
Proceedings of the 29th International Conference on Computational Linguistics, pages 1233–1249
October 12–17, 2022.

1233

Threat Scenarios and Best Practices for Neural Fake News Detection

Artidoro Pagnoni† and Martin Garciarena♢ and Yulia Tsvetkov†

†Paul G. Allen School of CSE, University of Washington ♢ SRI International
{artidoro, yuliats}@cs.washington.edu, martin.graciarena@sri.com

Abstract

In this work, we discuss different threat scenar-
ios from neural fake news generated by state-
of-the-art language models. Through our ex-
periments, we assess the performance of gener-
ated text detection systems under these threat
scenarios. For each scenario, we also identify
the minimax strategy for the detector that min-
imizes its worst case performance. This con-
stitutes a set of best practices that practitioners
can rely on. In our analysis, we find that de-
tectors are prone to shortcut learning (i.e., lack
of out-of-distribution generalization) and dis-
cuss approaches to mitigate this problem and
improve detectors more broadly. Finally, we
argue that strong detectors should be released
along with new generators.1

1 Introduction

During the COVID-19 pandemic, an overabun-
dance of inaccurate information made it hard
for people to find reliable guidance when they
needed it, creating the first global infodemic. This
widespread presence of online fake news poses a
risk for the principles of the global information and
communication space, which is considered to be a
public good (Stiglitz et al., 1999). Widely available
and reliable information is necessary for the func-
tion of a democratic state and is seen by UNESCO
as vital to ensure “public participation and civic
space”.2

Neural generation systems unlock new possibili-
ties for disinformation campaigns to generate large
quantities of targeted content (Zellers et al., 2019;
Radford et al., 2019; Keskar et al., 2019; Brown
et al., 2020). Recent progress in pretrained lan-
guage models enables the generation of fluent, orig-
inal text that can be easily confused with human-
written text. Progressively more complex use of

1Resources including generators, detectors, and generated
and pristine news articles are made available at https://
github.com/artidoro/detect-gentext

2UNESCO report “Information as a public good”

such language models can be achieved depending
on the technical expertise and resources of the users
(i.e., access to the language model, capability to run
existing systems, to finetune them, or to develop
a new generator and train it). This is a pressing
problem, and it is reported that certain actors spend
substantial monetary resources to spread misinfor-
mation and influence public opinion, for example
during the COVID 19 pandemic 3 and the US Pres-
idential Elections of 2016 (Badawy et al., 2018;
Stiff and Johansson, 2021). Although the major-
ity of online disinformation is currently manually
written (Vargo et al., 2018), the rapid progress of
language generation systems along with their in-
creased availability could attract these actors for
whom the financial barriers do not pose problems.
To prevent the spread of artificial and potentially
malicious content online, it is necessary to develop
automated detection systems that can distinguish
human and generated text reliably.

In this work, we discuss the problem of machine
generated text detection (Jawahar et al., 2020), by
identifying and analyzing potential scenarios of ma-
licious text generation (i.e., threat scenarios) based
on (1) state-of-the-art models in neural language
generation, and (2) previous work that describes
how these techniques can be used to forge content
(Ranade et al., 2021; Gupta et al., 2020; Buchanan
et al., 2021).

Our analysis focuses on the interaction of gen-
erators and detectors for each scenario across their
technical capabilities and associated costs. Know-
ing the limitations of current detection systems can
help policymakers identify the threats posed by dif-
ferent actors by assessing their technical expertise
and resources.

The contributions of this work are: (1) identi-
fying and assessing threat scenarios for the use of
pretrained language models to spread disinforma-

3New York Times: “Disinformation for Hire, a Shadow
Industry, Is Quietly Booming”

https://github.com/artidoro/detect-gentext
https://github.com/artidoro/detect-gentext
https://en.unesco.org/sites/default/files/wpfd_2021_concept_note_en.pdf
https://www.nytimes.com/2021/07/25/world/europe/disinformation-social-media.html
https://www.nytimes.com/2021/07/25/world/europe/disinformation-social-media.html

1234

tion, based on associated costs and availability of
generators, (2) analyzing the performance of cur-
rent methods – discriminators trained to defend
against these threat scenarios, and (3) identifying
challenges and future research directions to miti-
gate potential threats.

2 Problem Description

In this section we introduce the problem of de-
tecting generated text and describe state-of-the-art
methods for both generators and detectors.

2.1 Generators
We consider a generator to be a model capable
of generating fluent text. Currently, state-of-the-
art generators rely on neural language models pre-
trained on large text corpora (Bengio et al., 2000).
Language models generate text autoregressively, by
sampling each word from a probability distribution
over a fixed vocabulary given the word’s context.

Architecture and Training Objective The core
of the architecture of neural language models has
converged to Transformer models (Vaswani et al.,
2017) with small variations (Press et al., 2022).
One distinction between language models is their
training objective (ex: masked (Devlin et al., 2018)
and causal (Radford et al., 2019) language mod-
els). Causal language models are generally the
ones employed for text generation (Li et al., 2021).

Training Data Language models are trained to
mimic the distribution of the language in their train-
ing data. This has an impact on the kind of text they
are able to generate. Language models pick up so-
cial biases and other unwanted artifacts of the text
they were trained on (Sun et al., 2019; Weidinger
et al., 2021; Field et al., 2021). Most language
models are pretrained on large corpora of web text.
They can be adapted to specific domains by finetun-
ing on new corpora. For example, a model could
be finetuned to the news domain to generate text in
the style of news articles (Zellers et al., 2019).

Sampling From the Language Model There are
different strategies to sample from the distribution
produced by the language model. These strategies
lead to different styles of text. Greedy sampling
amounts to generating the highest probability word.
This strategy, however, leads to deterministic gener-
ations. Random sampling involves sampling from
the entire distribution over the vocabulary. In some
cases, this can lead to ungrammatical generations.

To mitigate this issue top-k sampling (Fan et al.,
2018) generates from the top-k most likely words
according to the language model. Finally, nucleus
sampling (Holtzman et al., 2019) samples from the
set of words that collectively accounts for a proba-
bility mass p under the language model. Orthogo-
nal to sampling strategies are decoding algorithms
that aim to maximize the global probability over
the full text sequence. Most generators compose
text sequences one word at a time without guaran-
tees of finding a globally optimal sequence. Beam
search is a heuristic method that is often employed
to maintain b candidate generations and pick the
one with the highest overall likelihood.

2.2 Detectors

In this work, we define detectors as models that
are trained to distinguish machine-generated and
human-written text. Research on detectors for gen-
erated text is motivated by two main goals. On one
hand, a better understanding of the differences be-
tween generated and human text can be used to im-
prove generated systems. On the other hand, better
detection systems could help mitigate the potential
negative societal impact that machine generated
text can have (Jawahar et al., 2020).

Previous work has pointed out stylistic differ-
ences between generated and human text. Differ-
ences in fluency, lexical, and syntactic novelty have
all been shown to help differentiate between gen-
erated and human written text. Here, we describe
different lines of work on automated detection sys-
tems of machine generated text with a particular
focus on pretrained classifiers which have been
shown to work best so far (Gehrmann et al., 2019;
Dugan et al., 2020).

Human-machine collaboration Dugan et al.
(2020) show that humans can easily be fooled
when trying to detect the boundary between hu-
man and generated text. Their work highlights the
difficulty of the detection task, but also shows that
humans are capable of identifying generated text
in a long document (beyond a couple of sentences).
Gehrmann et al. (2019) studied the difference be-
tween human and machine generated text. They
showed that generated text tends to opt for more
common phrases, thus favoring fluency over nov-
elty. They built a tool, GLTR, that helps humans
identify generated text, by visualizing the likeli-
hood and rank of words in a text under a language
model.

1235

Description Costs Expertise Threat Detect. Acc.
Online playgrounds 0 Interacting with an online form Execute Generator 92.8%
Paid API 0-1K Prompting and querying API Execute Generator 92.8%
Execution of LM 50k-130k Hardware setup, DL execution experience Execute Generator 92.8%
Finetuning of LM 100k+ Hardware setup, DL training expertise Finetune Generator 74.2%
Training of LM 100k-1M+ Hardware setup, optimization, training of LM Train Generator 64.8%

Table 1: Threat scenarios, costs, and minimax detector performance (see discussion in section 6).

Stylometry Aiming to identify differences in
the style of generated and human text, some ap-
proaches directly measure stylistic features of text.
These approaches have broadly been termed sty-
lometry. Some features used by Fröhling and Zubi-
aga (2021) include repetitiveness, lack of purpose,
and readability. Despite some success, previous
work pointed out the limitations of stylometry in
detecting machine-generated fake news (Schuster
et al., 2020). State-of-the-art performance on this
task is achieved by pretrained language models
finetuned to the classification task (Uchendu et al.,
2021).

Pretrained classifiers Previous work has studied
how well pretrained classifiers can detect generated
text (Solaiman et al., 2019; Zellers et al., 2019; Ip-
polito et al., 2020; Bakhtin et al., 2021; Uchendu
et al., 2021). Solaiman et al. (2019) show that fine-
tuning ROBERTA can detect GPT-2 (Radford et al.,
2019) with 95% accuracy and that the performance
transfers across decoding strategies and to smaller
generators. Ippolito et al. (2020) show that detec-
tors perform best when humans are fooled because
decoding strategies have to compromise between
fluency and lexical and syntactic novelty. Fluency
errors are easy to detect by humans, while lexi-
cal novelty is difficult. On the other hand, lexical
novelty is what classifiers are able to identify.

3 Threat Scenarios

A given generator can be used in various ways,
based on domain expertise and budget, resulting
in different styles of generated text. We describe
threat scenarios by identifying possible uses of pre-
trained LMs and their associated costs (technical
expertise and monetary resources required).

