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Abstract

This study proposes Semantic-Infused
SElective Graph Reasoning (SISER) for
fact verification, which newly presents
semantic-level graph reasoning and injects its
reasoning-enhanced representation into other
types of graph-based and sequence-based
reasoning methods. SISER combines three
reasoning types: 1) semantic-level graph
reasoning, which uses a semantic graph from
evidence sentences, whose nodes are elements
of a triple – <Subject, Verb, Object>, 2)
“semantic-infused” sentence-level “selective”
graph reasoning, which combine semantic-
level and sentence-level representations and
perform graph reasoning in a selective manner
using the node selection mechanism, and 3)
sequence reasoning, which concatenates all
evidence sentences and performs attention-
based reasoning. Experiment results on a
large-scale dataset for Fact Extraction and
VERification (FEVER) show that SISER out-
performs the previous graph-based approaches
and achieves state-of-the-art performance.

1 Introduction
An ever-increasing number of unconfirmed false
or misleading information spread on various so-
cial media platforms has motivated the verifica-
tion of textual information, referred to as fact
verification. FEVER (Thorne et al., 2018a) pre-
sented a large dataset for fact verification, initiat-
ing a shared task that aims to automatically clas-
sify a human-generated claim into ‘Supported’,
‘Refuted’, or ‘Not Enough Info’ based on retrieved
evidence sentences from Wikipedia1.

Claim verification, the final step of fact verifica-
tion, is viewed as a task of natural language infer-
ence (NLI) (Angeli and Manning, 2014). Specif-
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competitions/18814

ically, the NLI task for claim verification is for-
mulated as the set-to-sentence entailment of infer-
ring whether a claim (as the hypothesis) is logi-
cally “entailed” from a set of retrieved evidence
sentences (as the premise).

Recently, graph reasoning for claim verifica-
tion has been extensively explored (Zhou et al.,
2019; Liu et al., 2020; Zhong et al., 2020), which
creates a graph whose nodes are semantic units
extracted from a set of evidence sentences or a
claim, and applies graph neural networks (GNNs)
such as (Veličković et al., 2018; Kipf and Welling,
2017) to infer the entailment relationship. How-
ever, graph reasoning may be somehow restricted
to unit-biased reasoning, when relying on a single
type of semantic unit for nodes of a graph, such
as sentences, entities, or words, meaning that the
semantic interaction between claim and evidence
is restricted to a single graph type and does not go
beyond the coverage of the “given” semantic units.
In addition, graph reasoning may suffer from over-
smoothing inherited from GNNs (Gasteiger et al.,
2019; Zhao and Akoglu, 2020; Chen et al., 2020a;
Rong et al., 2020), likely causing all node repre-
sentations to converge to a stationary point at the
extreme, as reported by (Li et al., 2018).

To address these limitations of graph reasoning,
this study proposes SISER – Semantic-Infused
SElective graph Reasoning) for fact verification
by extensively exploiting additional semantic units
for graph reasoning and integrating semantic-level
reasoning with sequence reasoning and “selective”
graph reasoning. SISER combines the following
three types of reasoning:

• Semantic-level graph reasoning applies
GNNs to a “semantic graph” whose nodes are
elements of <Subject, Verb, Object> that ap-
pear in evidence sentences. Provided fine-
grained semantic granularity, it is expected
that the use of semantic elements would be
helpful to effectively induce their own dis-

https://competitions.codalab.org/competitions/18814
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tinct representations useful for claim verifi-
cation, compared to sentence-level represen-
tations.

• Semantic-infused sentence-level selective
graph reasoning combines semantic- and
sentence-level representations and performs
selective graph reasoning equipped with a
node selection mechanism. Motivated by
variants of GNNs (Gasteiger et al., 2019;
Zhao and Akoglu, 2020; Chen et al., 2020a;
Rong et al., 2020) to handle oversmoothing
issues, we further provide “selective” graph
reasoning where a subset of nodes is “se-
lected” using the node selection mechanism
and only these selected nodes participate in
graph reasoning2. It is expected that the
node selection mechanism can alleviate over-
smoothing by breaking full connectivity.

• Sequence reasoning, concatenates a claim
and all evidence sentences and performs
self-attention over the concatenated long se-
quence. As in (Kruengkrai et al., 2021), it is
expected that sequence reasoning shows sta-
ble performance, without suffering from the
inherent problems of GNNs.

Furthermore, we newly apply prompt-based
fine-tuning (Schick and Schütze, 2021a; Gao et al.,
2021) by reformulating the fact verification task as
a masked language modeling problem, where a la-
bel word is generated on a given prompt with a
task-specific template. To the best of our knowl-
edge, this is the first attempt to use semantic-
level ‘selective’ graph reasoning and prompt-
based fine-tuning for the fact verification task.

