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Abstract

Can we build multi-view decoders that can
decode concepts from brain recordings corre-
sponding to any view (picture, sentence, word
cloud) of stimuli? Can we build a system that
can use brain recordings to automatically de-
scribe what a subject is watching using key-
words or sentences? How about a system that
can automatically extract important keywords
from sentences that a subject is reading?

Previous brain decoding efforts have focused
only on single view analysis and hence can-
not help us build such systems. As a first step
toward building such systems, inspired by Nat-
ural Language Processing literature on multi-
lingual and cross-lingual modeling, we propose
two novel brain decoding setups: (1) multi-
view decoding (MVD) and (2) cross-view de-
coding (CVD). In MVD, the goal is to build an
MV decoder that can take brain recordings for
any view as input and predict the concept. In
CVD, the goal is to train a model which takes
brain recordings for one view as input and de-
codes a semantic vector representation of an-
other view. Specifically, we study practically
useful CVD tasks like image captioning, im-
age tagging, keyword extraction, and sentence
formation.

Our extensive experiments lead to MVD mod-
els with ∼0.68 average pairwise accuracy
across view pairs and CVD models with ∼0.8
average pairwise accuracy across tasks. Anal-
ysis of the contribution of different brain net-
works reveals exciting cognitive insights: (1)
Models trained on picture or sentence view of
stimuli are better MV decoders than a model
trained on word cloud view. (2) Our extensive
analysis across 9 broad brain regions, 11 lan-
guage sub-regions, and 16 visual sub-regions of
the brain help us localize, for the first time, the
parts of the brain involved in cross-view tasks
like image captioning, image tagging, sentence
formation, and keyword extraction. We make

∗The first two authors made equal contribution.

the code publicly available1.

1 Introduction

Brain decoding models aim to understand what a
subject is thinking, seeing, and perceiving by an-
alyzing neural recordings. Thus, in the context of
language, it may be beneficial to learn mappings
between linguistic representation and the associ-
ated brain activation, and how we compose the
linguistic meaning from different stimuli such as
text (Pereira et al., 2018; Wehbe et al., 2014a), im-
ages (Eickenberg et al., 2017; Beliy et al., 2019),
videos (Huth et al., 2016; Nishimoto et al., 2011),
or speech (Zhao et al., 2014) by analyzing the
evoked brain activity. Also, decoding the functional
activity of the brain has numerous applications in
education and healthcare.

Brain recordings can be obtained by providing
stimuli to a subject in various forms. For example,
a concept (like apartment) can be presented using:
(1) Word Picture (WP) view: picture along with
the concept word, (2) Sentence (S) view: sentence
containing the word, or (3) Word cloud (WC) view:
word cloud containing the word along with other
semantically related words. Recent studies have
made much progress using functional magnetic res-
onance imaging (fMRI) brain activity to reconstruct
semantic vectors corresponding to linguistic items,
including words (Mitchell et al., 2008; Pereira et al.,
2018), phrases, sentences, and paragraphs (Wehbe
et al., 2014a). However, all such studies have been
limited to single-view analysis. Separate models
are trained to process different views. Also, the
decoding target is typically a semantic vector of
the concept word.

In the Natural Language Processing (NLP) com-
munity, researchers have recently started focusing
on building multi-lingual and cross-lingual sys-
tems (Conneau et al., 2018; Conneau and Lam-
ple, 2019; Xue et al., 2021). Multi-lingual systems

1https://tinyurl.com/MVCVBD

https://tinyurl.com/MVCVBD
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Figure 1: A multi-view decoder can be used to decode
concepts using brain recordings for any view. Target is
BERT representation of the concept word.

improve accuracy for low-resource languages and
enable applications even in the absence of train-
ing data for low-resource languages. Cross-lingual
systems take input in one language and produce
output (e.g., summary) in another language. In-
spired by this multi-lingual/cross-lingual shift in
NLP, we propose two novel brain decoding setups:
multi-view decoding (MVD) and cross-view decod-
ing (CVD). Such setups are critical to build MV
decoders which can decode concepts from brain
recordings corresponding to any view (picture, sen-
tence, word cloud) of stimuli or systems that can au-
tomatically describe using sentences or keywords
what a subject is watching or automatically extract
important keywords from sentences that a subject
is reading.