Interactive Playgrounds and Paid APIs Most
language models have been open-sourced and the
model parameters can be downloaded. However,
many also have free online playgrounds that sim-

plify the user-interaction4 and require little to no
programming expertise. The latest models coming
from the private sector (e.g., GPT3 (Brown et al.,
2020)) are usually not available publicly or are
only accessible through paid APIs and online play-
grounds. With some delay, equally powerful mod-
els are often released publicly (e.g., OPT (Zhang
et al., 2022)).

These playgrounds are either free or very cheap.
Even the paid GPT3 playground’s most powerful
model only costs $0.06 for 1000 tokens. Generat-
ing text through the playgrounds is time consuming
and requires heavy intervention by the user who
needs to write prompts and ensure that the gener-
ation is sensible. However, this method could be
used to speed up the process of writing fake con-
tent by offloading some portion of the writing to
the language model. APIs extend the playgrounds
by allowing generation to be performed program-
matically. This increases the potential scale of the
generation process. Targeted generations through
prompting still need careful handcrafting.

Execution and Sampling Variations The next
barrier to using pretrained language models is be-
ing able to execute them. Due to their scale lan-
guage models require hardware accelerators (ex:
GPUs and TPUs). Thanks to advances in model
parallelization (Rasley et al., 2020; Rajbhandari
et al., 2020) it is no longer required to store the full
model in the memory of a single piece of hardware.
This makes it possible to execute large models on
standard GPU hardware.

Once the model is executing, it is simple to vary
hyperparameters of the generation process such as
sampling strategy, temperature, beam search, and
repetition penalty. These parameters are generally
built into the software libraries for text generation
and lead to stylistic differences in the generated
text which can reduce the effectiveness of detec-
tion systems. Having the monetary and technical
resources to execute the models allows generat-

4https://transformer.huggingface.co/

https://transformer.huggingface.co/

1236

ing text at scale. However, targeted generations
still require prompts either curated or automati-
cally extracted. Previous work puts the cost of
such a project including experimentation and ser-
vicing between $50,000 and $136,000 (Sharir et al.,
2020). These costs will likely decrease as hard-
ware becomes more easily accessible and software
packages and cloud services simplify the process.

Finetuning To produce more sophisticated and
targeted generations, it is usually necessary to adapt
the pretrained language model. One common tech-
nique for adaptation of generators is finetuning the
generators by continuing the pretraining (Ranade
et al., 2021; Gupta et al., 2020). The result is a
language model that is able to produce text in the
required style, format, or domain. This requires
both access to in-domain data as well as computing
resources. Resources required for this are upwards
of $100,000 (Sharir et al., 2020).

Training a Language Model Developing new
models can lead to new and unique styles of gen-
eration. These can be hard to identify for detec-
tion systems that have not seen such examples in
their training data. Training new language genera-
tion systems comes at a significant cost. The costs
are inflated by the need of several training runs
to experiment with different hyperparameter con-
figurations. Previous research estimated the costs
of training new models at $50k for a 110 million
parameter model, $200k for a 340 million param-
eter model, and $1.6M for a 1.5 billion parameter
model (Sharir et al., 2020). Note that these costs
were estimated in 2020 and are likely going to be af-
fected by improvements in hardware and software
libraries to speed up the training process. Costs
are even higher for larger models like OPT (175
billion param.) which was trained on 992 80GB
A100 GPUs with experiments lasting at least two
months (Zhang et al., 2022). At the time of writing,
the GPU hardware alone would cost $50-100M on
the public version of Google cloud (although due
to private negotiations with the cloud providers the
actual price is likely lower).

4 Experimental Setup

Here we describe the generators, detectors, and
datasets that we use in our experiments.

Model Num LAM LAM Detect.
Name Param. PPL Acc Acc.
GPT-2 sm 125M 35.1 45.99 99.49
GPT-2 md 350M 15.6 55.48 98.79
GPT-2 lg 760M 10.9 60.12 97.39
GPT-2 xl 1.5B 8.6 63.24 95.91
GPT-NEO 2.7B 5.6 62.2 95.12
GPT-3 175B 3.0 76.2 92.83

Table 2: Generators used in our experiments, the number
of parameters, their perplexity, and accuracy on the
LAMBADA dataset (Paperno et al., 2016), and their in-
domain detection performance when training and testing
with nucleus sampling (p = 0.96).

4.1 Generators

In this work, we focus on causal language model
generators. These have been shown to be suc-
cessfully employed to generate neural fake news
(Zellers et al., 2019). We experiment with the four
sizes of GPT-2 (Radford et al., 2019), GPT-NEO

(Black et al., 2021), and GPT-3 (Brown et al., 2020).
We chose these models as they have a similar train-
ing objective and cover a wide range of perfor-
mances in terms of perplexity. The details of these
models are shown in Table 2.

Our experiments do not include larger models
(Rae et al., 2021; Smith et al., 2022; Chowdhery
et al., 2022). The perplexity and accuracy on bench-
marks like LAMBADA (Paperno et al., 2016) of
the larger model are not significantly different. For
example, the accuracy of PALM (540B parame-
ters) on LAMBADA is 77.9 against 76.2 for GPT-3
(175B parameters). We also do not consider con-
trollable text generation systems which can change
the domain of the generated text. Finetuning is a
simple alternative to change the domain and we
chose it to avoid introducing other confounders.
Also, previous work that experiment with control-
lable generation did not always find significant dif-
ferences in detection performance (Stiff and Jo-
hansson, 2021).

4.2 Detectors

In this work, we experiment with classifiers based
on pretrained language models and finetuned to
the task of detecting generated text. In total, we
experiment with seven different detectors based on
ROBERTA(Liu et al., 2019), BERT(Devlin et al.,
2019), ALBERT (Lan et al., 2020), and ELEC-
TRA (Clark et al., 2020). We include different

1237

Logarithm of # of generator parameters (billions)

D
et

ec
tio

n
A

cc
ur

ac
y

90

92

94

96

98

100

0.5 1 5 10 50 100

103x^-8.98E-03 R² = 0.939

(a)
Perplexity (LAMBADA)

90

92

94

96

98

100

5101520253035

90.6x^0.0269 R² = 0.941

(b)
Accuracy (LAMBADA)

90

92

94

96

98

100

50 55 60 65 70 75

-0.217*x + 109 R² = 0.916

(c)

Figure 1: In-domain detection performance as a function of number of parameters (a), perplexity (b), and accuracy
(c) of the generator (perplexity and accuracy on LAMBADA dataset). Detectors are trained and tested on nucleus
sampling (p = 0.96).

sizes and training objectives for the pretrained lan-
guage models that the detectors rely on.

4.3 Datasets

We employ existing dataset of generated text for
GPT-2 models and complement it with generations
from GPT-NEO and GPT-3, as well as domain
adapted generations. OpenAI released both human
and machine generated text.5 The data includes
generations from GPT-2 models along with part of
the original training data (Solaiman et al., 2019).
The generations come with three different decoding
strategies (random, top-k, and nucleus sampling).
We are not aware of any other models being re-
leased with sample generations. Furthermore, the
pretraining data is often not available. We there-
fore had to generate a large training dataset of text
generated by GPT-NEO and GPT-3 for our exper-
iments. We use human prompts (15 tokens) from
Webtext (released by OpenAI) and the three sam-
pling strategies that were already used by OpenAI.
The hyperparameters k = 40 and p = 0.96 were
reported to be a good compromise between fluency
and novelty of generations (Holtzman et al., 2019)
and are used in our experiments. For GPT-3, we
collected 50K training examples of generated text
using nucleus sampling with p = 0.96. To our
knowledge, this is the first collection of documents
that is large enough to train a detector for GPT-3.
To test generalization performance of detectors, all
generators besides GPT-3 were also finetuned to the
COVID domain. The dataset used for finetuning
is the NELA 2020 (Gruppi et al., 2022) news cor-

5https://github.com/openai/
gpt-2-output-dataset

pus (the COVID split). Details of the datasets used
in our experiments are available in the appendix
Appendix A.

5 Results

Our experiments simulate the different threat sce-
narios identified in the previous section and eval-
uate their associated risks. Borrowing from the
field of security (Shostack, 2014), we describe how
“attackers” can employ generators and “defenders”
train effective detectors under varying assumptions.

The first three scenarios (online playgrounds,
paid APIs, and execution of LM) can be studied
together as they involve using an existing generator
without any domain specific tuning of the model
parameters. Users can still tailor the generation
style by changing decoding hyperparameters. Next,
we explore the scenario of generator finetuning,
focusing on the covid domain. Lastly, we simulate
the training of new generators by looking at the
performance of detectors when they are trained
and tested on different generators. Throughout
our experiments, we choose to isolate and study a
specific phenomenon to determine its impact of the
detection performance in isolation.

5.1 Preliminary

To set the basis for further experiments, we be-
gin with a scenario where there is full knowledge
of the attack. Here, both training and testing is
performed on the same generator and decoding
strategy while finetuning. This is a white-box at-
tack which, though unrealistic, gives some useful
preliminary information about the hardness of the
task.

https://github.com/openai/gpt-2-output-dataset
https://github.com/openai/gpt-2-output-dataset

1238

tokens 256 128 64 32
GPT-2 xl nucleus 96.4 93.09 85.7 76.37
GPT-2 xl random 95.96 94.4 87.9 76.69
GPT-2 xl k = 40 97.9 98.8 96.8 -

Table 3: Accuracy on shorter sequences. ROBERTA
large was trained and tested on sequences of varying
size in terms of tokens.