Our contributions are summarized as follows:
1) We propose SISER, which consists primarily
of semantic-level reasoning and semantic-infused
selective graph reasoning using the node selection
mechanism for fact verification; 2) We present the
initial work of adopting prompt-based fine-tuning
for claim verification; 3) The proposed SISER
shows state-of-the-art performance in the FEVER
dataset.

2 Related Work

2.1 Fact Verification Systems

Sequence Reasoning
The baseline system (Thorne et al., 2018a) con-

catenates all retrieved evidence sentences and then
2Here, the selection process is random but parameterized

by neural models.

feeds the concatenated evidence and a claim into
a pretrained language model as an early sequence
reasoning method. The studies of (Hanselowski
et al., 2018; Hidey and Diab, 2018) proposed
adapting the enhanced sequential inference model
(ESIM) (Chen et al., 2017) to measure the seman-
tic relatedness between a claim and evidence. Nie
et al. (2019) proposed a carefully designed neu-
ral semantic matching network (NSMN), which is
a modification of the enhanced sequential infer-
ence model. Unlike treating the fact verification
task as an NLI task, LOREN (Chen et al., 2020b)
proposed decomposing the verification of the en-
tire claim at the phrase level, where the verac-
ity of the phrases serves as explanations and can
be aggregated into the final verdict according to
logical rules. More recently, MLA (Kruengkrai
et al., 2021) argued that graph reasoning may be
unnecessary for a claim verification task, propos-
ing multi-level sequence reasoning that consists
of {token, sentence}-level self-attention (Vaswani
et al., 2017).
Graph Reasoning

In contrast to ESIM, NSMN, and LOREN,
GEAR (Zhou et al., 2019) proposed graph-based
evidence reasoning using GNNs, which conducts
reasoning and aggregation over claim-evidence
pairs under an evidence graph (Veličković et al.,
2018; Kipf and Welling, 2017). Similarly, KGAT
(Liu et al., 2020) proposed the use of a semantic-
level graph for fine-grained evidence reasoning
that uses a kernel-based graph attention mecha-
nism to properly propagate information between
nodes. Unlike KGAT, DREAM (Zhong et al.,
2020) considered a word span obtained by seman-
tic role labeling (SRL) as a node in the graph and
employed XLNet (Yang et al., 2019) as a pre-
trained language model. In contrast to existing
graph reasoning studies that rely on sentence-level
or semantic-level graphs, SISER extensively uses
“heterogeneous” graphs and fuses different types
of reasoning-enhanced representations, going be-
yond the limitation of using only a single type of
reasoning.

2.2 Prompt-based Fine-tuning

PET introduces prompt-based learning, which
treats a downstream task as a masked language
modeling problem and performs gradient-based
fine-tuning (Schick and Schütze, 2021a,b). Em-
ploying prompt-based fine-tuning can reduce the
gap between pre-training and fine-tuning, which
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Figure 1: A neural architecture of the proposed SISER: 1) The semantic-level graph reasoning is performed using
R-GCN on a semantic graph constructed using the Levi graph transformation to generate the semantic-level node
representation Hsem (Eq. (2)), which is used to induce the semantic-aware evidence representation H ′

sent (Eq.
(5)). 2) The semantic-infused sentence-level selective graph reasoning performs the the selective graph reasoning
on a sub-graph resulting from the node selection mechanism based on the semantic-fused representation of h′

claim

(Eq. (5)) and H ′
sent to generate Ẽfsel (Eq. (10)). 3) The sequence reasoning performs MHA on m evidence

representations Eseq (Eq. (11)) to obtain Hseq . 4) The prompt-based claim verification performs the prediction
of label-verbalized words at [MASK]’s position on the fused semantic-attentive claim representations H induced
from Cfsel,Csem,Cseq as in Eq. (12).

makes it effective for various tasks. Inspired by
PET, LM-BFF (Gao et al., 2021) introduced the
adaptation of prompt-based learning to few-shot
fine-tuning. Moreover, this study proposed an au-
tomatic prompt search method to resolve the dif-
ficulty of finding the optimal task-specific tem-
plate. P3 Ranker (Hu et al., 2022) proposed a
pre-trained, prompt-learned, pre-finetuned neural
ranker that employs prompt-based learning to con-
vert the ranking task into pre-training and uses pre-
finetuning. (Ding et al., 2021) introduced adapt-
ing prompt learning into an entity typing task in
several scenarios (e.g., fully supervised, few-shot,
zero-shot), which shows the possibility of em-
ploying prompt-based learning in fully supervised
scenarios. Unlike several methods that employ
prompt-based learning in a few-shot scenario, we
adapt prompt-based learning in a fully supervised
scenario.

