
Proceedings of the 29th International Conference on Computational Linguistics, pages 1391–1400
October 12–17, 2022.

1391

Perform Like an Engine: A Closed-Loop Neural-Symbolic Learning
Framework for Knowledge Graph Inference
Guanglin Niu1, Bo Li1,2∗, Yongfei Zhang3,4, Shiliang Pu5

1 Institute of Artificial Intelligence, Beihang University, Beijing, China
2 Hangzhou Innovation Institute, Beihang University, Hangzhou, China

3 Beijing Key Laboratory of Digital Media, Beihang University, Beijing, China
4 State Key Laboratory of Virtual Reality Technology and Systems, Beihang University,

Beijing, China 5 Hikvision Research Institute, Hangzhou, China
{beihangngl, boli, yfzhang}@buaa.edu.cn, pushiliang.hri@hikvision.com

Abstract

Knowledge graph (KG) inference aims to ad-
dress the natural incompleteness of KGs, in-
cluding rule learning-based and KG embedding
(KGE) models. However, the rule learning-
based models suffer from low efficiency and
generalization while KGE models lack inter-
pretability. To address these challenges, we pro-
pose a novel and effective closed-loop neural-
symbolic learning framework EngineKG via
incorporating our developed KGE and rule
learning modules. KGE module exploits sym-
bolic rules and paths to enhance the semantic
association between entities and relations for
improving KG embeddings and interpretabil-
ity. A novel rule pruning mechanism is pro-
posed in the rule learning module by leverag-
ing paths as initial candidate rules and employ-
ing KG embeddings together with concepts
for extracting more high-quality rules. Experi-
mental results on four real-world datasets show
that our model outperforms the relevant base-
lines on link prediction tasks, demonstrating
the superiority of our KG inference model in a
neural-symbolic learning fashion. The source
code and datasets of this paper are available at
https://github.com/ngl567/EngineKG.

1 Introduction

Typical knowledge graphs (KGs) store triple facts
and some of them also contain concepts of enti-
ties (Bollacker et al., 2008). The KGs have proven
to be incredibly effective for a variety of applica-
tions such as dialogue system (Zhou et al., 2018)
and question answering (Huang et al., 2019). How-
ever, the existing KGs are always incomplete which
restricts the performance of knowledge-based ap-
plications. Thus, KG inference plays a vital role in
completing KGs for better applications of KGs.

The existing KG inference approaches are usu-
ally classified into two main categories: (1) Rule
learning-based models such as AMIE+ (Galárraga

∗Corresponding author.

(2) Compression Stroke:

KG Embedding Module

triples

paths

concepts

(1) Intake Stroke: Inject

the matched rules into

Compression Stroke

rules

(3) Expansion Stroke:

Rule Learning Module

(4) Exhaust Stroke:

Update rule set newly
learned rules

updated rule set Link Prediction KG embeddings

Figure 1: The brief architecture of our closed-loop
framework for KG inference EngineKG that performs
like a four-stroke engine.

et al., 2015) and AnyBurl (Meilicke et al., 2019)
mine rules from KGs and employ these rules to
predict new triples by deduction. However, rule
learning-based models suffer from low efficiency
of the rule mining process and the poor general-
ization caused by the limited coverage of inference
patterns. (2) KGE technique learns the embed-
dings of entities and relations to predict the missing
triples via scoring each triple candidate, including
TransE (Bordes et al., 2013), HAKE (Zhang et al.,
2020) and DualE (Cao et al., 2021). The previous
KGE models perform in a data-driven fashion, con-
tributing to good efficiency and generalization but
lacking interpretability.

Some recent researches attempt to combine the
advantages of rule learning-based and KGE-based
models to complement each other in a neural-
symbolic learning fashion. An idea is to introduce
logic rules into KGE models, such as RUGE (Guo
et al., 2018) and its advanced model IterE (Zhang
et al., 2019b). These approaches all convert the
rules into formulas by t-norm based fuzzy logic to
obtain newly labeled triples. However, these mod-
els cannot maintain the interpretability which
is a vital feature of symbolic rules. On the other
hand, some rule learning-based models succeed
in leveraging KG embeddings to extract rules via
numerical calculation rather than discrete graph
search, including RNNlogic (Qu et al., 2021),
RLvLR (Omran et al., 2019), DRUM (Sadeghian
et al., 2019) and RuLES (Ho et al., 2018). Although

https://github.com/ngl567/EngineKG

1392

the efficiency of mining rules is improved, the per-
formance especially generalization of purely em-
ploying rules to implement KG inference is still
limited.

To address the above challenges, we propose a
closed-loop neural-symbolic learning framework
EngineKG via combining an embedding-based
rule learning and a rule-enhanced KGE, in which
paths and concepts are utilized. Our model is
named EngineKG because it performs like an en-
gine as shown in Figure 1: (1) Intake Stroke.
The closed-path rules (or named chain rules) are
injected into the KGE module (analogous to in-
take) to guide the procedure of learning KG em-
beddings, where the initial seed rules are mined by
any rule learning tool, and the rule set would grow
via our designed rule learning module from the
first iteration. (2) Compression Stroke. The KGE
module leverages the rules and paths to learn the
low-dimensional embeddings (analogous to com-
pression) of entities and relations, improving inter-
pretability and accuracy. (3) Expansion Stroke.
The novel rule learning module outputs newly
learned rules (analogous to exhaust) by the effec-
tive rule pruning strategy based on paths, relation
embeddings and concepts. (4) Exhaust Stroke.
Update the rule set (analogous to exhaust) by merg-
ing the previous rule set and the newly learned
rules for boosting KGE and KG inference in the
next iteration.

Our research makes three contributions:

• We propose a novel and effective closed-loop
neural-symbolic learning framework that per-
forms embedding-based rule learning and rule-
enhanced KGE iteratively, balancing good ac-
curacy, interpretability and efficiency.

