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Abstract

Domain-specific documents cover terminolo-
gies and specialized knowledge. This has been
the main challenge of domain-specific docu-
ment retrieval systems. Previous approaches
propose domain-adaptation and transfer learn-
ing methods to alleviate this problem. How-
ever, these approaches still follow the same
document representation method in previous
approaches; a document is embedded into a sin-
gle vector. In this study, we propose VKGDR.
VKGDR represents a given corpus into a graph
of entities and their relations (known as a vir-
tual knowledge graph) and computes the rele-
vance between queries and documents based
on the graph representation. We conduct three
experiments 1) domain-specific document re-
trieval, 2) comparison of our virtual knowledge
graph construction method with previous ap-
proaches, and 3) ablation study on each com-
ponent of our virtual knowledge graph. From
the results, we see that unsupervised VKGDR
outperforms baselines in a zero-shot setting and
even outperforms fully-supervised bi-encoder.
We also verify that our virtual knowledge graph
construction method results in better retrieval
performance than previous approaches. 1

1 Introduction

In domain-specific QA, building retrievers is chal-
lenging since queries and documents in a specific
domain cover terminologies and specialized knowl-
edge, which are not well covered in general doc-
uments. (Zhang et al., 2020; Ma et al., 2021; Yu
et al., 2020, 2021). Another problem is the diffi-
culty in building datasets for training retrievers.
This problem comes from 1) the complexity of
knowledge treated in the documents, and 2) costly
dataset maintenance; recall that domain-specific
documents are frequently updated (e.g., software

*This work was done during an internship at Adobe Re-
search.

1We provide the implementation of VKGDR at https:
//github.com/yeonsw/VKGDR

manuals are updated whenever there is a version
update) (Castelli et al., 2020; Nandy et al., 2021;
Voorhees et al., 2021; Maia et al., 2018).

Recent domain-specific document retrieval stud-
ies propose domain-adaptation and transfer learn-
ing methods (Thakur et al., 2021; Ma et al., 2021;
Beltagy et al., 2019; Gururangan et al., 2020;
Chalkidis et al., 2020). However, these methods
still use the conventional document representation
method, embedding a document into a single vec-
tor. This is problematic because a single vector
is insufficient to cover complex knowledge in a
domain-specific document. Semi-structured knowl-
edge representation methods effectively address
this problem, but they have only been applied to
open-domain documents. (Dhingra et al., 2020; Sun
et al., 2021; Zhang et al., 2018; Sun et al., 2018;
Yasunaga et al., 2021; Talmor and Berant, 2018).

In this paper, we propose an automatic virtual
knowledge graph construction method for zero-
shot domain-specific document retrieval. A virtual
knowledge graph (VKG) is a graph representation
of a corpus that consists of entities and their re-
lations. In VKG, the relations are represented by
relation vectors (Dhingra et al., 2020; Sun et al.,
2021). This semi-structured representation enables
explicit reasoning over the corpus. We apply this
framework to domain-specific document retrieval.
One of the key components of the VKG construc-
tion method is a relation encoder, which computes
relation vectors of two entities. This study shows
that previous supervision methods for relation en-
coders are insufficient for domain-specific docu-
ments, and we propose a novel distant-supervision
method.

We validate VKGDR in three types of experi-
ments. First, we conduct zero-shot domain-specific
document retrieval on two domain-specific QA
datasets: TechQA (Castelli et al., 2020) and Photo-
shopQuiA (Dulceanu et al., 2018). The results show
that VKGDR outperforms domain-adaptation and

https://github.com/yeonsw/VKGDR
https://github.com/yeonsw/VKGDR
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transfer learning methods. From this experiment,
we also verify that unsupervised VKGDR outper-
forms a fully-supervised dense retriever. Second,
we show that our distant-supervision method for
training the relation encoder outperforms previous
approaches. In this experiment, we construct VKGs
with our relation encoders and baselines’ encoders.
Then, we measure the retrieval performance of each
VKG. Third, we conduct an ablation study on two
main components of a VKG, graph representation
of a corpus and relation vectors. The results show
that each component increases the retrieval perfor-
mance of VKGDR by a large margin.