3 Proposed Approach

Figure 1 shows the overall neural architecture of
the proposed SISER model, which combines three
types of reasoning: i.e., semantic-level graph rea-
soning; semantic-infused sentence-level selective
graph reasoning; and sequence reasoning. This
section presents details of the three reasoning
methods.

3.1 Initial Representation of Claim and
Evidences

Suppose that a claim c and a set of retrieved evi-
dence sentences {e1, · · · , em} are presented for a
fact verification task, where m is the number of
evidence sentences and PLM refers to the encoder
of a pretrained language model such as BERT (De-
vlin et al., 2019) and RoBERTa (Liu et al., 2019).
Feeding a claim-evidence pair (c, ei) for the i-th
evidence sentence and claim c into PLM, we ob-
tain Ei and C as evidence and claim representa-
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Figure 2: An illustration of constructing a semantic graph for sentence-level graph reasoning, motivated by the
procedure of (Beck et al., 2018): 1) a (large) dependency graph is first obtained by applying the Spacy’s syntactic
parser (Honnibal and Montani, 2017) and the NeuralCoref’s coreference resolution to m evidence sentences where
each occurrence of a word is treated differently with its contextual representation. When two mentions are coref-
erent, their head words are connected by the “coreference” relation. 2) The dependency graph is then transformed
to a semantic graph using the Levi graph transformation of (Beck et al., 2018) by including dependency labels as
a node set with three types of edge labels –

{
default, reverse, self

}
.

tions as follows:

Ei = PLM (c, ei) ∈ R(|c|+|ei|)×dmodel ,

C = PLM (c) ∈ R|c|×dmodel ,
(1)

where |x| is the length of sequence x, and dmodel

is the dimensionality of PLM. Let Ei,[CLS] ∈
Rdmodel and C[CLS] ∈ Rdmodel be representations
of [CLS] tokens for ei and c, respectively.

3.2 Semantic-level Graph Reasoning

Our semantic-level reasoning is similar to the
work of (Zhong et al., 2020), but differs in using
semantic units and types of GNNs, as described
below.
3.2.1 Semantic Graph

Similar to (Beck et al., 2018), we construct a
semantic graph based on graph transformation,
starting from a dependency graph. More specifi-
cally, we first obtain a dependency graph Gdep =
(Vdep, Edep), resulting from m by parsing all m
evidence sentences using Spacy’s syntactic parser
(Honnibal and Montani, 2017)3 and NeuralCoref’s
coreference resolution4, where Vdep is a set of
“words” that appear in m evidence sentences and
Edep is a set of dependency-labeled edges. When
two mentions are connected by a coreference link,
the “coreference” relation is appended between
their head words. It should be noted that when
a word occurs multiple times in m evidence sen-

3We use the following link of the Spacy parser: https:
//spacy.io/usage/linguistic-features#
dependency-parse

4The following version of the NeuralCoref’s link
is used: https://github.com/huggingface/
neuralcoref

tences, we treat each occurrence differently by us-
ing their contextual representations (i.e., the span
representations) as the elementary semantic repre-
sentations.

We then convert Gdep into a semantic graph
Gsem = (Vsem, Esem), a Levi Graph based on the
graph transformation of (Beck et al., 2018; Cheng
et al., 2020; Huang et al., 2021), where Vsem is a
combined set of words and dependency relations
that appear in m evidence sentences, and Esem is
a set of type-labeled edges whose labels are taken
from R =

{
default, reverse, self

}
, as in the work

of (Beck et al., 2018).
Figure 2 shows an illustrative example of a se-

mantic graph extracted from the evidence sen-
tences.
3.2.2 Graph Reasoning

Semantic-level graph reasoning employs a re-
lational graph convolutional network (R-GCN)
(Schlichtkrull et al., 2018) which is defined as

h
(l+1)
i = f

(∑
r∈R

∑
j∈N r

sem(i)
1

|N r
sem(i)| W

(l)
r h

(l)
j +W

(l)
0 h

(l)
i

)
where f is the relu activation function, N r

sem(i)
is a set of neighbors with relation r of the i-th
node in Vsem, and W

(l)
r ,W

(l)
0 ∈ Rdsem×dmodel are

weight matrices for the l-th R-GCN layer, where
dsem is the dimensionality of the semantic-level
representation. For a word-type node i ∈ Vsem,
h
(0)
i ∈ Rdmodel is initialized by its span represen-

tation in the evidence sentence5. Finally, we ob-

5The span representation for a word is defined as the av-
erage pooling of the contextual representations of its all sub-
words. For a relation-type node i ∈ Vsem, h(0)

i is initialized
by its static embedding.

https://spacy.io/usage/linguistic-features##dependency-parse
https://spacy.io/usage/linguistic-features##dependency-parse
https://spacy.io/usage/linguistic-features##dependency-parse
https://github.com/huggingface/neuralcoref
https://github.com/huggingface/neuralcoref


1371

tain Hsem ∈ R|Vsem|×dsem as follows:

Hsem = H(L) =
[
h
(L)
1 , · · · ,h(L)

|Vsem|

]
where L is the total number of layers used in the
R-GCN for the semantic-level representation.