• Paths and ontological concepts are well ex-
ploited for supplementing the valuable seman-
tics to both KGE and rule learning, facilitating
the better performance of KG inference.

• The link prediction results and the effective-
ness of rule learning on four datasets illustrate
that our model outperforms various state-of-
the-art KG inference approaches.

2 Related Work

2.1 Rule Learning-Based Models
According to the symbolic characteristics of KG,
some rule learning techniques specific to KGs are

applied to KG inference with relatively good accu-
racy and interpretability, including AMIE+ (Galár-
raga et al., 2015), Anyburl (Meilicke et al., 2019),
DRUM (Sadeghian et al., 2019), RLvLR (Om-
ran et al., 2019) and RNNLogic (Qu et al., 2021).
AMIE+ (Galárraga et al., 2015) introduces opti-
mized query writing techniques into traditional in-
ductive logic programming algorithms to generate
horn rules efficiently. Anyburl learns closed-path
rules from KGs in a reinforcement learning frame-
work. DRUM, RLvLR and RNNLogic employ KG
embeddings for enhancing the efficiency and scal-
ability of rule learning. Whereas, all the previous
rule learning algorithms lack generalization since
the number of rules mined at one time is limited.

2.2 KG Embedding Models
The typical KG embedding (KGE) models learn
the embeddings of entities and relations to measure
the plausibility of each triple. TransE (Bordes et al.,
2013) regards the relations as translation operations
from head to tail entities. ComplEx (Trouillon et al.,
2016) embeds the KG into a complex space while
DualE (Cao et al., 2021) embeds relations into the
quaternion space to model the symmetric and anti-
symmetric relations. HAKE (Zhang et al., 2020)
embeds entities into the polar coordinate system
and is able to model the semantic hierarchies of
KGs. RUGE (Guo et al., 2018) and IterE (Zhang
et al., 2019b) both convert rules into formulas by
t-norm fuzzy logic to infer newly labeled triples.
Particularly, IterE iteratively conducts rule learning
and KG embedding, but the significant distinc-
tions between our model EngineKG and IterE
include: (1) Usage of rules: our model leverages
rules to compose paths for learning KG embed-
dings while IterE uses rules to produce labeled
triples. Meanwhile, we maintain the interpretabil-
ity of symbolic rules, while IterE does not. (2)
Additional information: our model introduces
paths and concepts into both rule learning and KG
embedding while IterE simply depends on triples.

2.3 Path-Enhanced Models
In terms of the graph structure of KGs, paths denote
the associations between entities apart from rela-
tions and are applied to multi-hop reasoning (Lin
et al., 2018; Xiong et al., 2017; Neelakantan et al.,
2015). PTransE (Lin et al., 2015) extends TransE
by measuring the similarity between relation and
path embeddings. MultiHopKG (Lin et al., 2018)
explores the answer entities via searching corre-

1393

sponding paths with reinforcement learning. How-
ever, these models represent paths in a data-driven
fashion, lacking interpretability and accuracy.

3 Methodology

In this section, we first describe the problem formu-
lation and notation of our work in section 3.1. Then,
following the workflow of EngineKG as shown in
Figure 2, we introduce the rule-enhanced KGE
module in section 3.2 and the embedding-based
rule learning module in section 3.3.

3.1 Problem Formulation and Notation

Definition of Closed-Path Rule. The closed-path
(CP) rule or named chain rule is a fragment of the
horn rule, which we are interested in for the KGE
module and the inference. A CP rule is of the form

Head(x, y) ⇐ B1(x, z1) ∧B2(z1, z2)∧
· · · ∧Bn(zn−1, y) (1)

where B1(x, z1), B2(z1, z2), · · · , Bn(zn−1, y) de-
note the atoms in the rule body Body(x, y), and
Head(x, y) is the rule head. Bi and Head indi-
cate relations. Standard confidence (SC) and head
coverage (HC) are two predefined statistical mea-
surements to assess rules (Galárraga et al., 2015;
Omran et al., 2019), which are defined as follows:

Support = #(e, e′) : Body(e, e′) ∧Head(e, e′) (2)

SC =
Support

#(e, e′) : Body(e, e′)
(3)

HC =
Support

#(e, e′) : Head(e, e′)
(4)

where #(e, e′) indicates the number of entity pairs
(e, e′) that satisfy the condition on the right side of
the colon. In general, the rules with SC and HC
both higher than 0.7 are regarded as high-quality
rules (Zhang et al., 2019b).

Definition of Path. A path between an entity pair
(h, t) is in the form of [h → r1 → e1 → · · · →
rn → t] where ri and ei are the intermediate re-
lation and entity, and the length of a path is the
number of the intermediate relations.

3.2 Rule-Enhanced KGE Module

We aim to learn the entity and relation embed-
dings from triple facts, rules and paths via neural-
symbolic learning. Firstly, we extract the paths via
PCRA algorithm (Lin et al., 2015). Apart from
other path-finding approaches such as PRA (Lao

et al., 2011), PCRA algorithm could measure the re-
liability of each path for KGE module. Particularly,
we develop a joint logic and data-driven path repre-
sentation mechanism to learn path embeddings.

Logic-Driven Path Representation (Intake
Stroke). The CP rules could compose paths into
shorter and more accurate ones for enhancing the
representation of paths. For instance, a length-2
path [The Pursuit of Happiness

CastActor−−−−−−→
Will Smith

PersonLanguage−−−−−−−−−−−→ English] as
shown in Figure 2 could be composed
into a shorter path (actually a triple)

[The Pursuit of Happiness
TV Language−−−−−−−−→

English] via the CP rule TV Language(x, y)
⇐ CastActor(x, z) ∧ PersonLanguage(z, y).
Furthermore, the relation TV Language could
signify the original multi-hop path.