2 Related Work

A virtual knowledge graph is a graph representa-
tion of a corpus that consists of entities and their
relations. The relations of entities are represented
by relation vectors. Dhingra et al. (2020) propose a
differentiable VKG for multi-hop QA. Their VKG
is trained by the end-to-end supervision method on
question-answer pairs. Sun et al. (2021) use VKG
for knowledge graph QA. They apply relation en-
coders used in relation extraction studies to VKG
construction and follow distant-supervision pro-
posed by Soares et al. (2019). Our work provides
a novel distant-supervision method for building a
virtual knowledge graph for domain-specific doc-
uments. In section 5.1, we compare our methods
with Sun et al. (2021) to validate the efficacy of our
method.

Domain-specific documents cover complex
knowledge and require advanced representation
methods. Previous approaches in domain-specific
document retrieval focus on a document encoder
training method and data scarcity problem but still
follow conventional document representation meth-
ods. Ma et al. (2021); Liang et al. (2020) augment
domain-specific question-answer pairs from an ex-
ternal corpus and train their encoders on the dataset.
Yu et al. (2020); Zhang et al. (2020) provide a
pre-training method on domain-specific documents.
We propose a novel virtual knowledge graph con-
struction method and apply our method to domain-
specific document retrieval.

3 Method

We propose a novel domain-specific document re-
trieval method, VKGDR, based on a virtual knowl-
edge graph (VKG). VKGDR consists of two mod-
ules: a VKG construction module and a document

retrieval module. A VKG is a graph representation
of a given corpus that connects mentions with di-
rected edges, and each directed edge has a relation
vector. (Dhingra et al., 2020; Sun et al., 2021). The
document retrieval module computes the similarity
between queries and documents with the mention
pairs and their relation vectors. We describe nota-
tions and details of each module in the following
sections.

3.1 Notations
In this section, we define notations and terms used
in our paper and VKG research (Dhingra et al.,
2020). VKGDR takes a corpus and outputs a vir-
tual knowledge graph. The corpus, C is a set of
documents; C := {d1, ..., dn}. A document is de-
fined as a sequence of tokens; dk := [d1k, ..., d

Lk
k ],

where djk is the j’th token of document dk and Lk

is the number of tokens in document dk. VKGDR’s
entity extractor builds a set of entities 2, E and a
set of mentions, M. The definition of an entity is
a named entity in the corpus, C, and the definition
of mention is a text segment in the corpus, C, that
corresponds to an entity in E . Formally, the men-
tion is defined as mi = {dk, a, b, ej}; the mention
mi is a text segment starting from index a and end
at index b in document dk, which corresponds to
entity ej . Figure 1 shows the difference between
mentions and entities. In the figure, the highlighted
text segments are the mentions, and there are mul-
tiple mentions for each entity. For instance, entity
“TRC 5011" appears multiple times in this docu-
ment, and each text segment that refers to entity
“TRC5011" is a mention of the entity.

3.2 Virtual Knowledge Graph
A virtual knowledge graph is a directed graph con-
sisting of mentions and their relations. The rela-
tions are represented by relation vectors (Dhingra
et al., 2020). Formally, we define an edge of the
VKG as follows:

(ma,mb, r⃗j).

This represents that there exists an edge directed
from mention ma to mb, and r⃗j is the relation vec-
tor of the mention pair. Mention ma is called the
head, and mb is called the tail. VKGDR constructs
a virtual knowledge graph with the following steps:
1) connecting all relevant mentions and 2) com-
puting relation vectors of edges. In our study, we

2We use the NER model provided by spaCy.
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Mention of entity ``TRC 5011”

TRC 5011 ; PRC 3399 UF UV Connect:Express TECHNOTE (TROUBLESHOOTING)

PROBLEM(ABSTRACT)
error TRC 5011 , PRC 3399 when importing files with formats UF and UV 

CAUSE
The received file is a text file Unix...