3.3 Semantic-infused Sentence-level Selective
Graph Reasoning

In our selective graph reasoning, because there is
no ground-truth answer for the nodes to be se-
lected, we prepare K different subgraphs by ap-
plying the node selection mechanism K times, and
combine the selective representations performed
over K subgraphs.
3.3.1 Semantic-infused Sentence-level

Representations
The first step is to obtain semantic-infused

sentence-level representations for m evidence sen-
tences. To this end, we construct a fully-connected
sentence-level graph G = (V, E) where V =
{1, · · · ,m}, which refers to a set of evidence sen-
tences – {e1, · · · , em}. For the i-th node, we first
obtain its node representation e′i using a single
feed-forward layer, as follows:

e′i = g
(
WsentEi,[CLS] + bsent

)
(2)

where g is the gelu activation function, and
Wsent, bsent are the parameter weights for a linear
layer. Then, for the i-th node, we further aggre-
gate its neighbors’ representations using the sum-
mation as follows:

h′i =
∑

j∈Nsent(i)

e′i (3)

where Nsent(i) is a set of neighbors of the i-th
node in V .

Now, the sentence-level representation Hsent ∈
Rm×dmodel is defined, as follows:

Hsent =
[
h′1, · · · ,h′m

]
(4)

Next, we obtain the evidence-attentive claim
representation h′

claim ∈ Rdmodel and the
semantic-aware evidence representation H ′

sent ∈
Rm×dmodel as follows:

h′
claim = MHA(C[CLS],Hsent,Hsent) (5)

H ′
sent = MHA(Hsent,Hsem,Hsem) (6)

where the multi-head attention (MHA) (Vaswani
et al., 2017) function is defined as follows:

MHA (Q,K,V ) = [head1; · · · ;headh]WO,

headi = Attn
(
QWQ

i ,KWK
i ,V W V

i

)
(7)

where ; is the concatenation operator, h is the
number of heads, WQ

i ,WK
i ∈ Rdmodel×dk ,

W V
i ∈ Rdmodel×dv , and WO ∈ Rhdv×dmodel are

weight metrices.
To combine these representations, we use the

semantic fusion function sfu defined as:

sfu (x,y) = g ∗ x+ (1− g) ∗ y,
g = σ

(
W1x+W2y

) (8)

where ∗ is the element-wise operator, σ is the sig-
moid function, and W1,W2 are weight matrices
for the semantic fusion function.

Finally, the semantic-infused sentence-level
representations Hfused ∈ Rm×dmodel are then ob-
tained using sfu as follows:

Hfused = sfu
(
H ′

claim,H ′
sent

)
,

where H ′
claim = [h′

claim]mi=1.
3.3.2 Node Selection Mechanism

The next step is to apply a node selection mech-
anism (Louis et al., 2021) that chooses a subset of
nodes to be deleted6. First, we measure the selec-
tion probabilities psent ∈ Rm of evidence nodes
based on attention, using the claim as the query, as
follows:

psent = σ
(
g(HsentW3) +HfusedW4C

T
[CLS]

)
where W3 ∈ Rdmodel×1,W4 ∈ Rdmodel×dmodel are
weight matrices.

The node selection mechanism creates a subset
of evidence nodes denoted as V ′ by filtering out
the nodes with low probabilities given the thresh-
old τ as follows:

V ′ = {j|j ∈ V and psent,j ≥ τ}

where psent,j is the j-th element of psent. We fur-
ther define p′

sent ∈ Rm by zeroing the probabili-
ties of the filtered nodes, as follows:

p′
sent = psent ∗ iV ′

where iV ′ = [I(k ∈ V ′)]mk=1 is the k-hot vector 7,
and I(e) is the indicator function, taking the value
of 1 if e is true and zero otherwise.

6Our node selection mechanism mostly follows the work
of (Louis et al., 2021), but differs in the computation of node
selection probabilities and the formula of selective aggrega-
tion.