Data-Driven Path Representation. For
the scenario that the path cannot be fur-
ther composed by rules such as the path

[The Pursuit of Happiness
CountryOfOrigin−−−−−−−−−−−→

U.S.A.
LanguageSpoken−−−−−−−−−−−→ English] in Figure 2,

we represent this path by summing all the relation
embeddings along the path. With the entity pair
(h, t) together with the linking path set P , the
energy function for measuring the plausibility of
the path-specific triple (h, t,P) is designed as

Ep(h, t,P) =
∑
pi∈P

R(pi|h, t)∑
pi∈P R(pi|h, t)

∥h + pi − t∥ (5)

where h and t are the head and tail entity embed-
dings. pi denotes the i-th path in the path set P and
pi is the embedding of pi achieved by the joint logic
and data-driven path representation. R(pi|h, t) in-
dicates the reliability of path pi between the given
entity pair (h, t) obtained by the PCRA algorithm.

Optimization Objective (Compression Stroke).
Along with the translation-based KGE models, the
energy function for formalizing the plausibility of
a triple fact (h, r, t) is given as

Et(h, r, t) = ∥h + r − t∥ (6)

in which r is the embedding of the relation r.
The existing KGE techniques neglect the seman-

tic association between relations. Remarkably, the
length-1 rules model the causal correlations be-
tween two relations. As shown in Figure 2, the
relation pair in the rule FilmLanguage(x, y) ⇐
TV Language(x, y) should have higher similarity

1394

The Pursuit of
Happiness

Will Smith

English

U.S.A. Columbia
Pictures

ServiceLocation-1

FilmLanguage

TVLanguage(x, y) <= CastActor(x, z) PersonLanguage(z, y) ^TVLanguage(x, y) <= CastActor(x, z) PersonLanguage(z, y) ^
LanguageSpoken(x, y) <= ServiceLocation-1(x, z) ServiceLanguage(z, y) ^LanguageSpoken(x, y) <= ServiceLocation-1(x, z) ServiceLanguage(z, y) ^

TVLanguage

The Pursuit of
Happiness

English

FilmLanguageFilmLanguage TVLanguageTVLanguage

CountryOfOriginCountryOfOrigin LanguageSpokenLanguageSpoken

FilmLanguage(x, y) <= TVLanguage(x, y)

FilmLanguage(x, y) <= CountryOfOrigin(x, z)

 LanguageSpoken(z, y) ^
FilmLanguage(x, y) <= CountryOfOrigin(x, z)

 LanguageSpoken(z, y) ^

Rule-Enhanced KG Embedding

Embedding-Based Rule Learning

11

22

33

44

Seed rules：

Newly learned rules：

ConceptConcept

The Pursuit of
Happiness

FilmLanguageThe Pursuit of
Happiness

FilmLanguage

English
TVLanguage

Figure 2: The overall architecture of our developed KG inference model EngineKG in a closed-loop neural-symbolic
learning framework. Specific to the rule-enhanced KG embedding module, the green highlighted parts contain the
triples and the composed paths via rules, indicating the inputs of the KGE module.

than other relations. Thus, we measure the associa-
tion between relation pairs as

Er(r1, r2) = ∥r1 − r2∥ (7)

where r1 and r2 are the embeddings of relations
r1 and r2. Er(r1, r2) should be closer to a small
value if r1 and r2 appear in a length-1 rule at the
same time.

With the energy functions specific to the fac-
tual triple, the path representation and the relation
correlation, the joint loss function for training is
designed as follows:

L =
∑

(h,r,t)∈T

(Lt + α1Lp + α2Lr) (8)

Lt =
∑

(h′,r,t′)∈T ′

[γ1 + Et(h, r, t)− Et(h
′, r, t′)]+ (9)

Lp =
∑

(h′,t′)∈T ′

[γ2 + Ep(h, t, P)− Ep(h
′, t′, P)]+ (10)

Lr =
∑
rp∈S

∑
rn∈S′

[γ3 + Er(r, rp)− Er(r, rn)]+ (11)

where L is the whole training loss consisting of
three components: the triple-specific loss Lt, the
path-specific loss Lp, and the relation correlation-
specific loss Lr. α1 and α2 are the weights of paths
and relation correlation, respectively. γ1, γ2 and γ3
are three margins in each loss function. [x]+ is the
function returning the maximum value between 0
and x. T is the set of triples observed in the KG
and T ′ is the set of negative samples obtained by
random negative sampling. S is the set of posi-
tive relations that are correlated with relation r by
length-1 rules and S ′ is the set of negative relations
beyond S and relation r.

We employ mini-batch Stochastic Gradient De-
scent (SGD) algorithm to optimize the joint loss
function for learning entity and relation embed-
dings. The entity and relation embeddings are ini-
tialized randomly and constrained to be unit vectors
by the additional regularization term with L2 norm.

3.3 Embedding-Based Rule Learning Module
We develop an embedding-based rule learning (Ex-
pansion Stroke) to mine high-quality CP rules
via conducting the rule searching and the rule
pruning efficiently. Remarkably, a path can nat-
urally represent the body of a CP rule. Moti-
vated by this observation, we firstly reuse the paths
extracted in section 3.2 and regard these paths
as candidate CP rules, which improves the effi-
ciency of rule searching. For instance, given an
entity pair (h, t) connected by a relation r and
a path [h → r1 → e1 → r2 → e2 →, · · · →
en−1 → rn → t], it can be deduced as a CP rule
r(x, y) ⇐ r1(x, z1)∧r2(z1, z2)∧· · ·∧rn(zn−1, y),
where x, y and zi(i = 1, · · · , n − 1) are the vari-
ables in the rule, and ri(i = 1, · · · , n) is a relation.

To evaluate the plausibility of candidate CP rules
efficiently, we develop a novel rule pruning strat-
egy consisting of two components: Embedding-
based Semantic Relevance and Concept-based
Co-occurrence. It should be noted that the
Concept-based Co-occurrence is available when
the KG contains concepts. For the KGs without
concepts, employing Embedding-based Semantic
Relevance solely is still valid to learn rules.