Under these circumstances, the detection perfor-
mance is above 90% even for the largest generator
GPT-3 (Table 2). We confirm observations made
by previous work (Radford et al., 2019; Ippolito
et al., 2020) that larger detectors perform better (-
4.6% average performance decrease with the small
version of the detector across 60 generator varia-
tions tested) and that larger models are harder to
detect. A contribution of our analysis is a study of
the scaling laws of generator capacity and detection
performance. We can perform such a study thanks
to the collection of a dataset of GPT-3 generations.

In Figure 1, we observe that the detection per-
formance is related with a power law to both the
number of parameters in the generator and the gen-
erator perplexity with an exponent in the order of
10−3. The relation appears to be more linear in
terms of the accuracy on the LAMBADA dataset
with coefficient −0.21. In all three cases, we have
R2 > 0.9. These relations suggest a trend with
small detection performance drop as the genera-
tor complexity increases even beyond the current
known generators. As a reminder, this assumes a
white-box attack scenario.

Besides having full knowledge of the attack, the
previous results also assumed fairly long gener-
ations. The detection performance, even under
white-box attack, significantly decreases when the
text sequences to distinguish are shorter. Such
shorter text sequences are frequent in certain do-
mains like in social media (Twitter has 280 charac-
ter limit which is about 50 words). In Table 3, we
show that on sequences of 64 tokens, roughly the
maximum length of a Tweet, performance drops
by 10% on nucleus and random sampling. Interest-
ingly, on top-k the decrease in performance is not
as pronounced.

5.2 Executing Known Generators

In this scenario, we assume that attackers can only
employ generators that are known to the defenders,
which means that the adversary can pick a decod-

train ↓ test → random top-k nucleus
random n.a. −28.6 −21.9
top-k = 40 −43.2 n.a. −21.3
nucleus p = 0.96 −8.6 +2.4 n.a.

Table 4: Average accuracy variation when training a
ROBERTA lg model on one decoding strategy and test-
ing on another decoding strategy across the generators
of interest.

ing strategy. Since the generator is known, the de-
fender can train the detector on data generated by
the generator and used by the adversary. However,
given the large number of available combinations
of decoding hyperparameters, the defender cannot
assume to have trained a model on the same decod-
ing strategy that was chosen by the adversary.

In practice, we simulate this scenario by training
the detector on one decoding strategy and testing it
on another. In Table 4, we show that performance
generally decreases when a detector is evaluated
on a decoding strategy it was not trained on. This
highlights how sensitive these models are to small
stylistic variations of the generated text. This exper-
iment also shows that nucleus sampling has the best
generalization to other decoding strategies and that
defenders should train on nucleus sampling to miti-
gate worst case performance drop in this scenario.
Training on nucleus sampling still has an average
performance change of -8.6% when testing on ran-
dom sampling. Such significant reduction indicates
that changes in the decoding strategy are simple
ways to reduce the performance of a detector.

5.3 Finetuning Generators

To simulate the scenario of a finetuned generator,
we assume that the adversary can only finetune a
known generator. In our case, we finetune the gen-
erators to the COVID news domain using masked
language modeling. Here, the defender does not
know the target domain, therefore the detectors
can only be trained in the original domain of the
generator (generic web text).

In Table 5, we compare in-domain (ID) per-
formance, where ROBERTA large is trained and
tested on data from the same generator, with out-
of-domain (OOD) performance, where ROBERTA

lg and ELECTRA lg were trained on GPT-2 xl
outputs in the web domain and tested on generated
text in the COVID news domain. Here we keep the
sampling strategy fixed (nucleus sampling p = 96)

1239

Generators ID Acc. OOD Acc.
(COVID) ROBERTA lg ELECTRA lg
GPT-2 sm 99.72 75.86 95.24
GPT-2 md 99.87 75.86 89.14
GPT-2 lg 98.59 90.65 94.37
GPT-2 xl 95.47 69.59 78.56
GPT-NEO 96.16 79.46 74.27
Average 97.96 81.45 86.31

Table 5: Detection accuracy in the COVID domain. We
compare in-domain (ID) with out-of-domain (OOD)
performance for different detectors.

to isolate the change in performance due to a shift
to the COVID news domain.

We find that the out-of-domain performance is
on average 11% lower for ELECTRA lg and 16%
lower for ROBERTA lg compared to the in-domain
performance. The ELECTRA discriminator is pre-
trained to identify spans of text that were replaced
by a language model. This pretraining objective
is closer to the task of detecting generated text
than the masked language modeling objective used
by ROBERTA. We hypothesize that ELECTRA
performs better at generalizing to out-of-domain
generated text because of its training objective.

5.4 Training New Generators

To test the performance under new and unknown
generators, we make the assumption that the de-
fender does not have access to the generator it is
trying to detect. This means that the defender can-
not train on the target generator.

To simulare this scenario, we test the detectors
on generators they were not trained on. To isolate
this component (i.e., change in generator), we do
not vary the decoding strategy or the domain of
the generator. In Table 6, we show that there is a
drop in performance across all detectors when they
are trained on a smaller generator and tested on a
larger one. This drop is more pronounced when the
detectors are trained on smaller models (decrease
of 26.5% when a model trained on the GPT-2 small
is tested on GPT-2 xl). However, when comparing
very large models the difference in performance
is significantly smaller (training on GPT-2 lg and
testing on GPT-xl leads to only a 2.1% performance
drop). We conclude that the generalization benefit
from using a larger generator for training decreases
once the generator is above a certain quality. This
observation is in line with our study of the scaling
law of the capacity of the generator under the white-

Trained on → sm md lg
Tested on → xl lg md xl lg xl
ROBERTA large 36.8 22.3 6.9 11.8 2.8 2.0
ROBERTA base 35.5 24.6 13.3 11.3 4.0 1.9
BERT large 31.2 22.7 16.3 10.7 4.4 2.2
BERT base 16.5 11.4 12.0 6.5 3.3 1.3
ELECTRA small 15.5 11.2 9.0 8.8 5.1 1.1
ALBERT base 23.4 17.2 12.0 12.5 6.9 4.2
Avg. acc. change 26.5 18.2 11.6 10.3 4.4 2.1

Table 6: Decrease in accuracy when training on smaller
generators and testing on larger ones. The change is
calculated based on the performance of the discriminator
tested on the same generator size it was trained on. Here
we use different sizes of GPT-2 with nucleus sampling.

GPT-2 lg GPT-2 md GPT-2 sm
ROBERTA lg 1.0 1.2 1.4
ROBERTA base 1.2 1.4 2.2
BERT lg 1.0 0.3 1.8
BERT base 0.8 -2.9 0.0
ELECTRA sm 0.5 -3.3 -0.4
ALBERT 1.7 -0.1 4.4

Table 7: Training on larger generators transfers to
smaller ones. In this case, the discriminators trained
on GPT-2 xl (nucleus sampling) maintain accuracy on
the smaller generators.

box attack.
Next, we test the hypothesis that training on

larger generators transfers to smaller generators.
In Table 7, we show the performance change when
training on GPT-2 xl and testing on GPT-2 lg, md,
and sm. We observe that the performance, in terms
of accuracy, remains mostly unchanged across de-
tectors with a 0.2% average improvement. This
indicates that training on larger generators gener-
alizes to the smaller ones (see Appendix A for a
discussion of the GPT-3 exception).

6 Discussion

6.1 Best Practices to Detect Generated Text
For each threat scenario we identify the minimax
strategy (Nash, 1953) that minimizes the worst case
performance for the defender (see Table 1). In gen-
eral, our preliminary experiments show that it is
beneficial to use the best available generator for
training and the largest detection model. We there-
fore recommend this to practitioners and assume it
is done by the defender in the following scenarios.

Executing Known Generators Online play-
grounds, paid APIs, and models available for down-
load and execution offer roughly the same language

1240

models (GPT-3 was not available for execution but
OPT (Zhang et al., 2022) recently filled the gap).
Our experiments as well as previous work show
that nucleus sampling generalizes to other sam-
pling techniques. When the generator is known,
detectors should be trained on this sampling strat-
egy. The detection performance of GPT-3 was the
lowest at 92%.

Finetuning Known Generators When con-
fronted with generators finetuned to new domains,
we showed that ELECTRA generally performed
better than other classifiers (possibly due to its train-
ing objective) and that it should be preferred over
ROBERTA. The worst case detection performance
for the ELECTRA large model was 74.2% with
the finetuned GPT-NEO generator.

Training New Generators Finally, here we as-
sume that the adversary has the resources required
to train a new generator altogether. The worst case
detection is achieved on the GPT-3 generator so
we take that as the new generator. The ROBERTA

large model trained on the otherwise largest avail-
able generator has a detection accuracy of 64.8%.

6.2 Detection Challenges
We found that detectors for generated text are
highly prone to shortcut learning. This phe-
nomenon seems to arise in many learning systems
(Geirhos et al., 2020) and involves taking shortcuts
that achieve high performance on a given bench-
mark or domain but fail to generalize and transfer
to real-world scenarios.

Since the training domain of the generators is not
always available, there can be a mismatch between
the domain of the generated text and the human
text that are used in the training dataset for detec-
tors. Such small systematic differences between
the generated text and the human written text can
be picked up by the detectors and prevent them
from generalizing to other generators or domains.

In our experiments, we observed that detection
models seem to focus on stylistic confounds be-
tween the human and generated text when they are
present. We observed this phenomenon with small
differences in tokenization and domain. For exam-
ple, the NELA dataset is provided pre-tokenized
which leads to punctuation having additional white
spaces compared to the generator outputs. A de-
tector trained on this dataset achieves misleading
near perfect performance (99.9% accuracy) but gen-
eralized poorly to datasets that did not have this

Model Acc.