7The k-hot vector has also similarly used in the work of
(Cohen et al., 2019).
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3.3.3 Selective Graph Reasoning
The final step is to perform selective graph rea-

soning using only the selected set of nodes, V ′.
First, we obtain the revised fused representation
hsel
i for the i-th evidence sentence as follows:

hsel
i =

∑
j∈Nsent(i)

p′
sent,j ·H

fused
j

Then, the reasoning-enhanced representation
hfsel
i is obtained as follows:

vi = σ
(
⟨wsel,

[
hsel
i ; e′i

]
⟩
)
,

hfsel
i =

∑
j∈Nsent(i)

p′sent,j · vj ·H
fused
j

where e′i is the initial node representation defined
in Eq. (2) and wsel ∈ R2dmodel is the weight vec-
tor.

We further use the residual connection to keep
the initial evidence representation as follows:

ẽi = g
(
e′i + dropout(hfsel

i )
)

(9)

where dropout is the dropout layer introduced by
(Srivastava et al., 2014).
3.3.4 Ensembling Multiple Selective Graph

Reasonings
Because there is no ground-truth information

for nodes to be selected, we prepare multiple sub-
graphs by applying the node selection mechanism
K times, and combine the selective reasoning-
enhanced representations over K subgraphs. With
the abuse of notation, suppose that ẽ

(k)
i is the

reasoning-enhanced representation of Eq. (9)
yielded at the k-th selection. We take the summa-
tion of all K representations as

∑K
k=1 ẽ

(k)
i , lead-

ing to obtain Ẽfsel ∈ Rm×dmodel as follows:

Ẽfsel =

[
K∑
k=1

ẽ
(k)
i

]m

i=1

(10)

3.4 Sequence Reasoning

Our sequence reasoning is based on MHA
over only sentence-level evidence representations
Eseq ∈ Rm×dmodel , described as follows.

Eseq = PE(E1,[CLS], · · · ,Em,[CLS]),

Hseq = Eseq +MHA(Eseq,Eseq,Eseq),
(11)

where PE is the absolute positional encoding
(Vaswani et al., 2017).

Label Training Development Test

Supported 80,035 6,666 6,666
Refuted 29,775 6,666 6,666

Not Enough Info 35,659 6,666 6,666

Table 1: Statistics of the FEVER 1.0 shared task
dataset.

3.5 Prompt-based Claim Verification

Our prompt-based claim verification uses a task-
specific template for prompt-based fine-tuning as
follows: "[CLS] xin It was [MASK] . [SEP]".
Suppose that xin is "Roman Atwood is a content
creator.", xin is converted to its prompted input
"[CLS] Roman Atwood is a content creator. It was
[MASK] . [SEP]". To predict [MASK], let
Mwo : Y → V be the verbalizer that converts
a label into individual words. For example,
Mwo(Supported) = “Yes”, Mwo(Refutes) =
“No”, and Mwo(NotEnoughInfo) = “Maybe”.

To determine the truthfulness of a given claim,
we aggregate multiple evidence-attentive claim
representations resulting from applying MHA on
on Ẽfsel of Eq. (10) , Hsem in Eq. (2), and Hseq

in Eq. (11), as follows:

Cfsel = MHA(C[CLS], Ẽfsel, Ẽfsel),

Csem = MHA(C[CLS],Hsem,Hsem),

Cseq = MHA(C[CLS],Hseq,Hseq),

H = Wclaim([Cfsel;Csem;Cseq]),

(12)

where Wclaim ∈ Rdmodel×3dmodel is a trainable pa-
rameter matrix.

Given a claim-evidence example (c, e), where
e = (e1, · · · , em), the probability of label y is
computed as follows:

p(y|c, e) = p
(
[MASK] = Mwo(y)|c, e

)
=

exp
(
wMwo(y)H[MASK]

)∑
y′∈Y exp

(
wMwo(y′)H[MASK]

) , (13)

where wMwo(y) is the output embedding for the
label word of Mwo(y) for y, and H[MASK] is the
contextual representation [MASK] token in H .

4 Experiments

4.1 Experimental Setting

Dataset
We used FEVER, which is a large-scale pub-

lic dataset, for fact verification. (Thorne et al.,
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Model Dev Test

LA F.S LA F.S

UNC NLP 69.72 66.49 68.21 64.21
GEAR (BERTbase) 74.84 70.69 71.60 67.10

DREAM (XLNetlarge) 79.16 - 76.85 70.60
KGAT (BERTlarge) 77.91 75.86 73.61 70.24

⌞ (RoBERTalarge) 78.29 76.11 74.07 70.38
LOREN (BERTlarge) 78.44 76.21 74.43 70.71

⌞ (RoBERTalarge) 81.14 78.83 76.42 72.93
MLA (RoBERTalarge) 79.31 75.96 77.05 73.72

Ours (RoBERTalarge) 83.13 79.87 77.50 73.90

Table 2: Fact verification results on the dev and blind
test set of FEVER task, where F.S (FEVER score) is
the main evaluation metric. The best is bolded text,
and the second best is underlined.