Embedding-based Semantic Relevance. Intu-
itively, a candidate rule is plausible if the rule body
corresponding to a path p is semantically relevant
to the rule head corresponding to the relation r. We
focus on the paths and the CP rules with lengths no
longer than 2 for the trade-off of efficiency and per-
formance. Based on the KG embeddings learned
in our KGE module, we could measure the seman-
tic relevance between the body and the head of a
candidate rule by the path embedding and relation
embedding as well as the score function as

Esr(r, p) = exp(−∥r − p∥) (12)

where p denotes the embedding of the path p.

1395

Dataset #Relation #Entity #Concept #Train #Valid #Test

FB15K 1,345 14,951 89 483,142 50,000 59,071
FB15K237 237 14,505 89 272,115 17,535 20,466
NELL-995 200 75,492 270 123,370 15,000 15,838

DBpedia-242 298 99,744 242 592,654 35,851 30,000

Table 1: Statistics of the experimental datasets.

The embedding-based semantic relevance indi-
cates a global plausibility of a rule from the per-
spective of relations. Furthermore, a concept-based
co-occurrence is proposed to evaluate the local rel-
evance of the arguments in a rule.
Concept-based Co-occurrences. The neigh-
bor arguments in a high-quality CP rule are ex-
pected to share as many same concepts as pos-
sible. Given a CP rule Nationality(x, y) ⇐
BornIn(x, z) ∧ LocatedIn(z, y), the tail argu-
ment of relation BornIn and the head argument
of relation LocatedIn should share the concept
Location. Considering there are far fewer con-
cepts than entities, we encode each concept as a
one-hot representation to maintain the precise con-
cept features. The concept embedding of the head
or tail argument of an atom can be formalized as

ACh(r) =
1

|Ch(r)|
∑

c∈Ch(r)

OH(c) (13)

ACt(r) =
1

|Ct(r)|
∑

c∈Ct(r)

OH(c) (14)

where ACh(r) and Ch(r) are the concept embed-
ding and concept set in the head argument of an
atom containing relation r while ACt(r) and Ct(r)
are that of in the tail argument. OH(c) denotes the
one-hot representation of the concept c.

Specific to a CP rule in the form of r(x, y) ⇐
r1(x, z1)∧r2(z1, z2)∧· · ·∧rn(zn−1, y), three types
of co-occurrence score functions are designed ac-
cording to the different positions of the overlapped
arguments:

Eh
co(r, r1) = sim(ACh(r), ACh(r1)) (15)

Et
co(r, rn) = sim(ACt(r), ACt(rn)) (16)

Ei
co(ri, ri+1) = sim(ACt(ri), ACh(ri+1)) (17)

where Eh
co(r, r1) and Et

co(r, rn) respectively de-
note the co-occurrence similarities specific to the
head arguments and the tail arguments between

the rule head and the rule body. Ein
co (ri, ri+1) rep-

resents the co-occurrence similarity between the
adjacent arguments in the rule body. sim(x, y) rep-
resents the cosine distance function for measuring
the similarity between x and y.

Then, the whole co-occurrence score function
can be achieved by composing all the scores in Eqs.
15-17 as

Eco(r, p) = Eh
co(r, r1) + Et

co(r, rn)

+
n−1∑
i=1

Ei
co(ri, ri+1)

(18)

Consequently, the overall score function for evalu-
ating candidate rules is defined as:

Ecg = Esr(r, p) + βEco(r, p) (19)

where β is the weight of the co-occurrence score.
We set a threshold and select the candidate rules
with the scores calculated by Eq. 19 above the
threshold as filtered candidate rules. Afterward,
we output the high-quality rules from the filtered
candidate rules that satisfy the thresholds of the
precise quality criteria namely standard confidence
and head coverage defined in Eqs. 2-4. Then, the
updated rule set is obtained via fusing the newly
learned rules and the previous rule set (Exhaust
Stroke) for the KGE module in the next iteration.

3.4 Algorithm Flow and Complexity
It is noteworthy that from the first iteration of En-
gineKG, our rule learning module could potentially
achieve sustainable growth of rules. The entire iter-
ation process will keep running until no fresh rules
can be generated. Then, the learned KG embed-
dings learned in the last iteration are exploited for
the KG inference. The Algorithm 1 summarizes
the whole closed-loop KG inference procedure of
our EngineKG model.

To evaluate the complexity of our EngineKG
model, we denote ne, nr, np, nc and nt as the
amount of entities, relations, paths, concepts and

1396

Algorithm 1: Training framework of our
model EngineKG
Input: G: Training set

Ch, Ct: The head and tail concept set
associated with relations
P : The set of paths extracted from G
via PCRA
γ1, γ2, γ3: The margins in loss
functions
α1, α2: The weights for trade-off
st: The score threshold for
coarse-grained evaluation of rules
Maxe: The maximum epochs

1 Initialize entity embeddings e and relation
embeddings r randomly and encode the
concept embeddings from Ch and Ct by
one-hot representation;

2 Mine rules by a rule mining tool such as
AMIE+;

3 while new rules can be learned do
4 for epoch=1,2,. . . , Maxe do
5 Sample a minibatch of triples T

from G;
6 Compose the paths between the

entity pairs in T by the logic and
data-driven path representation
described in section 3.2;

7 Generate the set of negative samples
T ′ by the random negative
sampling as in TransE (Bordes
et al., 2013);

8 Update e and r by optimizing the
loss functions in Eqs. 5-11;

9 Generate the initial candidate rules from
the paths in P;

10 Load the learned entity and relation
embeddings e and r;

11 Calculate the coarse-grained evaluation
score Ecg of each candidate rule
according to Eqs. 12-19;

12 if Ecg of a rule is smaller than st then
13 Eliminate this rule;

14 Pick out the candidate rules that satisfy
the thresholds of the standard
confidence and the head coverage;

15 Output the newly learned rules;
16 Update the rule set by merging the

newly learned rules and the rule set in
the last iteration;

triples in a KG. The average length of paths is
lp. The embedding dimension of both entities and
relations is represented as d. The embedding di-
mension of concepts is nc due to the one-hot encod-
ing applied for concept representations. Our model
complexity of parameter sizes is O(ned+nrd+n2

c).
For each iteration in training, the time complexity
of our model is O(ntnplpd).