Baseline (no ensemb.) 94.4
Majority Voting 95.5
Decision Tree 95.7
Logistic Reg. 96.0

Table 8: Ensembling specialized detectors.

tokenization mismatch (60% accuracy). We used
SHAP (Lundberg and Lee, 2017) to find what the
detector focused on and find that the human text
had white spaces before punctuation due to the way
it was collected and anonymized (see Figure 2).
This is related to observations made in previous
work which highlighted the vulnerability of detec-
tion systems to adversarial examples where simple
changes in the text (e.g., changing characters) can
flip the predictions of the models (Darmetko; Jun
et al.; Wolff and Wolff, 2020; Gagiano et al., 2021).

6.3 Future Work

Interpretability Future work should investigate
whether SHAP or other interpretability methods
can be used to understand what the detectors rely on
to discriminate generated and human-written text.
Any findings could help further improve detectors
and would also be valuable to the natural language
generation community.

Ensembling We also experiment with ensem-
bling specialized detectors instead of using a single
detector. In Table 8, we show that ensembling de-
tectors trained on different domains can lead to a
more general detection system. We combine de-
tectors trained on outputs of GPT-2 xl with three
different decoding strategies. We observe that en-
sembling consistently leads to performance im-
provements over the baseline which uses a single
detector trained on nucleus sampling (showed to
generalize well to other sampling strategies). In
this experiment, we test on data generated with all
three decoding strategies.

We believe that combining specialized detectors
is a promising area for future work. Interesting
approaches might involved identifying the right
detector to use for a given text which is related
to the generator attribution task (Uchendu et al.,
2020). They could also try to combine specialized
detectors using model distillation (Hinton et al.,
2015) into a single detector that learns from each
specialized model on different training instances

1241

depending on which generator originated them.

Better Training Data We found that generators
were sensitive to generation hyperparameters. Gen-
erating high quality training datasets required some
generator-specific hyperparameter tuning. The ab-
sence of automated evaluation metrics of gener-
ated text makes the process laborious and time-
consuming. Future work should draw from stylom-
etry (Fröhling and Zubiaga, 2021) or unsupervised
distributional methods (Pillutla et al., 2021; Gallé
et al., 2021) to help automate the process of con-
structing a high quality training dataset. Features
used for stylometry could more generally be used
to identify a domain mismatch between human and
generated text which if addressed could help im-
prove the generalization performance of detectors.

Adversarial Setup Detecting generated text in-
volves an adversarial setup in which detectors need
generated outputs during training. The best training
signal for a generator comes from the best gener-
ator. However, improvements in generators leave
the detectors behind. One interesting avenue for fu-
ture work is to adversarially filter the training data
for the detector by only selecting examples that
are most similar to human text (Holtzman et al.,
2018). The process is similar to simulating a better
generator with a simpler one. The filtering could
be repeated iteratively and rely on a detector that is
progressively trained on harder examples.

7 Ethical Considerations, Limitations,
and Recommendations

Although in this work we discuss the problem of
detecting generated text with a particular focus on
generated fake news, we would like to point out
that not all generated text is fake news and most
generated text does not have a malicious intent.
Language models are widely used in NLP for both
conditional language generation tasks like summa-
rization, translation, and dialogue (Gatt and Krah-
mer, 2018), as well as unconditional generation
tasks like story generation (Fan et al., 2018).

In this work, by presenting results on the de-
tection performance of different generators, we
inevitably provide information that could inform
malicious actors about how to improve generators
and where our detection system fail. However, we
believe that the experimental evidence in this pa-
per points to research directions which can help
improve systems for the detection of generated text

beyond our current capabilities.
We also would like to point out that the find-

ings of this work are limited to the domains we
focused on but the methodology is general and can
be applied to other domains. In particular, the out-
of-domain performance will change depending on
the distance between domains. For example, we
did not include any experiments with other dialects
of English or other languages.

One limitation of this work is that we do not
experiment with controllable generation systems
(Keskar et al., 2019; Krause et al., 2021; Dathathri
et al., 2020; Kumar et al., 2021). This is partly due
to the high risk of dual use in developing systems
that controllably generate malicious content. We
point to prior work which experimented detecting
generations from these systems (Stiff and Johans-
son, 2021).

Finally, based on the observations made in
this paper, we recommend that language models
should be released along with strong detectors.
Our experiments showed that in-domain detection
performance is reasonably high (> 90% acc.) even
for the largest generator GPT-3, while the out-of-
domain performance is significantly lower (64.8%
acc.). We also pointed out that variations in the
domain between generated data and human data
used to train discriminators can lead to shortcut
learning. This suggests that the requirement for
authors of new generators should be to release
data sampled from the training dataset along
with sample generations to ensure the two splits
of the data have matching domains.

8 Conclusion

We provide an assessment of the current landscape
of generated text detection and identify three pri-
mary threat scenarios. Through extensive experi-
mentation simulating the identified threats, we es-
tablish the minimax strategies that minimize the
worst case scenario for the detector. We argue that
these strategies constitute best practices for prac-
titioners. We find that, when confronted with an
adversary capable of training a new generator, the
worst case detection performance could be as low
as 64.8%. We then discuss observed detection chal-
lenges related to shortcut learning, point to several
avenues for future work, and provide recommenda-
tions for the community to release detectors along
with new models.

1242

Acknowledgements

The authors are grateful to the anonymous re-
viewers for their comments, and to Evangelia
Spiliopoulou, Gian Marco Visani, and the mem-
bers of the Tsvetshop group for their invaluable
feedback. This material is based upon work sup-
ported by the DARPA CMO under Contract No.
HR001120C0124. Any opinions, findings and con-
clusions or recommendations expressed in this ma-
terial are those of the author(s) and do not nec-
essarily state or reflect those of the United States
Government or any agency thereof.

References
Adam Badawy, Emilio Ferrara, and Kristina Lerman.

2018. Analyzing the digital traces of political manip-
ulation: The 2016 russian interference twitter cam-
paign. In 2018 IEEE/ACM international conference
on advances in social networks analysis and mining
(ASONAM), pages 258–265. IEEE.

Anton Bakhtin, Yuntian Deng, Sam Gross, Myle Ott,
Marc’Aurelio Ranzato, and Arthur Szlam. 2021.
Residual energy-based models for text. J. Mach.
Learn. Res., 22:40–1.

Yoshua Bengio, Réjean Ducharme, and Pascal Vincent.
2000. A neural probabilistic language model. Ad-
vances in Neural Information Processing Systems,
13.

Sid Black, Leo Gao, Phil Wang, Connor Leahy,
and Stella Biderman. 2021. GPT-Neo: Large
Scale Autoregressive Language Modeling with Mesh-
Tensorflow. If you use this software, please cite it
using these metadata.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Ben Buchanan, Andrew Lohn, Micah Musser, and Kate-
rina Sedova. 2021. Truth, lies, and automation.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: pre-
training text encoders as discriminators rather than
generators. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Tomasz Darmetko. Fake or not? generating adversarial
examples from language models.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane
Hung, Eric Frank, Piero Molino, Jason Yosinski, and
Rosanne Liu. 2020. Plug and play language models:
A simple approach to controlled text generation. In
International Conference on Learning Representa-
tions.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Liam Dugan, Daphne Ippolito, Arun Kirubarajan, and
Chris Callison-Burch. 2020. RoFT: A tool for eval-
uating human detection of machine-generated text.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 189–196, Online. Association
for Computational Linguistics.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018.
Hierarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 889–898, Melbourne, Australia. Association
for Computational Linguistics.

Anjalie Field, Su Lin Blodgett, Zeerak Waseem, and
Yulia Tsvetkov. 2021. A survey of race, racism, and
anti-racism in NLP. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 1905–1925, Online. Association
for Computational Linguistics.

Leon Fröhling and Arkaitz Zubiaga. 2021. Feature-
based detection of automated language models: tack-
ling gpt-2, gpt-3 and grover. PeerJ Computer Science,
7:e443.

Rinaldo Gagiano, Maria Myung-Hee Kim, Xiuzhen
Zhang, and Jennifer Biggs. 2021. Robustness analy-
sis of grover for machine-generated news detection.
In Proceedings of the The 19th Annual Workshop
of the Australasian Language Technology Associa-
tion, pages 119–127, Online. Australasian Language
Technology Association.

Matthias Gallé, Jos Rozen, Germán Kruszewski, and
Hady Elsahar. 2021. Unsupervised and distributional
detection of machine-generated text. arXiv preprint
arXiv:2111.02878.

https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.51593/2021CA003
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=H1edEyBKDS
https://openreview.net/forum?id=H1edEyBKDS
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.emnlp-demos.25
https://doi.org/10.18653/v1/2020.emnlp-demos.25
https://doi.org/10.18653/v1/P18-1082
https://doi.org/10.18653/v1/2021.acl-long.149
https://doi.org/10.18653/v1/2021.acl-long.149
https://aclanthology.org/2021.alta-1.12
https://aclanthology.org/2021.alta-1.12

1243

Albert Gatt and Emiel Krahmer. 2018. Survey of the
state of the art in natural language generation: Core
tasks, applications and evaluation. Journal of Artifi-
cial Intelligence Research, 61:65–170.

Sebastian Gehrmann, Hendrik Strobelt, and Alexander
Rush. 2019. GLTR: Statistical detection and visual-
ization of generated text. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 111–116,
Florence, Italy. Association for Computational Lin-
guistics.

Robert Geirhos, Jörn-Henrik Jacobsen, Claudio
Michaelis, Richard Zemel, Wieland Brendel,
Matthias Bethge, and Felix A Wichmann. 2020.
Shortcut learning in deep neural networks. Nature
Machine Intelligence, 2(11):665–673.