Model Dev Test

LA F.S LA F.S

MLA 79.31 75.96 77.05 73.72
SISER⋆ 83.13 79.85 76.82 73.18
SISER◦ (τ = 0.49) 82.62 79.40 77.18 73.48
SISER (τ = 0.49) 83.13 79.87 77.50 73.90

Table 3: Ablation study for the semantic-infused
sentence-level selective graph reasoning and the se-
quence reasoning on FEVER development and blind
test set. ⋆ and ◦ denote the run without the semantic-
infused sentence-level selective graph reasoning and
the sequence reasoning, respectively.

2018a,b), which was split into training, devel-
opment, and blind test set in our experiments.
FEVER consists of 185,455 annotated claims with
5,416,537 Wikipedia documents, where claims are
classified as Supported, Refuted, or Not Enough
Info. Because we use prompt-based fine-tuning,
all labels are verbalized as Yes, No, or Maybe. Ta-
ble 1 shows more detailed statistics for the FEVER
dataset. The performance of the evidence sentence
retrieval methods are presented in Appendix B.
Evaluation Metrics

The official evaluation metrics are Label Accu-
racy (LA) and FEVER Score (F.S)8. Label Accu-
racy is a general evaluation metric, which is the
accuracy of the predicted label for a claim regard-
less of the retrieved evidence.

4.2 Main Results

The fact verification performance is presented in
Table 2. In the large-size PLM settings, SISER

8https://github.com/sheffieldnlp/
fever-scorer

Model Dev Test

LA F.S LA F.S

τ = 0.0• 83.07 79.84 77.07 73.65
τ = 0.35 83.00 79.74 77.11 73.70
τ = 0.40 83.05 79.84 77.00 73.63
τ = 0.45 82.98 79.69 76.86 73.66
τ = 0.49 83.13 79.87 77.50 73.90
τ = 0.60 83.04 79.80 77.30 73.68

Table 4: Ablation study of the node selection mecha-
nism for varying values of the node masking rate τ . •
denotes the fully-connected setting.

Model Dev Test

LA F.S LA F.S

SISER⋆ 83.05 79.77 76.82 73.18
SISER 83.13 79.87 77.50 73.90

Table 5: Ablation study for the prompt-based learning
vs. the conventional fine-tuning on the FEVER devel-
opment set. ⋆ denotes the conventional fine-tuning.

outperforms the best baseline model by increas-
ing Label Accuracy and FEVER Score by 0.45 and
0.18, respectively.

For a fair comparison, we also compare SISER
with KGAT and LOREN, which employ the same
setting of using PLM and evidence retrieval, while
MLA, the state-of-the-art baseline model, is dif-
ferent from ours in using evidence retrieval. As
shown in Table 2, SISER outperforms KGAT
and LOREN, which employ only sentence-level
interaction among evidences. The results may
support our motivation that the combination of
the three types of reasoning (i.e., semantic-level
graph-reasoning, semantic-infused sentence-level
selective graph-reasoning, and sequence reason-
ing) is helpful to address the aformentioned ‘unit-
biased reasoning’ and ‘oversmoothing’ problems
of the existing graph-based approaches.

Model Dev Test

LA F.S LA F.S

MLA 79.31 75.96 77.05 73.72
SISER⋆ (τ = 0.49) 79.88 75.04 77.96 73.06
SISER (τ = 0.49) 83.13 79.87 77.50 73.90

Table 6: Ablation study for examining the effect of evi-
dence retrieval. ⋆ denotes the run based on the evidence
retrieval of MLA (Kruengkrai et al., 2021).

https://github.com/sheffieldnlp/fever-scorer
https://github.com/sheffieldnlp/fever-scorer
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Claim: Liam Neeson has been nominated for a British Academy 
of Film and Television Arts award.

Label: SUPPORTS

Evidence: [LinkedIn] (15-th sentence in wiki page)
Based in the United States, the site is, as of 2013, available 
in 24 languages, including Arabic, Chinese, English, French, 
German, Italian, Portuguese, Spanish, Dutch, Swedish, 
Danish, Romanian, Russian, Turkish, Japanese, Czech, Polish, 
Korean, Indonesian, Malay, and Tagalog.

Predicted Label: NOT ENOUGH INFO

(a)

(b)

(c)

Claim: LinkedIn is limited to 24 languages as of 2015.

Evidence: [Liam Neeson] (12-th sentence in wiki page)
He has been nominated for a number of awards, including 
an Academy Award for Best Actor, a BAFTA Award for Best 
Actor in a Leading Role and three Golden Globe Awards for 
Best Actor in a Motion Picture Drama.

Label: SUPPORTS

Predicted Label: REFUTES

Claim: SZA is an American Neo Soul singer.