4 Experiments

4.1 Experimental Setup

Datasets. Four datasets containing ontolog-
ical concepts are employed for our experi-
ments, including FB15K (Bordes et al., 2013),
FB15K237 (Toutanova and Chen, 2015), NELL-
995 and DBpedia-242. Particularly, NELL-995
here is a re-split of the original dataset (Xiong et al.,
2017) into training/validation/test sets. DBpedia-
242 is generated from the commonly-used KG DB-
pedia (Lehmann et al., 2015) to ensure each entity
in the dataset has a concept. The statistics of the
experimental datasets are listed in Table 1.

Baselines. We compare our model EngineKG with
two categories of baselines:

(1) The traditional KGE models depending on
triple facts: TransE (Bordes et al., 2013), Com-
plEx (Trouillon et al., 2016), RotatE (Sun et al.,
2019), QuatE (Zhang et al., 2019a), HAKE (Zhang
et al., 2020) and DualE (Cao et al., 2021).

(2) The models using paths or rules: the path-
based model MultiHopKG (Lin et al., 2018), the
rule learning-based models RNNLogic (Qu et al.,
2021) and RPJE (Niu et al., 2020), and the model
combining rules with KG embeddings IterE (Zhang
et al., 2019b).

The evaluation results of these baselines are ob-
tained by employing their open-source codes with
the suggested hyper-parameters.

Training Details. We implement our model in C++
and on an Intel i9-9900 CPU with a memory of
64G. For a fair comparison, the embedding dimen-
sion of all the models is fixed as 100, the batch size
is set to 1024 and the number of negative samples
is set to 10. Specific to our model, during each iter-
ation, the maximum training epoch is set to 1000,
and the standard confidence and the head coverage
are selected as 0.7 and 0.1 for better performance.
The entity and relation embeddings are initialized
randomly. We employ grid search for selecting the
best hyper-parameters on the validation dataset.

1397

Models FB15K FB15K237
MR MRR Hits@10 Hits@3 Hits@1 MR MRR Hits@10 Hits@3 Hits@1

TransE (Bordes et al., 2013) 117 0.534 0.775 0.646 0.386 228 0.289 0.478 0.326 0.193
ComplEx (Trouillon et al., 2016) 197 0.346 0.593 0.405 0.221 507 0.236 0.406 0.263 0.150

RotatE (Sun et al., 2019) 39 0.612 0.816 0.698 0.488 168 0.317 0.553 0.375 0.231
QuatE (Zhang et al., 2019a) 40 0.765 0.878 0.819 0.693 173 0.312 0.495 0.344 0.222
HAKE (Zhang et al., 2020) 42 0.678 0.839 0.761 0.570 183 0.344 0.542 0.382 0.246

DualE (Cao et al., 2021) 43 0.759 0.882 0.820 0.681 202 0.332 0.522 0.367 0.238

MultiHopKG (Lin et al., 2018) - 0.670 0.769 0.708 0.612 - 0.385 0.562 0.429 0.298
RNNLogic (Qu et al., 2021) 244 0.496 0.669 0.544 0.405 620 0.280 0.428 0.306 0.205

RPJE (Niu et al., 2020) 40 0.811 0.898 0.832 0.762 207 0.443 0.579 0.479 0.374
IterE (Zhang et al., 2019b) 85 0.577 0.807 0.663 0.451 463 0.210 0.355 0.227 0.139

EngineKG (Ours) 20 0.854 0.933 0.885 0.810 121 0.555 0.707 0.590 0.479

Models DBpedia-242 NELL-995
MR MRR Hits@10 Hits@3 Hits@1 MR MRR Hits@10 Hits@3 Hits@1

TransE (Bordes et al., 2013) 1996 0.256 0.539 0.395 0.075 8650 0.167 0.354 0.219 0.068
ComplEx (Trouillon et al., 2016) 3839 0.196 0.387 0.230 0.104 11772 0.169 0.298 0.185 0.106

RotatE (Sun et al., 2019) 1323 0.308 0.594 0.422 0.143 9620 0.292 0.444 0.325 0.216
QuatE (Zhang et al., 2019a) 1618 0.411 0.612 0.491 0.293 12296 0.281 0.422 0.315 0.207
HAKE (Zhang et al., 2020) 1522 0.379 0.551 0.432 0.283 13211 0.245 0.370 0.283 0.175

DualE (Cao et al., 2021) 1363 0.360 0.592 0.439 0.232 11529 0.292 0.447 0.329 0.214

MultiHopKG (Lin et al., 2018) - 0.520 0.625 0.530 0.426 - 0.416 0.474 0.345 0.275
RNNLogic (Qu et al., 2021) 7857 0.344 0.514 0.390 0.253 15772 0.335 0.422 0.356 0.290

RPJE (Niu et al., 2020) 1770 0.521 0.576 0.542 0.487 6291 0.360 0.496 0.401 0.288
IterE (Zhang et al., 2019b) 5016 0.190 0.326 0.215 0.120 12998 0.233 0.327 0.246 0.185

EngineKG (Ours) 1275 0.523 0.647 0.551 0.501 5243 0.454 0.506 0.407 0.293

Table 2: Link prediction results on four datasets. Bold numbers are the best results, and the second best is underlined.

Evaluation Metrics. Take the head entity predic-
tion for an instance, we fill the missing head entity
with each entity e in the KG, and score a candidate
triple (e, r, t) according to the following energy
function together with the path information:

Ee(e, r, t,P) = Et(e, r, t) + α1Ep(e, t,P) (20)

in which we reuse the energy functions in Eq. 5
and Eq. 6, and P is the path set consisting of all
the paths between entities e and t. We rank the
scores of the candidate triples in ascending order.
Tail entity prediction is similar way.