Conclusion:
TF 339 in the transfer cannot pass until the file will not contain that same length 
records…

ENVIRONMENT
IBM SterlingConnect:Express for Unix 1.5 (CX)

RESOLVING THE PROBLEM
TF is the right format as long as the file contains only…

Title: IBM error TRC 5011 , PRC 3399 when importing files with formats UF and UV

Figure 1: An example document of the TechQA dataset
and mentions in the document. Orange and green high-
lights are the mentions. Mention is a text segment that
refers to a certain entity. For example, entity “TRC 5011”
appears multiple times in this document and each text
segment that refers to “TRC 5011” is a mention of entity
“TRC 5011”.

assume two mentions are relevant if they appeared
in the same document and connect the two men-
tions with directed edges in both directions. Thus,
for a given document with n mentions, there are n2

combinations of mention pairs and n2 more men-
tions pairs since we connect mentions with directed
edges in both directions.

3.3 Relation Embedding
Relation encoders compute relation vectors of men-
tion pairs connected in a virtual knowledge graph.
Relation encoders aim to embed mention pairs into
a similar vector space if they are in similar relation.
Previous approaches distantly-supervise relation
encoders since training data is often unavailable.
One of the previous approaches assumes that men-
tion pairs referring to the same entity-pair have
the same relation (Sun et al., 2021), and they train
their relation encoder to maximize the similarity
of these similar mention pairs. In this study, we
propose a novel distant-supervision method for
domain-specific documents.

Model Architecture: VKGDR’s relation en-
coder (RE) takes a mention pair and computes the
relation vector.

r⃗i,j = RE(mi = {dk, a, b, eu},mj = {dk, c, d, ev})

In previous relation embedding studies, relation
encoders take preprocessed mention pairs as an in-
put. The preprocessing steps are: 1) adding special
tokens to the head and the tail mentions to indi-
cate their direction and 2) masking the mentions
(Mintz et al., 2009; Soares et al., 2019; Sun et al.,

Document 𝑑"

(𝑚$ =	(𝑑" , 3, 3, “TRC 5011”), 𝑚' =	(𝑑" , 9, 9, “UF” ))

Content:
Index: 0 … 3 … 8 9

�⃗�

Relation Encoder

[CLS], …, [TRC 5011], …, [formats] [UF]

[CLS], …, [ENT] [H], …, [formats] [ENT] [T]

Figure 2: The inference process of the relation encoder
of VKGDR. Two mentions are given to the relation en-
coder. Mention, mi and mj are text spans in document
dk located from index 3 to 3 and index 9 to 9. We mask
mention tokens with [ENT] and indicate the head and
the tail with [H] and [T]. The relation encoder takes this
input and computes a relation vector of the two men-
tions.

2021). Our relation embedding method is based on
the previous approaches and proceeds following
steps on mention pairs. For a given mention pair,
(mi = (dk, a, b, eu),mj = (dk, c, d, ev)), we rep-
resent the two mentions in document dk as follows:

(mi,mj) = [d1k, ..., eueueu, ..., evevev, ..., d
Lk
k ].

ev and eu are the tokens in document dk corre-
sponding to the two mentions. Next, we put special
tokens, [H] and [T], to the mentions as follows:

[d1k, ...eu, [H]eu, [H]eu, [H], ..., ev, [T]ev, [T]ev, [T], ..., dLk
k ].

Now, the above sequence of tokens represents
the direction between the two mentions; without
the special tokens, the relation encoder predicts
the same relation vector for the opposite input,
(mj ,mi). Mention masking enables the relation
encoder to compute the relation vector based on
the context of the mention pairs, not based on their
textual representation. We mask the mentions as
follows:

[d1k, ..., [ENT], [H][ENT], [H][ENT], [H], ..., [ENT], [T][ENT], [T][ENT], [T], ..., dLk
k ].