Evidence: [SZA (singer)] (7-th sentence in wiki page)
SZA is a Neo Soul singer whose music is described as 
Alternative RB , with elements of soul , hip hop , minimalist 
RB , cloud rap , ethereal RB , witch house and chillwave.

[SZA (singer)] (1-th sentence in wiki page)
Solána Rowe (born November 8, 1990), better known by her 
stage name SZA, is an American singer songwriter.

Label: SUPPORTS Predicted Label: SUPPORTS

Figure 3: Error analysis of SISER: (a) and (c): the
cases of requiring more elaborated and mulit-hop rea-
soning; (b): the case of a human annotation error.

4.3 Ablation Study

The Effect of Using Semantic-infused
Sentence-level Selective Graph Reasoning

To evaluate the effect of using semantic-infused
sentence-level selective graph reasoning in Sec-
tion 3.3, Table 3 shows the comparison re-
sults of SISER with and without semantic-infused
sentence-level selective graph reasoning on the
FEVER development and blind test sets. It is
shown that the use of semantic-infused selective
graph reasoning leads to improved performance
in terms of both Label Accuracy and the FEVER
Score.

It is remarkable that SISER⋆, even without us-
ing semantic-infused selective graph reasoning,
outperforms MLA in the development set. While
(Kruengkrai et al., 2021) argued that graph rea-
soning may not be necessary, given the improved
performance of the MLA, our results indicate that
this argument is still controversial, and suggest
that graph reasoning has the potential to make fur-
ther improvements and needs to be explored for
fact verification while carefully avoiding the limi-
tations of GNNs.

The Effect of Using Sequence Reasoning
Table 3 further presents the performance of

SISER when sequence reasoning is excluded (re-
ferred to as SISER◦), that is, without using Cfsel

in Eq (12)). As shown in Table 3, SISER◦ leads
to improvements over LOREA, indicating that the
performance achieved by SISER in Table 2 is not
obtained simply by incorporating sequence rea-
soning but dominantly by equipping with the pro-
posed manner of graph reasoning. In particular,
SISER◦ shows an increases in Label Accuracy by
approximately 1.5 over LOREN on the develop-
ment set, whereas SISER with sequence reason-
ing demonstrates only a slight increase of approx-
imately 0.5 in Label Accuracy. A similar tendency
is observed in the blind test set; SISER◦ makes the
increase of 0.76 in Label Accuracy over LOREN,
which is larger than the increase of 0.32 obtained
by SISER with sequence reasoning.

The Effect of Choosing Evidence Retrieval
In Table 2, while SISER shows consistent im-

provements over MLA on the development and
test sets, a significant difference in performance
gains is noticeable between the two sets. SISER
achieves a large performance gain over MLA on
the development set, increasing the Label Accu-
racy and FEVER Score by 3.82 and 3.91, respec-
tively, while only a slight improvement on the
blind test set is observed, exhibiting an increase of
0.45 in Label Accuracy and 0.18 in FEVER Score.

We believe that the main reason for this dis-
crepancy between development and test sets re-
sults from the different evidence retrieval methods
between SISER and MLA, i.e., while SISER and
LOREN adopt KGAT’s evidence retrieval, MLA
uses its own evidence retrieval. In particular, the
retrieval performances of the top 5 evidence sen-
tences resulting from MLA and KGAT are sub-
stantially changed between the development and
test sets, as shown in Table 7. In terms of Re-
call@5, the retrieval performances on the “devel-
opment set” are largely different between KGAT
and MLA (i.e., 94.57 for KGAT and 88.64 for
MLA), whereas the retrieval performances on the
“test set” of both methods are fairly similar (i.e.,
87.47 for KGAT and 87.58 for MLA). Given
this observation, the substantially improved per-
formance of SISER over MLA on the develop-
ment set (Table 2) may primarily originate from
the large recall performance of the evidence re-
trieval of KGAT, and not from the proposed en-



1375

hanced graph reasoning components.
For a fair comparison with MLA, Table 6

presents the results of SISER based on MLA’s ev-
idence retrieval (SISER⋆). In terms of on FEVER
Score, SISER⋆ does not lead to improvements
over MLA, even exhibiting performance degrada-
tion, in contrast to the SISER that uses KGAT’s re-
trieval. Nevertheless, SISER⋆ leads to further im-
provements over MLA in Label Accuracy, partic-
ularly in achieving a state-of-the-art performance
on the blind test set.