We employ three frequently-used metrics: (1)
Mean rank (MR) and (2) Mean reciprocal rank
(MRR) of the triples containing the correct enti-
ties. (3) Hits@n is the proportion of the correct
triples ranked in the top n. The lower MR, the
higher MRR and the higher Hits@n declare the
better performance. All the results are “filtered” by
wiping out the candidate triples that are already in
the KG (Wang et al., 2014).

4.2 Results of Link Prediction

The evaluation results of link prediction are re-
ported in Table 2. Firstly, our model En-

gineKG significantly and consistently outper-
forms all the state-of-the-art baselines on all
the datasets and all the metrics. Compared to
best-performing models RotatE and RPJE on
MR, EngineKG achieves performance gains of
95.0%/42.4%/3.7%/83.5% compared to RotatE
and 100.0%/71.1%/38.8%/20.0% against RPJE on
datasets FB15K/FB15K237/DBpedia-242/NELL-
995, respectively. Particularly, on FB15K and
FB15K237, the difference between the best per-
forming baseline RPJE and our developed model is
statistically significant under the paired at the 99%
significance level. Secondly, our model achieves
better performance than the traditional models that
utilize triples alone, indicating that EngineKG is
capable of taking advantage of extra knowledge in-
cluding rules and paths as well as concepts, which
all benefit to improving the performance of the
whole model. Thirdly, EngineKG further beats
IterE, illustrating the superiority of exploiting both
rules and paths for KG inference in a joint logic
and data-driven fashion.

4.3 Evaluation on Various Relation Properties
The relations can be classified into four categories:
One-to-One (1-1), One-to-Many (1-N), Many-to-

1398

FB15K
Head Entities Prediction Tail Entities Prediction

1-1 1-N N-1 N-N 1-1 1-N N-1 N-N
TransE (Bordes et al., 2013) 0.356 0.626 0.172 0.375 0.349 0.146 0.683 0.413

RotatE (Sun et al., 2019) 0.895 0.966 0.602 0.893 0.881 0.613 0.956 0.922
HAKE (Sun et al., 2019) 0.926 0.962 0.174 0.289 0.920 0.682 0.965 0.805
DualE (Cao et al., 2021) 0.912 0.967 0.557 0.901 0.915 0.662 0.954 0.926

MultiHopKG (Lin et al., 2018) - - - - 0.893 0.576 0.921 0.763
RPJE (Niu et al., 2020) 0.942 0.965 0.704 0.916 0.941 0.839 0.953 0.933

EngineKG 0.943 0.968 0.835 0.929 0.941 0.904 0.957 0.949

FB15K237
Head Entities Prediction Tail Entities Prediction

1-1 1-N N-1 N-N 1-1 1-N N-1 N-N
TransE (Bordes et al., 2013) 0.356 0.626 0.172 0.375 0.349 0.146 0.683 0.413

RotatE (Sun et al., 2019) 0.547 0.672 0.186 0.474 0.578 0.140 0.876 0.609
HAKE(Zhang et al., 2020) 0.791 0.833 0.098 0.237 0.794 0.372 0.938 0.803

DualE(Cao et al., 2021) 0.516 0.637 0.153 0.471 0.526 0.135 0.860 0.607
MultiHopKG(Lin et al., 2018) - - - - 0.417 0.026 0.794 0.457

RPJE(Niu et al., 2020) 0.692 0.476 0.180 0.575 0.669 0.197 0.691 0.685
EngineKG 0.792 0.743 0.629 0.651 0.807 0.399 0.881 0.757

Table 3: Link prediction results on FB15K and FB15K237 on various relation properties (Hits@10). MultiHopKG
could only predict tail entities rather than head entities.

Length-1 rules

Length-2 rules

Length-1 rules

Length-2 rules

Length-1 rules

Length-2 rules

Length-1 rules

Length-2 rules

Length-1 rules

Length-2 rules

Length-1 rules

Length-2 rules

Length-1 rules

Length-2 rules

Length-1 rules

Length-2 rules

Length-1 rules

Length-2 rules

Length-1 rules

Length-2 rules

Length-1 rules

Length-2 rules

Length-1 rules

Length-2 rules

Length-1 rules

Length-2 rules

Length-1 rules

Length-2 rules

Length-1 rules

Length-2 rules

Length-1 rules

Length-2 rules

Length-1 rules

Length-2 rules

Length-1 rules

Length-2 rules

Length-1 rules

Length-2 rules

Length-1 rules

Length-2 rules

Number of iterations Number of iterations

Number of iterations Number of iterations

N
u

m
b

er
 o

f
ru

le
s

FB15K

N
u

m
b

er
 o

f
ru

le
s

N
u

m
b

er
 o

f
ru

le
s

FB15K237

DBpedia-242
NELL-995

899

2424

3139 3799

586
805 879

292

467

565
697

81

168901

39

77 81

115

31 32

201

228
242

58 61

N
u

m
b

er
 o

f
ru

le
s

3799

901

697

168

115

32

242

61

168 168

32 32 61 61

242

Figure 3: The number of rules over iterations.

One (N-1), and Many-to-Many (N-N). We se-
lect some well-performing models observed in
Table 2 as the baselines in this section. Table
3 exhibits that EngineKG achieves more perfor-
mance gains on complex relations compared to
other baselines. More interestingly, specific to
the most challenging tasks (highlighted) namely
predicting head entities on N-1 relations and
tail entities on 1-N relations, our model con-
sistently and significantly outperforms the out-
standing baselines RotatE and RPJE by achiev-
ing performance improvements: 38.7%/47.5% on
FB15K and 238.2%/185.0% on FB15K237 com-
pared to HAKE while 18.6%/7.75% on FB15K and
249.4%/102.5% on FB15K237 compared to RPJE.
These results all demonstrate that the paths and
the generated rules enrich the associations between
entities and relations, contributing to better perfor-
mance of KG inference on complex relations.