Figure 2 shows the input preprocessing step and the
relation vector computation step. In this example,
the green token is the head, and the red token is
the tail. The head and tail tokens are inserted into
the document, and the entities are masked with the
special token. The relation encoder takes the whole
sequence of tokens and computes contextualized
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Corpus VKG

docdoc

Corpus

query

docdoc docdoc

Top-k docs

BM25

Document VKGs

Extracting
relevant 

nodes and edges

Query VKG

Relation 
embedding

Figure 3: The document retrieval process of VKGDR. First, VKGDR pre-indexes the corpus VKG. Second, we
extract relevant nodes and edges from the VKG for a given query since comparing the query with the entire VKG is
computationally inefficient. Third, VKGDR transforms the query to a query VKG with the same VKG construction
method used for the corpus VKG. Finally, we compare the two VKGs and compute their similarity. In the right part
of this figure, we use a color-coding method to indicate the relation vectors that share the same entity pairs.

vector representations of the head and tail tokens.
Then, we compute the relation vector from the two
vectors with an additional MLP layer.

Training Process: This study proposes a novel
distant-supervision method for building a virtual
knowledge graph from domain-specific documents.
Distant-supervision methods in previous relation
embedding approaches proceed following steps: 1)
heuristically annotate mention pairs in the same re-
lation and 2) train the relation encoder to maximize
the similarity between mention pairs in the same
relation.

We propose a novel distant-supervision method
for domain-specific documents. One of the previ-
ous approaches assumes mention pairs are in the
same relation if they share the same entity pair
(Soares et al., 2019; Sun et al., 2021). In domain-
specific QA, mention pairs are often in different
relations, and the relation varies depending on the
context of the document. With the previous assump-
tion, relation encoders predict similar relation vec-
tors for mention pairs with the same entity pair
even they are in different relations. We assume that
the context of mention pairs is more important than
the entities they refer to. In our approach, mention-
pairs are in the same relation if they appeared in
the same document. Formally, we train our relation
encoder with the following method. For a given
mention-pair, p = (mi,mj), the positive sample
(p+) is a mention pair appeared in the same docu-
ment, and the negative sample is mention pair in
the different document. The loss function of our

relation encoder is as follows:

L(p, p+, p−1 ,..., p
−
#neg) =

− log(
esim(p,p+)

esim(p,p+) +
∑#neg

i=1 esim(p,p−i )
),

(1)

where sim function is the dot product of the two
relation vectors; sim(p1, p2) = r⃗ ⊺

p1 r⃗p2 .

3.4 Document Retrieval Process
VKGDR uses a virtual knowledge graph to find the
document most relevant to a given query. The doc-
ument retrieval process of VKGDR follows four
steps: 1) selecting top-k relevant documents with
BM25, 2) extracting mention pairs appeared in the
top-k documents and their relation vectors from
the VKG, 3) constructing a VKG of a given query,
and 4) finding the most relevant document by com-
paring the document VKGs and the VKG of the
input query. In the first step, we select top-k doc-
uments relevant to the query. This is because our
VKG consists of a huge number of mention pairs;
comparison between the query and the VKG is
computationally costly. Then, we construct docu-
ment VKGs. A document VKG is a graph of men-
tion pairs that appeared in the document. Since
we retrieved top-k documents, we get k number of
document VKGs. In the third step, we transform
the query to a VKG; queries cannot be directly
compared with document VKGs since they are in
textual form. In this step, we use the same relation
encoder used for computing the VKG of the given
corpus. In the last step, VKGDR finds the most
relevant document by comparing the query VKG
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and the document VKGs. We describe the details
of this VKG comparison process in the following
section. Figure 3 shows an overall illustration of
VKGDR.

Comparing two VKGs: The query VKG and the
document VKG consist of several mention pairs as
follows:

VKGq = {(mh,mt, r⃗)i}ki=1

VKGd = {(mh,mt, r⃗)i}ni=1,

where VKGq is the query VKG and VKGd is the
document VKG. VKGDR computes the similarity
between two VKGs with the following equation:

similarity(q, d) =∑
(mq

h,m
q
t ,r⃗

q)∈KTq
(md

h,m
d
t ,r⃗

d)∈KTd

1((md
h,m

d
t ) = (mq

h,m
q
t ))r⃗

q ⊺r⃗ d,

where 1 is an indicator function that maps true
condition to one and zero for false condition.