Maurício Gruppi, Benjamin D Horne, and Sibel Adalı.
2022. Nela-gt-2021: A large multi-labelled news
dataset for the study of misinformation in news arti-
cles. arXiv preprint arXiv:2203.05659.

Saurabh Gupta, Hong Huy Nguyen, Junichi Yamagishi,
and Isao Echizen. 2020. Viable threat on news read-
ing: Generating biased news using natural language
models. In Proceedings of the Fourth Workshop on
Natural Language Processing and Computational So-
cial Science, pages 55–65, Online. Association for
Computational Linguistics.

Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2(7).

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2019. The curious case of neural text de-
generation. In International Conference on Learning
Representations.

Ari Holtzman, Jan Buys, Maxwell Forbes, Antoine
Bosselut, David Golub, and Yejin Choi. 2018. Learn-
ing to write with cooperative discriminators. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1638–1649, Melbourne, Australia. As-
sociation for Computational Linguistics.

Daphne Ippolito, Daniel Duckworth, Chris Callison-
Burch, and Douglas Eck. 2020. Automatic detec-
tion of generated text is easiest when humans are
fooled. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
1808–1822, Online. Association for Computational
Linguistics.

Ganesh Jawahar, Muhammad Abdul-Mageed, and Laks
Lakshmanan, V.S. 2020. Automatic detection of ma-
chine generated text: A critical survey. In Proceed-
ings of the 28th International Conference on Com-
putational Linguistics, pages 2296–2309, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

Evan Lim Hong Jun, Chong Wen Haw, and Chieu Hai
Leong. Robustness analysis of neural text detectors.

Nitish Shirish Keskar, Bryan McCann, Lav Varsh-
ney, Caiming Xiong, and Richard Socher. 2019.
CTRL - A Conditional Transformer Language
Model for Controllable Generation. arXiv preprint
arXiv:1909.05858.

Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann,
Nitish Shirish Keskar, Shafiq Joty, Richard Socher,
and Nazneen Fatema Rajani. 2021. GeDi: Gener-
ative discriminator guided sequence generation. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2021, pages 4929–4952, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Sachin Kumar, Eric Malmi, Aliaksei Severyn, and Yu-
lia Tsvetkov. 2021. Controlled text generation as
continuous optimization with multiple constraints.
Advances in Neural Information Processing Systems,
34:14542–14554.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learn-
ing of language representations. In ICLR. OpenRe-
view.net.

Junyi Li, Tianyi Tang, Wayne Xin Zhao, and Ji-Rong
Wen. 2021. Pretrained language model for text gener-
ation: A survey. In Proceedings of the Thirtieth Inter-
national Joint Conference on Artificial Intelligence,
IJCAI-21, pages 4492–4499. International Joint Con-
ferences on Artificial Intelligence Organization. Sur-
vey Track.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Scott M Lundberg and Su-In Lee. 2017. A unified ap-
proach to interpreting model predictions. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances
in Neural Information Processing Systems 30, pages
4765–4774. Curran Associates, Inc.

John Nash. 1953. Two-person cooperative games.
Econometrica, 21(1):128–140.

Denis Paperno, Germán Kruszewski, Angeliki Lazari-
dou, Ngoc Quan Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel
Fernández. 2016. The LAMBADA dataset: Word
prediction requiring a broad discourse context. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1525–1534, Berlin, Germany.
Association for Computational Linguistics.

https://doi.org/10.18653/v1/P19-3019
https://doi.org/10.18653/v1/P19-3019
https://doi.org/10.18653/v1/2020.nlpcss-1.7
https://doi.org/10.18653/v1/2020.nlpcss-1.7
https://doi.org/10.18653/v1/2020.nlpcss-1.7
https://doi.org/10.18653/v1/P18-1152
https://doi.org/10.18653/v1/P18-1152
https://doi.org/10.18653/v1/2020.acl-main.164
https://doi.org/10.18653/v1/2020.acl-main.164
https://doi.org/10.18653/v1/2020.acl-main.164
https://doi.org/10.18653/v1/2020.coling-main.208
https://doi.org/10.18653/v1/2020.coling-main.208
https://doi.org/10.18653/v1/2021.findings-emnlp.424
https://doi.org/10.18653/v1/2021.findings-emnlp.424
http://dblp.uni-trier.de/db/conf/iclr/iclr2020.html#LanCGGSS20
http://dblp.uni-trier.de/db/conf/iclr/iclr2020.html#LanCGGSS20
https://doi.org/10.24963/ijcai.2021/612
https://doi.org/10.24963/ijcai.2021/612
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://www.jstor.org/stable/1906951
https://doi.org/10.18653/v1/P16-1144
https://doi.org/10.18653/v1/P16-1144

1244

Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers,
John Thickstun, Sean Welleck, Yejin Choi, and Zaid
Harchaoui. 2021. Mauve: Measuring the gap be-
tween neural text and human text using divergence
frontiers. Advances in Neural Information Process-
ing Systems, 34.

Ofir Press, Noah Smith, and Mike Lewis. 2022. Train
short, test long: Attention with linear biases enables
input length extrapolation. In International Confer-
ence on Learning Representations.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie
Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susan-
nah Young, et al. 2021. Scaling language models:
Methods, analysis & insights from training gopher.
arXiv preprint arXiv:2112.11446.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. 2020. Zero: Memory optimizations
toward training trillion parameter models. In SC20:
International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 1–
16. IEEE.

Priyanka Ranade, Aritran Piplai, Sudip Mittal, Anupam
Joshi, and Tim Finin. 2021. Generating fake cyber
threat intelligence using transformer-based models.
In 2021 International Joint Conference on Neural
Networks (IJCNN), pages 1–9.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and
Yuxiong He. 2020. Deepspeed: System optimiza-
tions enable training deep learning models with over
100 billion parameters. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pages 3505–3506.

Tal Schuster, Roei Schuster, Darsh J. Shah, and Regina
Barzilay. 2020. The limitations of stylometry for
detecting machine-generated fake news. Computa-
tional Linguistics, 46(2):499–510.

Or Sharir, Barak Peleg, and Yoav Shoham. 2020. The
cost of training nlp models: A concise overview.
arXiv preprint arXiv:2004.08900.

Adam Shostack. 2014. Threat Modeling: Designing for
Security, 1st edition. Wiley Publishing.

Shaden Smith, Mostofa Patwary, Brandon Norick,
Patrick LeGresley, Samyam Rajbhandari, Jared
Casper, Zhun Liu, Shrimai Prabhumoye, George
Zerveas, Vijay Korthikanti, et al. 2022. Using deep-
speed and megatron to train megatron-turing nlg
530b, a large-scale generative language model. arXiv
preprint arXiv:2201.11990.

Irene Solaiman, Miles Brundage, Jack Clark, Amanda
Askell, Ariel Herbert-Voss, Jeff Wu, Alec Rad-
ford, Gretchen Krueger, Jong Wook Kim, Sarah

Kreps, et al. 2019. Release strategies and the so-
cial impacts of language models. arXiv preprint
arXiv:1908.09203.

Harald Stiff and Fredrik Johansson. 2021. Detecting
computer-generated disinformation. International
Journal of Data Science and Analytics, pages 1–21.

Joseph E Stiglitz et al. 1999. Knowledge as a global
public good. Global public goods: International
cooperation in the 21st century, 308:308–325.

Tony Sun, Andrew Gaut, Shirlyn Tang, Yuxin Huang,
Mai ElSherief, Jieyu Zhao, Diba Mirza, Elizabeth
Belding, Kai-Wei Chang, and William Yang Wang.
2019. Mitigating gender bias in natural language
processing: Literature review. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 1630–1640, Florence, Italy.
Association for Computational Linguistics.

Adaku Uchendu, Thai Le, Kai Shu, and Dongwon Lee.
2020. Authorship attribution for neural text gener-
ation. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 8384–8395, Online. Association for
Computational Linguistics.

Adaku Uchendu, Zeyu Ma, Thai Le, Rui Zhang, and
Dongwon Lee. 2021. TURINGBENCH: A bench-
mark environment for Turing test in the age of neu-
ral text generation. In Findings of the Association
for Computational Linguistics: EMNLP 2021, pages
2001–2016, Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Chris J Vargo, Lei Guo, and Michelle A Amazeen. 2018.
The agenda-setting power of fake news: A big data
analysis of the online media landscape from 2014 to
2016. New media & society, 20(5):2028–2049.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Laura Weidinger, John Mellor, Maribeth Rauh, Conor
Griffin, Jonathan Uesato, Po-Sen Huang, Myra
Cheng, Mia Glaese, Borja Balle, Atoosa Kasirzadeh,
et al. 2021. Ethical and social risks of harm from
language models. arXiv preprint arXiv:2112.04359.

Max Wolff and Stuart Wolff. 2020. Attacking neural
text detectors. arXiv preprint arXiv:2002.11768.

Rowan Zellers, Ari Holtzman, Hannah Rashkin,
Yonatan Bisk, Ali Farhadi, Franziska Roesner, and
Yejin Choi. 2019. Defending against neural fake
news. Advances in Neural Information Processing
Systems, 32:9054–9065.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel

https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://doi.org/10.1109/IJCNN52387.2021.9534192
https://doi.org/10.1109/IJCNN52387.2021.9534192
https://doi.org/10.1162/coli_a_00380
https://doi.org/10.1162/coli_a_00380
https://doi.org/10.18653/v1/P19-1159
https://doi.org/10.18653/v1/P19-1159
https://doi.org/10.18653/v1/2020.emnlp-main.673
https://doi.org/10.18653/v1/2020.emnlp-main.673
https://doi.org/10.18653/v1/2021.findings-emnlp.172
https://doi.org/10.18653/v1/2021.findings-emnlp.172
https://doi.org/10.18653/v1/2021.findings-emnlp.172

1245

Configuration Epochs Batch size Learning Rate Max Seq. Len

Detection 10 64 1e-06 256

Configuration prompt len min len max len temp. # beams repet. pen.