FB15K237

Hits@10

Hits@1

MRR

Hits@10

Hits@1

MRR

Hits@10

Hits@1

MRR

Hits@10

Hits@1

MRR

Hits@10

Hits@1

MRR

FB15K

P
er

fo
rm

a
n

c
e

0.898

0.926
0.931 0.933 0.933

0.762 0.796
0.810

0.816 0.8160.811

0.838
0.852

0.854 0.854

Number of iterations

P
er

fo
rm

a
n

c
e

DBpedia-242

Number of iterations Number of iterations

Hits@10

Hits@1

MRR

Hits@10

Hits@1

MRR

Hits@10

Hits@1

MRR

Hits@10

Hits@1

MRR

Hits@10

Hits@1

MRR

Hits@10

Hits@1

MRR

Hits@10

Hits@1

MRR

Hits@10

Hits@1

MRR

Number of iterations

NELL-995

P
er

fo
rm

a
n

c
e

Hits@10

Hits@1

MRR

Hits@10

Hits@1

MRR

Hits@10

Hits@1

MRR

Hits@10

Hits@1

MRR
NELL-995

0.443

0.496
0.516

0.555 0.555
0.579

0.632
0.668

0.707 0.707

0.374 0.437 0.453

0.479 0.479

0.576

0.609
0.625 0.647 0.647

0.521 0.523 0.523 0.523 0.523

0.487
0.496 0.500 0.501 0.501

0.360

0.423 0.454 0.454 0.454

0.496
0.502 0.506 0.506 0.506

0.288 0.291 0.293 0.293 0.293

P
er

fo
rm

a
n

c
e

Figure 4: The performance curves of MRR, Hits@10
and Hits@1 over iterations on four datasets.

4.4 Performance Evaluation Over Iterations

We evaluate the performance of our rule learn-
ing module on the learning time and the num-
ber of rules compared to the excellent rule learn-
ing tool AMIE+. For generating high-quality
rules, our model takes 6.29s/2.26s/1.55s/10.50s
in an iteration on average while AMIE+
takes 79.19s/26.83s/5.35s/105.53s on datasets
FB15K/FB15K237/NELL-995/DBpedia, illustrat-
ing the higher efficiency of EngineKG. In Figure 3,
the amount of rules mined by AMIE+ is shown as
that at the initial iteration. Thus, we can discover
that the quantity of rules generated in the first itera-
tion and the third iteration is twice and three times
the number of rules obtained by AMIE+.

More specifically, Figure 3 exhibits the number
of rules and Figure 4 indicates the performance
curves on the four datasets over iterations. Notably,

1399

MRR

Hits@10

Hits@1

MRR

Hits@10

Hits@1

Ablated models

P
er

fo
rm

a
n

ce

-Path -Rule -Concept +AnyBurl -HalfRule

0.707

0.555

0.479

-Path -Rule -Concept +AnyBurl -HalfRule

0.707

0.555

0.479

0.203

0.105
0.043

0.091
0.008

0.140 0.112
0.049

0.004

0.087

0.186 0.128
0.068

0.002
0.083

Figure 5: Ablation study on FB15K237. The dash lines
indicate the performance of our whole model on MRR
(red), Hits@10 (blue) and Hits@1 (green).

the number of rules and the performance continue
to grow as the iteration goes on and they both con-
verge after three iterations on all the datasets. These
results illustrate that: (1) Rule learning and KGE
modules in our model indeed complement each
other and benefit in not only producing more high-
quality rules but also obtaining better inference
results. (2) More rules are beneficial to improving
the performance of KG inference. (3) The iteration
process will gradually converge along with the rule
learning.

4.5 Ablation Study

To evaluate each contribution in our whole
model EngineKG, we observe the performance on
FB15K237 as to the five different ablated settings:
(1) Omitting paths (-Path). (2) Omitting rules (-
Rule). (3) Omitting concepts (-Concept) by remov-
ing concept-based co-occurrences in rule learning.
(4) Replacing rule mining tool AMIE+ with Any-
Burl (Meilicke et al., 2019) for obtaining the seed
rules (+AnyBurl). (5) Employing only half of the
seed rules without iteration (-HalfRule). Figure 5
shows that the performance of our whole model is
better than that of all the ablated models except for
“+AnyBurl”, demonstrating that all the components
in our designed model are valid and our model is
free of any rule mining tool for obtaining the seed
rules. Besides, removing paths and rules both have
significant impacts on the performance, which sug-
gests the paths and rules in our model play a more
vital role in KG inference.

4.6 Case Study

As shown in Figure 6, although the head entity
Jonathan and the candidate tail entity Y ork are
not linked by any direct relation in the KG, there
is an explicit path between them. This path can be
represented as the relation PersonBornInCity

The triple with tail entity missing: (Jonathan, PersonBornInCity, ?)

The correct tail entity: York

The candidate triple with the path from the KG:
PersonBornInCityPersonBornInCity

YorkJonathan

Simon

The CP rule matching the path:

PersonBornInCity(x,y) <= HasSibling(x,z)^PersonBornInCity(z,y)

Figure 6: An example of the interpretable tail entity
prediction via path and rule on NELL-995.

deduced by a matched CP rule. The standard confi-
dence of the rule shown in Figure 6 is 0.9, which
explains that although one’s sibling being born in
a certain city does not necessarily mean that that
person was born in the same city, we can employ
this trustworthy rule to explain the reliability of the
predicted result obtained by our model. The path
and the rule together boost the score of the correct
candidate entity Y ork calculated by Eq. 20, and
especially provide the interpretability of the result.