4 Experimental Setup

We validate domain-specific document retrieval
performance of VKGDR in three experimental set-
tings. In the first experiment, we evaluate VKGDR
and baselines in a zero-shot setting. The zero-
shot setting emulates the real-world problem of
domain-specific document retrieval; training data
is insufficient or absent. Additionally, we conduct
the same experiment in a fully-supervised setting
and show the efficacy of VKGDR. In the sec-
ond experiment, we verify the efficacy of our pro-
posed distant-supervision method by comparing
our method with previous methods. We construct
three VKGs with relation encoders trained with
three different distant-supervision methods. The
third experiment is an ablation study that evaluates
each component in VKGDR. A virtual knowledge
graph consists of two main components: 1) graph
representation of a given corpus and 2) relation
vectors of mention pairs. In this experiment, we
evaluate 1) VKGDR without graph representation
and 2) VKGDR without relation vectors and show
the efficacy of each component. All experiments
are conducted on two domain-specific QA datasets,
TechQA and PhotoshopQuiA, and evaluated with
document retrieval metrics, R@K and MRR. We
describe details of the datasets and baselines in the
following sections and describe evaluation metrics
and hyper-parameter settings in Appendix A.1.

Train Dev Test

TechQA 600 310 490
PhotoshopQuiA 2001 571 284

Table 1: The number of instances in the TechQA dataset
and the PhotoshopQuiA dataset.

4.1 Datasets
TechQA: TechQA is a question answering
dataset in the domain of IT support (Castelli et al.,
2020). The questions ask about IBM products
and applications running in computational envi-
ronments supported by IBM. This dataset pro-
vides question-answer pairs and 800,000 technical
notes that provide descriptions of IBM’s products.
Each question is annotated with 50 documents re-
trieved by BM25, and one of the 50 documents is
the ground truth document. Thus, the task of this
dataset is to find the correct document among the
50 documents. The numbers of question-answer
pairs of TechQA is 1,400. Table 1 shows the de-
tailed statistics of the TechQA dataset.

PhotoshopQuiA: PhotoshopQuiA is a non-
factoid question-answering dataset on Adobe Pho-
toshop (Dulceanu et al., 2018). The questions and
answers are users’ questions and answers from sev-
eral web forums related to Adobe Photoshop. This
dataset provides question-answer pairs but not the
corpus. So, we have built a corpus with all answer
text in this dataset and built question-document
pairs as TechQA; each question is annotated with
50 documents retrieved by BM25, and the 50 docu-
ments contain the ground truth document. Table 1
shows the detailed statistics of the PhotoshopQuiA
dataset.

4.2 Baselines
There are two types of document retrievers: lex-
ical retrievers and dense retrievers. We compare
VKGDR with a lexical retriever and three dense
retrievers.

Lexical Retriever: We use BM25 as the lexical
retriever. BM25 has a better or similar performance
than dense retrievers when training data is insuffi-
cient and the questions are domain-specific (Thakur
et al., 2021). Thus, BM25 is a strong baseline in
our problem setting.

Dense retriever: DPR is a dense retriever for
open-domain QA (Karpukhin et al., 2020). We use
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DPR trained on NaturalQuestions (Kwiatkowski
et al., 2019), an open-domain QA dataset. Domain-
adaptation (Adapt) is another approach for training
dense retrievers in a zero-shot setting. We pre-train
BERT-large (Devlin et al., 2019) on the corpus of
each dataset and compare with VKGDR. We use a
CLS vector of BERT-large for document represen-
tation. The performance of fully-supervised models
provides an approximation of the performance of
unsupervised models. We train a bi-encoder with
the same supervision method used in DPR on the
question-answer pairs of each dataset and compare
this model (“DPR*”) with VKGDR. The encoder
of DPR* is initialized with RoBERTa-large (Liu
et al., 2019).

5 Results

In this section, we verify the efficacy of VKGDR
with the experiments described in the previous sec-
tion. The experimental results demonstrate three
findings. First, VKGDR outperforms baselines in
a zero-shot setting and a fully-supervised setting.
Furthermore, VKGDR without fine-tuning outper-
forms a fully-supervised bi-encoder. Second, our
distant-supervision method for the relation encoder
outperforms the previous method. Third, the two
main components of VKGDR, graph representa-
tion of a corpus and relation vectors, are essential
to achieve the zero-shot performance of VKGDR.
We describe details of the experimental results in
the following sections.