Generation 10 20 None 1.0 3 1.3

Table 9: Detection and generation hyperparameters.

Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022. Opt: Open pre-
trained transformer language models.

A Appendix

A.1 Dataset Information

NELA GT 2020 The NELA GT 2020 dataset
used to adapt the generators to the COVID domain
is a collection of 699,803 articles from 493 sources
in English collected from 2020-01-01 to 2020-12-
31 about COVID. The text of the articles in this
dataset was modified so that it cannot properly be
used for news consumption but can still be used
for text analysis. For articles with more than 200
tokens, 7 tokens are replaced with @ every 100
tokens. For articles with fewer than 200 tokens,
5 consecutive tokens are replaced with @ every
20 tokens. We pretrain the generators on this data
and sample from the generator by disallowing the
generation of @ signs.

Webtext and OpenAI Generations OpenAI re-
leased 250,000 documents from the OpenWebText
dataset which was used to train GPT-2. They also
released 250,000 outputs of each size of GPT-2.
We use this data in our experiments. The validation
and test splits are 5K documents each.

Generated Data We generate data using various
sizes of GPT-2 and GPT-Neo using 15 words from
NELA-GT COVID 2020 and 15 words from Open-
WebText for GPT-3 as prompts. For GPT-3, the
total number of generated documents is 50K. We
use 40K for training and 5k each for validation and
testing. The total number of training documents
generated on COVID are listed in Table 10. In,
addition, we generate 10K validation and testing
splits for each decoding technique and model type.

B Hyperparameters

We performed hyperparameter tuning on the
ROBERTA large model and used them for the other
models. Due to high combinatorial number of con-
figurations, we did not tune hyperparameters for
each detector. We use Adam in our experiments.

Generator configuration # Generated documents

GPT2-sm-covid top k=40 718662
GPT2-sm-covid nucleus p=0.96 845382
GPT2-sm-covid random 1073162
GPT2-md-covid top k=40 670062
GPT2-md-covid nucleus p=0.96 433662
GPT2-md-covid random 528022
GPT2-lg-covid top k=40 66360
GPT2-lg-covid nucleus p=0.96 101838
GPT2-lg-covid random 104190
GPT2-xl-covid top k=40 116798
GPT2-xl-covid nucleus p=0.96 220790
GPT2-xl-covid random 99194
GPT-Neo-covid top k=40 160078
GPT-Neo-covid nucleus p=0.96 172786
GPT-Neo-covid random 97380

Table 10: Number of documents generated on COVID
for each generation hyperparameter configuration.

We use the default causal language modeling hy-
perparameters of the Huggingface toolkit to adapt
the generators to the COVID domain. We max-
imize the batch size that fits on a GPU. For the
larger models we used Deepspeed stage 3 and 4
A40 GPUs.

While previous work did not comment on gen-
eration hyperparameters, we found that generation
quality is highly dependent on the hyperparameters
of the generation process. In the COVID domain,
after adapting the generators to the NELA GT 2020
dataset, we found the use of beam search to be nec-
essary to obtain fluent text. In section 6, we discuss
ideas which could help future work perform hyper-
parameter tuning more extensively and efficiently.

B.1 Detailed Results
For reference, we report the individual results pre-
sented throughout the paper without aggregations.
On top of the accuracy metric, we also report F1
and equal error rate.

While in this work and in the literature it was
observed that training on larger generators tends
to generalize to smaller generators, we observe
here a behavior that contradicts this trend. The
ROBERTA large detector trained on GPT-3 outputs
has relatively low performance on GPT-2 outputs
(see Table 19). Future work should explore this
inconsistency and establish if it is due to minor
stylistic differences in the outputs of GPT-3 and
GPT-3, and therefore to the general problem of
shortcut learning, or to an inherent difference in
the generated text from GPT-2 and GPT-3.

https://doi.org/10.48550/ARXIV.2205.01068
https://doi.org/10.48550/ARXIV.2205.01068

1246

Trained on → GPT-2 xl random GPT-2 xl top k=40 GPT-2 xl nucleus p=96 GPT-2 lg nucleus p=96 GPT-2 md nucleus p=96 GPT-2 sm nucleus p=96
Tested on ↓ Acc. F1 EER Acc. F1 EER Acc. F1 EER Acc. F1 EER Acc. F1 EER Acc. F1 EER

GPT-2 md covid random 69.23 65.77 34.00 60.85 42.69 43.36 78.56 80.98 27.24 78.61 81.51 28.21 78.58 79.62 24.08 74.77 70.21 31.04
GPT-2 md covid top k=40 50.08 29.45 49.95 70.20 61.63 36.04 81.22 83.73 26.13 80.00 82.91 27.63 79.46 80.63 23.70 75.94 71.98 29.78
GPT-2 md covid nucleus p=96 58.56 47.70 43.95 66.40 54.52 39.23 80.12 82.60 26.58 79.48 82.39 27.85 79.25 80.39 23.79 75.70 71.63 30.03
GPT-2 xl random 81.28 78.30 25.46 46.95 7.79 51.65 57.13 56.28 43.14 60.31 60.41 39.74 64.90 60.08 38.00 65.92 54.62 39.37
GPT-2 xl top k=40 48.88 5.09 50.58 94.61 94.88 9.59 78.80 82.29 29.35 79.11 82.45 28.92 84.39 85.47 20.05 84.11 82.97 19.93
GPT-2 xl nucleus p=96 55.10 25.27 47.16 65.57 54.79 39.46 74.86 78.29 31.10 75.48 78.76 30.53 77.57 77.70 22.75 76.39 72.41 29.52
GPT-2 lg random 85.05 83.39 20.78 46.72 7.02 51.77 59.94 60.28 40.23 64.10 65.49 36.95 69.22 66.63 33.36 71.01 63.85 34.95
GPT-2 lg top k=40 49.18 6.17 50.43 94.01 94.27 9.69 79.22 82.70 29.17 79.61 82.94 28.71 86.12 87.28 19.46 88.08 87.74 13.90
GPT-2 lg nucleus p=96 58.77 35.33 44.92 64.19 52.11 40.57 75.65 79.11 30.73 76.77 80.10 29.94 80.76 81.46 21.40 81.49 79.59 23.46
GPT-2 md random 93.89 93.82 7.08 45.40 2.47 52.45 59.18 59.22 40.84 64.75 66.33 36.51 81.02 81.76 21.30 77.91 74.64 27.82
GPT-2 md top k=40 49.75 8.19 50.13 93.02 93.26 9.87 79.06 82.55 29.24 79.54 82.88 28.74 87.69 88.88 18.96 88.45 88.17 13.29
GPT-2 md nucleus p=96 69.45 58.95 37.13 57.97 38.69 45.11 71.99 75.19 32.52 74.13 77.32 31.17 84.03 85.08 20.18 80.88 78.77 24.24
GPT-2 sm random 95.14 95.15 4.97 45.67 3.41 52.31 65.35 67.39 36.36 70.91 73.76 32.82 78.43 78.74 22.37 90.57 90.55 9.63
GPT-2 sm top k=40 53.54 20.61 48.07 91.63 91.81 10.13 79.40 82.88 29.10 79.89 83.22 28.60 86.80 87.98 19.24 94.86 95.06 8.49
GPT-2 sm nucleus p=96 76.64 71.38 30.52 58.57 40.09 44.70 74.90 78.33 31.08 77.11 80.44 29.78 81.31 82.09 21.19 92.86 93.00 8.82

Table 11: Performance of the detector based on BERT base for different training and testing combinations of
hyperparameters and domains.

Trained on → GPT-2 xl random GPT-2 xl top k=40 GPT-2 xl nucleus p=96 GPT-2 lg nucleus p=96 GPT-2 md nucleus p=96 GPT-2 sm nucleus p=96
Tested on ↓ Acc. F1 EER Acc. F1 EER Acc. F1 EER Acc. F1 EER Acc. F1 EER Acc. F1 EER