5 Conclusion and Future Work

In this paper, we develop a novel closed-loop
neural-symbolic learning framework EngineKG for
KG inference by jointly rule learning and KGE
while exploiting paths and concepts. In the KGE
module, both rules and paths are introduced to en-
hance the semantic associations and interpretability
for learning the entity and relation embeddings. In
the rule learning module, paths and KG embed-
dings together with entity concepts are leveraged
in the designed rule pruning strategy to generate
high-quality rules efficiently and effectively. Exten-
sive experimental results on four datasets illustrate
the superiority and effectiveness of our approach
compared to some state-of-the-art baselines. In the
future, we will investigate combining other seman-
tics such as contextual descriptions of entities, and
attempt to apply our model to dynamic KGs.

Acknowledgements

This work was partially supported by Zhe-
jiang Science and Technology Plan Project (No.
2022C01082), the National Natural Science Foun-
dation of China (No. 62072022, 61772054) and
the Fundamental Research Funds for the Central
Universities.

References
Kurt Bollacker, Georg Gottlob, and Sergio Flesca. 2008.

Freebase: a collaboratively created graph database

1400

for structuring human knowledge. In KDD, pages
1247–1250.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In NIPS, pages 2787–2795.

Z. Cao, Q. Xu, Z. Yang, X. Cao, and Q. Huang. 2021.
Dual quaternion knowledge graph embeddings. In
AAAI, pages 6894–6902.

Luis Galárraga, Christina Teflioudi, Katja Hose, and
Fabian Suchanek. 2015. Fast rule mining in ontologi-
cal knowledge bases with amie+. The VLDB Journal,
24(6):707–730.

Shu Guo, Quan Wang, Lihong Wang, Bin Wang, and
Li Guo. 2018. Knowledge graph embedding with
iterative guidance from soft rules. In AAAI, pages
4816–4823.

Vinh Thinh Ho, Daria Stepanova, Mohamed H. Gad-
Elrab, Evgeny Kharlamov, and Gerhard Weikum.
2018. Rule learning from knowledge graphs guided
by embedding models. In ISWC 2018, pages 72–90.

Xiao Huang, Jingyuan Zhang, Dingcheng Li, and Ping
Li. 2019. Knowledge graph embedding based ques-
tion answering. In WSDM, pages 105–113.

Ni Lao, Tom Mitchell, and William W. Cohen. 2011.
Random walk inference and learning in a large scale
knowledge base. In EMNLP 2011, pages 529–539.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch,
Dimitris Kontokostas, Pablo N. Mendes, Sebastian
Hellmann, Mohamed Morsey, Patrick van Kleef,
S¨oren Auer, and Christian Bizer. 2015. Dbpedia-a
large-scale, multilingual knowledge base extracted
from wikipedia. Semantic Web, 6(2):167–195.

Xi Victoria Lin, Richard Socher, and Caiming Xiong.
2018. Multi-hop knowledge graph reasoning with
reward shaping. In EMNLP, pages 3243–3253.

Yankai Lin, Zhiyuan Liu, Huanbo Luan, Maosong Sun,
Siwei Rao, and Song Liu. 2015. Modeling relation
paths for representation learning of knowledge bases.
In EMNLP, pages 705–714.

Christian Meilicke, Melisachew Wudage Chekol, Daniel
Ruffinelli, and Heiner Stuckenschmidt. 2019. Any-
time bottom-up rule learning for knowledge graph
completion. In IJCAI, pages 3137–3143.

Arvind Neelakantan, Benjamin Roth, and Andrew Mc-
Callum. 2015. Compositional vector space models
for knowledge base completion. In ACL, pages 156–
166.

Guanglin Niu, Yongfei Zhang, Bo Li, Peng Cui, Si Liu,
Jingyang Li, and Xiaowei Zhang. 2020. Rule-guided
compositional representation learning on knowledge
graphs. In AAAI, pages 2950–2958.

P. G. Omran, K. Wang, and Z. Wang. 2019. An
embedding-based approach to rule learning in knowl-
edge graphs. In IEEE Transactions on Knowledge
and Data Engineering, pages 1–12.

Meng Qu, Junkun Chen, Louis-Pascal Xhonneux,
Yoshua Bengio, and Jian Tang. 2021. Rnnlogic:
Learning logic rules for reasoning on knowledge
graphs. In ICRL.

Ali Sadeghian, Mohammadreza Armandpour, Patrick
Ding, and Daisy Zhe Wang. 2019. Drum: End-to-end
differentiable rule mining on knowledge graphs. In
NIPS.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian
Tang. 2019. RotatE: Knowledge graph embedding
by relational rotation in complex space. In ICLR.

Kristina Toutanova and Danqi Chen. 2015. Observed
versus latent features for knowledge base and text
inference. In Proceedings of the 3rd Workshop on
Continuous Vector Space Models and their Composi-
tionality, pages 57–66.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Complex
embeddings for simple link prediction. In ICML,
page 2071–2080.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge graph embedding by trans-
lating on hyperplanes. In AAAI, page 1112–1119.

Wenhan Xiong, Thien Hoang, , and William Yang Wang.
2017. DeepPath: A reinforcement learning method
for knowledge graph reasoning. In EMNLP, pages
564–573.

Shuai Zhang, Yi Tay, Lina Yao, and Qi Liu. 2019a.
Quaternion knowledge graph embeddings. In
NeurIPS, pages 2731–2741.

Wen Zhang, Bibek Paudel, Liang Wang, Jiaoyan Chen,
Hai Zhu, Wei Zhang, Abraham Bernstein, and Hua-
jun Chen. 2019b. Iteratively learning embeddings
and rules for knowledge graph reasoning. In WWW,
pages 2366–2377.

Zhanqiu Zhang, Jianyu Cai, Yongdong Zhang, and Jie
Wang. 2020. Learning hierarchy-aware knowledge
graph embeddings for link prediction. In AAAI, pages
3065–3072.

Hao Zhou, Tom Young, Minlie Huang, Haizhou Zhao,
and Xiaoyan Zhu. 2018. Commonsense knowledge
aware conversation generation with graph attention.
In IJCAI, pages 4623–4629.