5.1 Zero-Shot Domain-Specific Document
Retrieval

Table 2 and Figure 4 show zero-shot domain-
specific document retrieval performance of
VKGDR and baselines. These experiments sup-
port the following findings: 1) constructing a VKG
is more effective than transfer learning methods
when training data is unavailable, and 2) our distant-
supervision method for the relation encoder outper-
forms the previous method. We describe details of
experimental results in the following paragraphs.

Efficacy of VKG in a Zero-Shot Setting: Table
2 shows the performance of three types of models.
The first column indicates the type of each model.
Type “L” represents lexical retrievers, type “D” rep-
resents dense retrievers, and type “D+L” represents
ensemble models of type “D” and type “L.” The en-
semble models compute a similarity score of each

Type Model S
TechQA

R@1 R@5 MRR

L BM25 ✗ 43.7 63.7 54.2

D
Adapt ✗ 5.0 11.8 12.1
DPR ✗ 16.8 40.6 28.6
VKGDR ✗ 39.3 63.7 50.2

D+L
Adapt ✗ 9.3 28.7 34.5
DPR ✗ 28.7 55.6 47.2
VKGDR ✗ 44.3 68.7 55.8

D DPR* ✓ 36.8 73.1 52.3

Table 2: The zero-shot domain-specific document re-
trieval performance of VKGDR and baselines on
TechQA. In the first column, “L” represents that the
model type is a lexical retriever. “D” represents dense
retrievers. “D+L” is an ensemble model of a dense
model and BM25. The “S” column indicates whether
each model is trained on the question-document pairs
of TechQA. The results show that VKGDR outperforms
baselines of the same model type and even outperforms
the fully-supervised model in R@1 and MRR.

document with the following formula:

Score(di) = −(RankDense(di)+λ·RankBM25(di)),

where RankDense(di) and RankBM25(di) are ranks
of document di predicted by a dense retriever and
BM25. λ is a weight for BM25, and we set λ to 1.0.
The column “S” in Table 2 (“S” stands for supervi-
sion) indicates whether each model is a zero-shot
model or a fully-supervised model. “✗” represents
that the model is an unsupervised model, and “✓”
represents the model is trained on the question-
document pairs of the TechQA train set.

The results of type “D” models show that VKG
construction brings better retrieval performance
than other approaches. We show that the domain-
adaptation method (Adapt) significantly underper-
forms than VKGDR by 34.3%p in R@1. Train-
ing retrievers on data in another domain (DPR)
results in 22.5%p lower performance than VKGDR
in R@1. From these results, we show the efficacy
of constructing a VKG.

From previous literature, we see that BM25
outperforms dense retrievers when insufficient
question-document pairs are provided and when
the questions are domain-specific (Ma et al., 2021;
Thakur et al., 2021). The results of BM25 in Ta-
ble 2 are aligned with previous research on docu-
ment retrievers; BM25 outperforms dense retriev-
ers (“D” models) in Table 2. We combine BM25
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Figure 4: The zero-shot domain-specific document re-
trieval performance of VKGDR in three different rela-
tion encoder distant-supervision methods. SameEnt is
the previous method that assumes two mention pairs
have the same relation if the mention pairs share the
same entity pair. SameDoc is our proposed supervi-
sion. Multi-task is multi-task learning of SameEnt and
SameDoc. The results show the efficacy of our distant-
supervision method.

and dense retrievers (type “D+L”) to improve the
retrieval performance in a zero-shot setting. As a
result, VKGDR achieves 5%p higher retrieval per-
formance, 44.3 R@1, and this outperforms other
baselines, including BM25.

VKG construction enables unsupervised retriev-
ers to overcome a fully-supervised bi-encoder. We
report the performance of a bi-encoder trained on
question-document pairs of TechQA in Table 2
(DPR*). We see that only type “D” VKGDR out-
performs DPR* in R@1 and MRR. These results
support that the VKG is a key component in achiev-
ing a better performance than a fully-supervised
model when training data is unavailable.