GPT-2 md covid random 70.20 65.88 33.88 64.06 52.88 40.46 77.37 78.00 24.09 76.92 74.54 27.32 62.79 47.61 41.90 64.58 49.26 40.91
GPT-2 md covid top k=40 52.58 31.96 48.40 77.26 74.58 27.49 83.18 84.51 21.71 84.45 84.16 16.77 69.26 60.34 36.72 58.80 35.63 44.89
GPT-2 md covid nucleus p=96 60.18 48.50 43.00 71.04 65.21 34.24 80.79 81.91 22.63 81.62 80.72 21.08 66.89 55.92 38.72 60.57 40.06 43.73
GPT-2 xl random 86.19 84.47 20.36 45.65 11.87 52.46 70.19 71.77 31.84 74.20 72.76 28.12 77.70 73.97 28.47 67.38 53.44 39.13
GPT-2 xl top k=40 51.63 11.07 49.15 91.94 92.53 13.82 81.62 84.29 26.41 88.03 88.97 17.51 86.45 85.65 17.22 67.57 53.84 38.98
GPT-2 xl nucleus p=96 59.51 34.98 44.58 71.74 67.80 32.54 79.32 81.97 27.35 84.69 85.45 18.57 82.18 80.23 23.12 65.64 49.71 40.43
GPT-2 lg random 90.90 90.28 13.70 45.27 10.70 52.67 73.84 76.05 29.88 79.56 79.57 20.48 84.52 83.26 19.99 74.40 66.79 33.27
GPT-2 lg top k=40 53.59 17.64 48.08 91.79 92.38 13.86 82.03 84.70 26.25 89.16 90.11 17.18 91.49 91.44 8.96 75.52 68.70 32.23
GPT-2 lg nucleus p=96 65.47 49.39 40.54 70.34 65.66 34.02 80.34 83.01 26.92 86.83 87.73 17.88 88.38 87.94 14.24 74.16 66.37 33.49
GPT-2 md random 96.21 96.17 4.72 43.01 3.46 53.84 75.34 77.73 29.14 82.71 83.25 19.26 92.64 92.68 7.87 84.65 82.42 22.36
GPT-2 md top k=40 57.69 30.01 45.71 91.51 92.10 13.92 81.83 84.50 26.33 88.90 89.85 17.26 94.26 94.38 7.62 80.33 76.30 27.36
GPT-2 md nucleus p=96 79.31 74.79 28.43 61.03 49.42 42.44 79.61 82.27 27.23 86.17 87.03 18.09 92.84 92.90 7.83 80.55 76.63 27.12
GPT-2 sm random 97.75 97.76 2.73 43.85 6.21 53.41 79.16 81.81 27.42 86.97 87.88 17.84 93.81 93.92 7.69 96.75 96.73 3.78
GPT-2 sm top k=40 76.05 69.61 31.70 91.22 91.81 13.99 82.23 84.89 26.17 89.57 90.52 17.06 95.14 95.29 7.50 97.52 97.52 2.67
GPT-2 sm nucleus p=96 90.50 89.81 14.31 62.75 52.71 41.05 81.09 83.77 26.62 88.45 89.40 17.39 93.84 93.95 7.68 96.81 96.79 3.66

Table 12: Performance of the detector based on BERT large for different training and testing combinations of
hyperparameters and domains.

Trained on → GPT-2 xl random GPT-2 xl top k=40 GPT-2 xl nucleus p=96 GPT-2 lg nucleus p=96 GPT-2 md nucleus p=96
Tested on ↓ Acc. F1 EER Acc. F1 EER Acc. F1 EER Acc. F1 EER Acc. F1 EER

GPT-2 md covid random 68.81 58.02 37.57 74.88 67.64 32.81 85.35 84.04 19.63 80.32 76.70 26.87 63.24 44.61 42.08
GPT-2 md covid top k=40 59.62 37.97 44.34 81.91 78.63 25.59 89.98 89.61 12.68 85.54 83.87 20.54 63.21 44.53 42.11
GPT-2 md covid nucleus p=96 64.08 48.37 41.25 79.80 75.53 27.91 89.15 88.65 14.02 85.03 83.22 21.20 64.40 47.26 41.27
GPT-2 xl random 96.50 96.42 5.51 62.83 42.56 42.48 94.19 94.17 6.15 94.79 94.64 7.58 93.27 92.88 11.00
GPT-2 xl top k=40 78.14 72.46 30.08 98.56 98.57 1.86 95.85 95.90 5.29 95.97 95.90 5.46 84.56 82.01 23.08
GPT-2 xl nucleus p=96 83.17 80.06 24.71 87.80 86.40 18.67 94.70 94.71 5.41 94.99 94.86 7.23 86.80 85.01 20.29
GPT-2 lg random 97.67 97.64 3.35 63.99 45.33 41.69 95.26 95.29 5.35 96.59 96.56 4.31 96.44 96.36 5.60
GPT-2 lg top k=40 90.95 90.18 14.58 98.74 98.75 1.86 96.69 96.76 5.20 98.08 98.09 2.40 95.08 94.89 7.99
GPT-2 lg nucleus p=96 91.86 91.26 13.22 89.93 89.03 15.69 96.02 96.08 5.27 97.40 97.40 2.77 94.96 94.76 8.20
GPT-2 md random 98.70 98.70 1.36 55.69 23.03 46.92 95.70 95.75 5.30 97.36 97.35 2.85 98.31 98.30 2.10
GPT-2 md top k=40 96.97 96.91 4.65 98.65 98.66 1.86 96.81 96.88 5.19 98.28 98.29 2.39 98.43 98.43 1.87
GPT-2 md nucleus p=96 97.61 97.58 3.46 84.64 82.25 22.72 96.04 96.10 5.27 97.83 97.84 2.41 98.27 98.26 2.18
GPT-2 sm random 98.91 98.91 1.24 59.31 33.50 44.76 95.83 95.88 5.29 97.80 97.80 2.41 98.58 98.58 1.57
GPT-2 sm top k=40 98.42 98.41 1.91 98.50 98.51 1.87 96.71 96.78 5.20 98.48 98.49 2.38 98.93 98.93 1.26
GPT-2 sm nucleus p=96 98.19 98.18 2.35 86.46 84.67 20.43 95.70 95.75 5.30 98.13 98.14 2.39 98.63 98.63 1.48

Table 13: Performance of the detector based on ELECTRA large for different training and testing combinations of
hyperparameters and domains.

1247

Trained on → GPT-2 xl random GPT-2 xl top k=40 GPT-2 xl nucleus p=96 GPT-2 lg nucleus p=96 GPT-2 md nucleus p=96 GPT-2 sm nucleus p=96
Tested on ↓ Acc. F1 EER Acc. F1 EER Acc. F1 EER Acc. F1 EER Acc. F1 EER Acc. F1 EER

GPT-2 md covid random 61.67 48.07 42.34 69.50 71.92 33.37 69.92 74.98 35.82 72.44 76.45 33.26 71.30 70.53 29.76 76.22 73.92 27.71
GPT-2 md covid top k=40 50.72 21.60 49.59 76.69 79.87 29.73 73.01 78.12 34.31 75.65 79.75 31.74 71.91 71.32 28.95 73.60 70.18 30.80
GPT-2 md covid nucleus p=96 55.18 33.43 46.86 73.73 76.72 31.13 71.42 76.53 35.07 74.13 78.21 32.44 71.97 71.41 28.86 75.95 73.55 28.04
GPT-2 xl random 79.00 75.31 27.67 40.67 27.80 56.88 56.02 60.96 45.20 61.31 64.44 40.38 72.96 71.47 29.21 70.55 65.31 34.22
GPT-2 xl top k=40 50.57 12.71 49.69 78.78 82.36 29.52 71.04 77.32 36.46 75.35 79.93 32.60 78.55 78.63 21.66 77.51 75.51 26.35
GPT-2 xl nucleus p=96 55.96 28.99 46.61 68.19 71.00 34.76 68.03 74.36 37.93 71.93 76.50 34.21 74.93 74.09 26.59 73.95 70.49 30.59
GPT-2 lg random 83.08 81.02 22.82 38.97 24.16 57.93 57.45 62.70 44.19 63.15 66.70 39.16 76.26 75.80 24.71 74.63 71.48 29.82
GPT-2 lg top k=40 51.53 15.84 49.17 78.85 82.43 29.50 71.29 77.56 36.34 75.88 80.45 32.37 82.05 82.72 20.25 81.69 80.93 20.64
GPT-2 lg nucleus p=96 59.28 37.68 44.52 67.38 70.04 35.24 68.56 74.89 37.66 73.08 77.67 33.65 78.65 78.75 21.62 78.22 76.47 25.44
GPT-2 md random 91.94 91.78 9.67 31.68 6.64 61.92 50.42 53.69 49.63 61.32 64.46 40.38 83.51 84.34 19.72 79.00 77.50 24.41
GPT-2 md top k=40 54.36 24.46 47.57 78.72 82.30 29.55 71.24 77.51 36.36 75.67 80.25 32.46 85.04 86.00 19.19 82.69 82.16 19.14
GPT-2 md nucleus p=96 70.46 61.40 36.08 57.88 57.62 42.22 64.73 70.94 39.68 70.30 74.79 35.03 83.72 84.57 19.64 80.41 79.32 22.48
GPT-2 sm random 93.68 93.66 6.55 33.47 11.26 61.02 57.99 63.35 43.82 66.90 71.07 36.88 84.77 85.71 19.28 88.47 88.79 13.58
GPT-2 sm top k=40 60.35 40.30 43.81 78.11 81.70 29.81 71.40 77.66 36.29 76.00 80.57 32.31 87.24 88.30 18.47 91.53 92.00 12.83
GPT-2 sm nucleus p=96 76.02 70.78 30.85 60.04 60.65 40.26 67.65 73.97 38.12 72.83 77.42 33.77 84.98 85.94 19.21 89.44 89.82 13.33

Table 14: Performance of the detector based on ELECTRA small for different training and testing combinations of
hyperparameters and domains.