As MLA is considered as an advanced approach
to sequence reasoning without relying on graph
reasoning, we believe that the enhanced graph rea-
soning modules in SISER are ‘complementary’ to
MLA for further improvement; for example, in-
cluding a simple combination by using MLA as
an alternative module of sequence reasoning in
SISER.
Evaluation of Node Selection Mechanism

To examine the effect of the node selection
mechanism in Section 3.3.2, Table 4 shows the
comparison results of SISER with varying values
of τ . It is shown that τ = 0.49 outperforms the
fully-connected setting (τ = 0.0). The results im-
ply that the node selection mechanism based on
the selection probabilities may be helpful in ob-
taining irrelevance-free evidence representations,
related to the oversmoothing issue of GNNs.
Prompt-based Learning versus Conventional
Fine-tuning

To examine the effect of prompt-based claim
verification, Table 5 compares the results of
SISER when using prompt-based learning or con-
ventional fine-tuning. It is clearly shown that the
use of prompt-based learning outperforms conven-
tional fine-tuning, likely reducing the gap between
the tasks used in pre-training and the fine-tuning.

4.4 Case Study

As shown in Figure 3, we present three examples
for analyzing the prediction errors of SISER.

In Figure 3 (a), the SISER prediction for this
case is ”Not Enough Info”. From our analysis, this
case requires the complex reasoning ability to un-
derstand ”a BAFTA award,” which is the abbrevi-
ation of ”a British Academy of Film and Televi-
sion Arts award”. However, in Figure 3 (c), the
case requires multi-hop complex reasoning to pre-
dict the claim; the claim ”SZA is an American Neo
Soul singer” is supported by multiple pieces of ev-

idence sentences.
In Figure 3 (b), it seems that this case originates

from a human annotation error, as also discussed
by (Kruengkrai et al., 2021). The claim ”LinkedIn
is limited to 24 languages as of 2015” is not sup-
ported by evidence.

5 Conclusion
In this paper, we propose SISER for fact verifi-
cation, which combines three types of reasoning
(i.e., semantic-level graph reasoning, semantic-
infused sentence-level selective graph reasoning,
and sequence reasoning) by addressing two poten-
tial limitations of graph reasoning — the “unit-
biased reasoning” and the “over-smoothing” prob-
lems. The experimental results obtained using the
FEVER dataset showed that the proposed SISER
outperformed other graph-based approaches and
achieved state-of-the-art performances in both the
development and test sets.

In future work, we would like to incorpo-
rate semantic-level and semantic-fused graph rea-
soning into evidence retrieval and explore the
joint learning framework of evidence retrieval and
claim verification in a multi-task learning setting.
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A Implementation Details

SISER was implemented by using PyTorch
(Paszke et al., 2019) and HuggingFace Trans-
formers (Wolf et al., 2020). Additionally, the
PyTorch-Geometric and SpaCy (Fey and Lenssen,
2019; Honnibal and Montani, 2017) were used
for graph modeling and dependency parsing. Ex-
periments were conducted using 4 Nvidia RTX
A6000 GPU. All optimizations were performed
using the Adafactor optimizer (Shazeer and Stern,
2018) with a linear warm-up of the learning rate.
The warmup proportion was 0.06. The batch size
and accumulation steps were 8 and 8, respectively.
That is, the total batch size is 256. Gradients were
clipped if their norms exceeded 1.0. The number
of K sub-graphs was 6 and τ = 0.49. In super-
vised learning, our loss L can be fine-tuned to min-
imize the weighted cross-entropy loss introduced
by MLA (Kruengkrai et al., 2021).

Our hyperparameter is summarized as below:

• Optimizer: Adafactor

• Learning rate: 2e− 5

• warmup proportion: 0.06

• Number of sub-graph: 6

• Total Batch size: 256

• Gradient norm: 1.0

• Node masking rate τ : 0.49

• Label words: Supported : Yes,Refuted :
No,Not Enough Info : Maybe

Data Method Prec@5 Recall@5 F1@5

Dev

UNC NLP∗ 36.49 86.79 51.38
GEAR∗ 40.60 86.36 55.23
KGAT⋄ 27.29 94.37 42.34

DREAM⋄ 26.67 87.64 40.90
MLA⋄ 25.63 88.64 39.76

monoT5• 25.66 90.54 37.17

Test KGAT⋄ 25.21 87.47 39.14
MLA⋄ 25.33 87.58 39.29

Table 7: Results of the sentence selection methods
in the precision@5, recall@5, and F1@5 metrics on
the FEVER development set and blind test set, re-
spectively. ∗, ⋄, • denote ESIM-based retrieval model,
BERT-based retrieval model, and T5-base model, re-
spectively.

B Evidence Sentence Retrieval
Since our work focuses on claim verification, we
directly adapt the evidence retrieval method from
KGAT (Liu et al., 2020). As shown in Table 7,
KGAT shows the best Recall@5 performance for
sentence selection on the FEVER development
set. Different from the result on the FEVER de-
velopment set, MLA shows the better Recall@5
performance than KGAT.
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