VKGDR outperforms previous approaches in
building a VKG: Figure 4 shows the zero-shot
document retrieval performance of three different
VKG construction methods on TechQA. The three
methods are “SameEnt”, “SameDoc”, and “Multi-
task.” The relation encoder in each method uses a
different distant-supervision. “SameEnt” assumes
that mention pairs sharing the same entity pair
have the same relation (Sun et al., 2021). “Same-
Doc” is our distant-supervision method. We con-
duct multi-task learning of “SameEnt” and “Same-
Doc” (“Multi-task”). Multi-task learning combines
multiple object functions and achieves better per-
formance than the models trained by only one of
the object functions.

Type Model S
PhotoshopQuiA

R@1 R@5 MRR

L BM25 ✗ 4.9 10.5 8.8

D
Adapt ✗ 2.1 14.4 11.1
DPR ✗ 9.1 26.7 19.9
VKGDR ✗ 22.5 45.0 33.3

D+L
Adapt ✗ 1.4 11.6 9.8
DPR ✗ 6.3 16.9 14.1
VKGDR ✗ 8.8 15.8 12.9

D DPR* ✓ 12.3 36.2 24.5

Table 3: The zero-shot domain-specific document re-
trieval performance of VKGDR and baselines on Pho-
toshopQuiA. This table shares the symbols used in the
first column and the meaning of the “S” column with
Table 2. The results show that VKGDR outperforms
baselines in a zero-shot setting and even outperforms
the fully-supervised model.

Figure 4 shows that our distant-supervision,
“SameDoc”, outperforms the previous approach,
“SameEnt”. Also, we see that the performance of
“SameEnt” increases when “SameEnt” is jointly
trained with our distant-supervision. However, the
performance of “SameDoc” decreases in this multi-
task setting. This result indicates that the previous
approach and our method are not complementary
in the multi-task setting. From these results, we
show that the context of mention pairs provides a
better supervision signal than the textual form of
mention pairs (entities of the mentions).

5.2 Zero-Shot Domain-Specific Answer
Retrieval

Table 3 shows the zero-shot answer retrieval per-
formance of VKGDR and baselines on Photo-
shopQuiA. Type “D” retrievers show similar re-
sults as Table 2; VKGDR outperforms other type
“D” baselines. VKGDR also outperforms the fully-
supervised bi-encoder, DPR*. These results show
that using a VKG brings better answer retrieval per-
formance than the domain-adaptation method and
the transfer learning method when training data is
unavailable.

In Table 3, we show the performance of BM25
and dense retrievers ensembled with BM25. The
lexical retriever underperforms dense retrievers on
PhotoshopQuiA, whereas BM25 is a strong base-
line on TechQA. Also, using lexical matching de-
generates the overall retrieval performance of dense
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Model
TechQA

R@1 R@5 MRR

DPR* 36.8 73.1 52.3
VKGDR 48.7 76.8 60.1

Model
PhotoshopQuiA

R@1 R@5 MRR

DPR* 12.3 36.2 24.5
VKGDR 25.3 52.1 38.1

Table 4: The document retrieval performance of
VKGDR and DPR supervised on question-document
pairs of TechQA and PhotoshopQuiA.

retrievers. This is because of the inconsistent use
of terminologies between the corpus and the ques-
tions. The corpus of PhotoshopQuiA consists of
answers written by users, not the official manual of
the product, and this makes PhotoshopQuiA more
difficult than TechQA.

5.3 Fully-Supervised Domain-Specific
Document Retrievers

Fully-supervised VKGDR outperforms the fully-
supervised bi-encoder (DPR*). Table 4 shows
the retrieval performance of VKGDR trained on
question-document pairs of TechQA and Photo-
shopQuiA. We train the relation encoder with
the following assumption: mentions pairs that ap-
peared in the same question-document pair are in
similar relation. The fully-supervised relation en-
coder is then used to compute the relation vec-
tors of the VKG, and VKGDR uses the new
VKG for document retrieval. The relation en-
coder trained on question-document pairs increase
the retrieval performance of VKGDR; R@1 of
VKGDR in Table 4 are 4.4%p and 2.8%p higher
than the R@1 of VKGDR in Table 2 and 3.
Also, fully-supervised VKGDR significantly out-
performs DPR* by 11.9%p and 13.0%p in R@1 on
TechQA and PhtoshopQuiA, respectively; we see
the same pattern in other evaluation metrics.

