural language statements accom-
panied by human-annotated 16K regular Wikipedi-
a tables (similar to database tables) of evidence.
In addition to the regular validation and test set-
s, TABFACT extracts subsets of Test_simple and

6https://github.com/wenhuchen/
Table-Fact-Checking
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Datasets Splits

TABFACT Train Val Test Simple Complex
Statement 92,283 12,792 12,779 50,244 68,031
Table 13,182 1,696 1,695 9,189 7,392

INFOTABS Train Val Testα1 Testα2 Testα3

Statement 16,538 1,800 1,800 1,800 1,800
Table 1,740 200 200 200 200

SEM-TAB-FACTS Traina Trainm Val Test –
Statement 179,345 4,506 463 522 –
Table 1980 981 52 52 –

Table 6: Numbers of examples for all datasets.

Test_complex from the Simple and Complex chan-
nels, as shown in Table 6. INFOTABS7 consists
of almost 23K statements and 2.5K unique entity
web table drawn from Wikipedia articles in various
domains. The entity table could be viewed as a
special table since it contains multiple rows and
only two columns, of which one denotes the title of
a record and the other is the corresponding content.
SEM-TAB-FACTS8 is proposed at SemEval-2021
task 9 and focus on matrix tables from scientific
articles. The dataset contains an auto-generated
train set Traina and a human-annotated train set
Trainm. Note that we only use the Trainm to train
our LKA model since the Traina is more noisy.

The experimental data we used is taken from
their links, and no additional processing is per-
formed on the TABFACT and INFOTABS datasets
beyond the steps described in Section 3.3. Consid-
ering that the matrix tables in SEM-TAB-FACTS
contain multi-row or multi-column header, we fol-
low the paper9 to standardize the table header by
dividing multi-row or multi-column header into
multiple headers with the same content. In addi-
tion, conducting experiments with LKA, TaPEx10

and DeBERTaV1 on the SEM-TAB-FACTS, the
trained model on the TABFACT is utilized to ini-
tialize the training of SEM-TAB-FACTS.

B Algorithm Description

The algorithm description is given for further
understanding and facilitating reproducibility of
the proposed LKA model.

7https://github.com/infotabs/infotabs
8https://sites.google.com/view/

sem-tab-facts
9https://github.com/devanshg27/

sem-tab-fact
10https://github.com/microsoft/

Table-Pretraining

Algorithm 1 Table-based fact verification with self-
labeled keypoint alignment
Require:

Source table, statement and ground-truth label (S, T , Y );
model parameters θ; the alignment and the adversarial
label A, A

′

1: Initialize model parameters θ
2: while not converged do
3: Sample a training example (S, T, Y )
4: Flatten (S, T ) to

e = {[CLS], state, [SEP], head, ..., rw, [SEP]}
5: H = PLM(e),Hs =H ∗masks,

Ht =H ∗maskt, letHτ
s =Hs

6: for step τ = 0→ T − 1 do
7: qτs ← softmax

j=1,...,s
(Hτ

sW
s
q · (HsjW

s
k +

bj)
T )HsW

s
v

8: qτt ← softmax
j=1,...,t

(qτsW
t
q · (HtjW

t
k+bj)

T )HtW
t
v

9: E(x1,x2) = {x1◦x2,x1⊗x2,x1⊕x2,x1	x2}

10: Hτ+1
s =

∑
i∈N pi(q

τ
s , q

τ
t )Ei(q

τ
s , q

τ
t ),

11: end for
12: Obtain the alignment A(t) and the adversarial align-

ment A
′
(t) withHτ

s andHt

13: Lalign = L(A(t),A(t)) + Ladv(A
′
(t), (A

′
(t))

14: Lcl =
1
m

∑m
i=1 [d (t

a
i , t

p
i )− d (t

a
i , t

n
i ) + ξ]+

15: Lce =
∑
x,y∈D −logPθ(y|x)

16: L(θ) = Lce + λ1Lalign + λ2Lcl + Lmoe
17: θ ← AdamW(∇θL(θ),θ)
18: end while
19: return θ

https://github.com/infotabs/infotabs
https://sites.google.com/view/sem-tab-facts
https://sites.google.com/view/sem-tab-facts
https://github.com/devanshg27/sem-tab-fact
https://github.com/devanshg27/sem-tab-fact
https://github.com/microsoft/Table-Pretraining
https://github.com/microsoft/Table-Pretraining
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