Trained on → GPT-2 xl random GPT-2 xl top k=40 GPT-2 xl nucleus p=96 GPT-2 lg nucleus p=96 GPT-2 md nucleus p=96 GPT-2 sm nucleus p=96
Tested on ↓ Acc. F1 EER Acc. F1 EER Acc. F1 EER Acc. F1 EER Acc. F1 EER Acc. F1 EER

GPT-2 md covid random 78.58 76.33 25.99 54.06 17.68 47.84 71.86 63.04 35.20 79.00 75.03 27.99 64.68 48.89 40.93 56.05 25.64 46.67
GPT-2 md covid top k=40 55.38 33.70 46.74 58.78 31.89 45.09 72.27 63.78 34.84 78.53 74.33 28.50 57.68 31.83 45.63 54.01 19.40 47.84
GPT-2 md covid nucleus p=96 66.04 56.43 38.87 55.77 23.09 46.88 73.29 65.57 33.92 80.47 77.18 26.35 61.67 42.00 43.05 54.97 22.37 47.30
GPT-2 xl random 90.50 89.77 14.55 48.31 3.58 50.88 81.55 81.30 19.28 80.57 79.63 22.02 81.86 78.76 25.33 69.60 57.22 37.59
GPT-2 xl top k=40 53.60 17.11 48.09 97.28 97.35 5.04 90.58 91.25 14.82 91.43 91.93 13.16 87.62 86.42 18.02 61.50 38.85 43.39
GPT-2 xl nucleus p=96 62.76 42.83 42.48 62.41 44.48 42.46 88.70 89.32 15.32 88.79 89.18 13.81 84.53 82.44 22.11 63.05 42.72 42.37
GPT-2 lg random 94.68 94.52 7.80 48.34 3.69 50.86 85.47 85.83 16.26 86.07 86.19 14.55 89.36 88.55 15.52 80.04 75.51 28.07
GPT-2 lg top k=40 57.94 30.27 45.57 96.93 97.00 5.07 91.12 91.79 14.69 92.22 92.73 12.98 93.95 93.80 8.13 71.30 60.56 36.21
GPT-2 lg nucleus p=96 71.12 60.71 36.20 62.43 44.53 42.45 89.88 90.54 15.01 90.69 91.17 13.34 91.87 91.48 11.64 74.00 65.54 33.90
GPT-2 md random 97.70 97.70 2.38 47.73 1.43 51.17 87.98 88.56 15.52 88.48 88.85 13.89 95.25 95.19 5.80 89.66 88.65 16.32
GPT-2 md top k=40 68.01 54.55 38.69 96.22 96.28 5.14 91.08 91.75 14.70 92.25 92.76 12.97 96.95 96.97 3.52 80.00 75.45 28.11
GPT-2 md nucleus p=96 86.73 85.11 19.84 57.96 33.54 45.41 90.11 90.78 14.94 90.92 91.41 13.28 95.83 95.80 4.72 85.26 83.00 22.14
GPT-2 sm random 98.36 98.37 2.35 48.14 2.96 50.96 90.05 90.71 14.96 91.32 91.82 13.19 97.08 97.10 3.52 98.66 98.66 1.46
GPT-2 sm top k=40 93.91 93.68 9.12 96.62 96.68 5.10 91.38 92.05 14.62 92.49 93.00 12.92 97.92 97.95 3.46 98.77 98.77 1.45
GPT-2 sm nucleus p=96 96.18 96.12 5.11 59.66 37.90 44.32 90.89 91.56 14.74 92.05 92.56 13.02 97.18 97.20 3.51 98.59 98.59 1.46

Table 15: Performance of the detector based on ROBERTA base for different training and testing combinations of
hyperparameters and domains.

Trained on → GPT-2 xl random GPT-2 xl top k=40 GPT-2 xl nucleus p=96 GPT-2 lg nucleus p=96 GPT-2 md nucleus p=96 GPT-2 sm nucleus p=96
Tested on ↓ Acc. F1 EER Acc. F1 EER Acc. F1 EER Acc. F1 EER Acc. F1 EER Acc. F1 EER

GPT-2 md covid random 67.61 55.48 38.60 73.73 65.14 34.10 68.16 55.01 38.54 71.71 62.05 35.62 58.31 31.94 45.32 52.76 14.26 48.55
GPT-2 md covid top k=40 61.76 42.84 42.93 83.41 80.50 24.28 79.13 74.47 28.66 79.50 75.10 28.20 58.39 32.17 45.27 51.91 11.34 49.00
GPT-2 md covid nucleus p=96 64.45 48.92 41.01 78.98 73.93 29.12 75.87 69.25 31.91 77.51 72.01 30.25 58.73 33.08 45.06 52.02 11.75 48.94
GPT-2 xl random 96.66 96.59 5.29 58.94 35.66 44.81 94.78 94.77 5.43 94.16 94.02 7.80 93.02 92.58 11.53 76.34 69.19 32.01
GPT-2 xl top k=40 75.97 68.84 32.18 96.93 96.98 4.71 96.51 96.56 4.84 96.08 96.06 4.29 86.18 84.16 21.18 58.12 28.51 45.56
GPT-2 xl nucleus p=96 81.77 78.02 26.32 86.04 84.65 19.50 95.91 95.95 4.89 95.40 95.35 5.56 86.92 85.13 20.24 62.71 40.97 42.68
GPT-2 lg random 98.15 98.14 2.51 60.45 39.46 43.83 96.32 96.37 4.85 96.74 96.75 3.50 97.17 97.12 4.44 89.15 87.89 17.59
GPT-2 lg top k=40 88.63 87.34 17.92 97.25 97.31 4.68 97.23 97.29 4.77 97.66 97.69 3.44 95.86 95.73 6.80 70.98 59.38 36.65
GPT-2 lg nucleus p=96 91.82 91.20 13.33 87.81 86.85 17.01 96.95 97.01 4.79 97.39 97.41 3.46 95.95 95.83 6.64 77.18 70.61 31.22
GPT-2 md random 99.04 99.04 1.16 52.59 17.50 48.60 96.86 96.92 4.80 97.27 97.29 3.47 98.88 98.88 1.18 96.73 96.64 5.76
GPT-2 md top k=40 96.34 96.25 5.87 97.25 97.31 4.68 97.32 97.38 4.76 97.93 97.96 3.42 98.66 98.66 1.61 86.08 83.91 21.57
GPT-2 md nucleus p=96 97.66 97.63 3.44 80.76 77.53 26.10 97.15 97.21 4.78 97.68 97.71 3.44 98.79 98.79 1.36 92.57 92.01 12.64
GPT-2 sm random 99.18 99.18 1.15 55.68 26.82 46.82 97.17 97.23 4.77 97.75 97.78 3.43 99.18 99.18 1.05 99.52 99.52 0.50
GPT-2 sm top k=40 98.88 98.88 1.16 97.23 97.29 4.68 97.45 97.51 4.75 98.06 98.09 3.41 99.26 99.26 1.05 99.51 99.51 0.52
GPT-2 sm nucleus p=96 98.75 98.75 1.34 83.93 81.91 22.27 97.27 97.33 4.77 97.95 97.98 3.42 99.14 99.14 1.06 99.49 99.49 0.56

Table 16: Performance of the detector based on ROBERTA large for different training and testing combinations of
hyperparameters and domains.

GPT-2 sm covid nucleus p=96 GPT-2 md covid nucleus p=96 GPT-2 lg covid nucleus p=96 GPT-2 xl covid nucleus p=96 GPT-Neo covid nucleus p=96

Roberta lg Acc. 91.69 75.87 90.52 68.95 79.16
Roberta lg F1 91.26 69.25 89.85 56.70 74.64
Roberta lg EER 12.35 31.91 14.35 37.92 28.57
Electra lg Acc. 95.24 89.15 94.38 78.56 74.27
Electra lg F1 95.33 88.65 94.43 74.72 68.23
Electra lg EER 5.98 14.02 6.10 28.06 32.44

Table 17: Performance of detectors trained on the Webtext domain with examples of GPT-2 xl and tested on the
COVID domain.

1248

Detector Trained on Acc. F1 EER

Roberta lg GPT-2 xl random 58.64 30.86 45.21
Roberta lg GPT-2 xl top k=40 59.86 38.02 44.22
Roberta lg GPT-2 xl nucleus p=0.96 64.82 49.61 40.76
Roberta base GPT-2 xl random 58.30 31.28 45.35
Roberta base GPT-2 xl top k=40 54.97 25.29 47.23
Roberta base GPT-2 xl nucleus p=0.96 63.55 54.80 40.23
Bert lg GPT-2 xl random 57.95 30.74 45.55
Bert lg GPT-2 xl top k=40 58.18 43.64 44.60
Bert base GPT-2 xl random 59.28 36.63 44.59
Bert base GPT-2 xl top k=40 55.85 33.54 46.50
Electra lg GPT-2 xl random 57.00 26.17 46.19
Electra lg GPT-2 xl top k=40 57.29 27.82 45.99
Electra sm GPT-2 xl random 57.10 32.08 45.91
Electra sm GPT-2 xl top k=40 55.23 53.71 45.09
Albert GPT-2 xl random 60.76 51.50 42.21
Albert GPT-2 xl top k=40 55.45 26.45 46.95

Table 18: Performance of various detectors trained on GPT-2 outputs and tested on GPT-3 with nucleus sampling
p = 0.96

Tested on Acc. F1 EER

GPT-3 Davinci nucleus p=96 92.83 93.09 10.19
GPT-2 md covid random 54.35 67.35 47.58
GPT-2 md covid top k=40 52.59 65.67 48.53
GPT-2 md covid nucleus p=96 52.66 65.73 48.49
GPT-2 xl random 58.93 41.24 44.43
GPT-2 xl top k=40 56.03 34.36 46.37
GPT-2 xl nucleus p=96 52.55 25.29 48.53
GPT-2 lg random 61.69 47.27 42.44
GPT-2 lg top k=40 57.30 37.45 45.53
GPT-2 lg nucleus p=96 52.92 26.30 48.30
GPT-2 md random 78.78 76.35 26.12
GPT-2 md top k=40 61.48 46.82 42.60
GPT-2 md nucleus p=96 61.94 47.79 42.26
GPT-2 sm random 77.66 74.79 27.47
GPT-2 sm top k=40 61.81 47.52 42.35
GPT-2 sm nucleus p=96 62.88 49.73 41.54

Table 19: Performance of Roberta lg detector trained on outputs of GPT-3 with nucleus sampling and tested on
outputs of GPT-2 xl.

1249

Figure 2: Saliency map of the input text using SHAP. The most salient tokens according to SHAP are the punctuation
tokens.