5.4 Ablation Study

VKG consists of two components: graph repre-
sentation of a corpus and relation vectors. In this
section, we verify the importance of each mod-
ule. Table 5 shows the performance of VKGDR
on TechQA in three different settings: VKGDR,
VKGDR without using the relation vectors (w/o

R@1 R@5 MRR

VKGDR 39.3 63.7 50.2
- w/o relation embedding 32.5 59.3 44.9
- w/o mention pairs 31.8 53.7 42.9

Table 5: This table shows the performance of VKGDR
in three different settings: without any modification on
the VKG, using the VKG without relation vectors (“w/o
relation embedding”), and using the VKG without the
graph structure (“w/o mention pairs”). The results indi-
cate that both components are essential to achieve the
previous experimental results.

relation embedding), and VKGDR without using
the graph structure (w/o mention pairs). We de-
scribe each setting with the example in Figure 3.
“w/o relation embedding” is a model that uses 1⃗
(a vector that all elements are one) for all relation
vectors in the VKG; all relation vectors in Figure 3
are replaced with 1⃗. This is equivalent to using the
number of overlapping mention pairs as the sim-
ilarity between a question and a document. “w/o
mention pairs” is a model without mention pair
matching. For instance, all values in the similarity
matrix (right part of Figure 3) are used to compute
the question-document similarity. Table 5 shows
that “w/o relation embedding” has better perfor-
mance than “w/o mention pairs”. This indicates
that the graph structure is slightly more important
than the relation embedding. However, the gap is
not significant in R@1 and MRR. So, we see that
both components are essential to achieve the docu-
ment retrieval performance of VKGDR.

6 Conclusion

The main challenge in domain-specific document
retrieval is the difficulty of specialized knowledge
and terminologies appearing in the documents. In
this study, we propose VKGDR to resolve this
problem. VKGDR consists of two modules: 1)
the model that represents a given corpus into a
graph of mentions and their relations and 2) a docu-
ment retriever based on the VKG. We showed that
VKGDR outperforms previous retrievers in zero-
shot domain-specific document retrieval. When in-
sufficient training data is provided, unsupervised
VKGDR shows even better results than a fully-
supervised dense retriever. Also, we compared our
VKG construction method with a previous method
and showed that our method performs better on
domain-specific documents.
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A Appendices

A.1 Experimental Setup
Evaluation Metrics: Recall@k (R@k) and mean
reciprocal rank (MRR) are evaluation metrics for
document retrieval tasks. R@k measures the pro-
portion of the model’s predictions where top-k re-
trieved documents contain the ground truth docu-
ment. MRR is defined with the predicted rank of
the ground truth document as follows:

MRR =
1

n

n∑
i=1

1

ri
,

where n is the number of predictions, ri is the
predicted rank of the ground truth document of i’th
query.

Hyper-parameter Settings: We use Adam opti-
mizer with a warmup ratio of 0.1 and set the learn-
ing rate to 2 × 10−5 for VKGDR and baselines.
We use the validation score to get the best check-
point for all models. VKGDR’s relation encoder is
trained on the pre-trained BERT-large model. We
train the relation encoder with a batch size of 128
for two epochs. The max length of the relation en-
coder is set to 128, and the number of negative
samples in (1) is set to 2. We train RoBERTa (Bi-
Encoder) with a batch sizes of 32 for twenty epochs
and Adapt with a batch size of 80 for ten epochs.
For both baselines, we set the max sequence length
to 512. We use a machine with eight A100 GPUs.
We report the result of a single trial.

A.2 License or Terms of Artifacts
We use BERT whose license is under the Apache
License 2.0 free with modification and distribution.
Also, we use RoBERTa whose license is under the
GNU GENERAL PUBLIC LICENSE free with
modification and distribution. All models we used
are publicly available.