In MVD, the goal is to build an MV decoder
that can take brain recordings for any view as input
and predict the concept. Fig. 1 shows examples of
using an MV decoder. Such an MV decoder can be
trained on data for any specific view. Multi-lingual
models have shown huge zero-shot accuracy im-
provements for inference on low-resource language
inputs across many NLP tasks (Conneau and Lam-
ple, 2019). Similarly, can we improve decoding
accuracy using an MV decoder model for some
views?

In CVD, the goal is to train a model which takes
brain recordings for one view as input and decodes
a semantic vector representation of another view.
Fig. 2 shows examples of four such CVD tasks.
Given an fMRI activation corresponding to a pic-
ture view of the stimuli, how accurately can we
decode a sentence representing the picture? Which
parts of the brain are involved in CVD tasks like im-
age captioning, image tagging, keyword extraction,
and sentence formation?

Historically, the fMRI brain activity has been
decoded to a semantic vector representation of a
view (word picture, sentence, word cloud) using a

ridge-regression decoder (Pereira et al., 2018; Sun
et al., 2019). In particular, earlier brain decoding
works focused on hand-crafted features to train
such decoder models (Mitchell et al., 2008; Wehbe
et al., 2014a). Recently, many studies have shown
accurate results in mapping the brain activity using
neural distributed word embeddings for linguistic
stimuli (Anderson et al., 2017; Pereira et al., 2018;
Oota et al., 2018; Nishida and Nishimoto, 2018;
Sun et al., 2019). To represent meaning, these stud-
ies use either word or sentence level embeddings
extracted from the models trained on large cor-
pora. Unfortunately, none of these addresses the
open questions around multi-view decoding and
cross-view decoding. Recently, Transformer-based
models have been explored for brain encoding (Hol-
lenstein et al., 2019), which inspires us to harness
Transformer-based models like BERT (Devlin et al.,
2019) for our brain decoding tasks.

Our main contributions are as follows. (1) We
propose two novel brain decoding settings: multi-
view decoding and cross-view decoding. (2) We
build decoder models using Transformer-based
methods and analyze brain network contributions
across multi-view and cross-view tasks. (3) We aug-
ment the popular Pereira et al. (2018)’s dataset with
pairwise-view relationships and use it to demon-
strate the efficacy of our proposed methods. We
make the code publicly available2.

Our experiments lead us to the following in-
sights: (1) Models trained on picture or sentence
view are better MV decoders than models trained
on word cloud view. Surprisingly, the MV de-
coder trained on sentence view leads to a zero-shot
accuracy for word cloud stimuli, which is better
than that obtained using the same-view word cloud
model. (2) For the first time, we show language
and visual sub-regions involved in four cross-view
tasks. (3) High pairwise accuracies of 0.78, 0.83,
0.84, and 0.75 for image captioning, image tagging,
keyword extraction, and sentence formation resp.,
help us conclude that cross-view decoding tasks
using fMRI data are practically feasible.

2 Related Work

Advances in functional neuroimaging tools such as
fMRI have made it easier to study the relationship
between language/visual stimuli and functions of
brain networks (Constable et al., 2004; Thirion
et al., 2006; Fedorenko et al., 2010).

2https://tinyurl.com/MVCVBD

https://tinyurl.com/MVCVBD
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(A) Image Captioning (IC)                            (B) Image Tagging (IT)                           (C) Sentence Formation (SF)                   (D) Keyword Extraction (KE)
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Figure 2: Cross-View Decoding Task (Input, output) Examples.

Initial brain decoding experiments studied the
recovery of simple concrete nouns and verbs from
fMRI brain activity (Mitchell et al., 2008; Palatucci
et al., 2009; Nishimoto et al., 2011; Pereira et al.,
2011) where the subject watches either a picture
or a word. Unlike the earlier work, Wehbe et al.
(2014a); Huth et al. (2016) built a model to decode
the text passages instead of individual words. How-
ever, these studies used either simple or constrained
sets of stimuli, which poses a question of gener-
alization of these models. Recently, Pereira et al.
(2018) explicitly decoded both words and sentences
when subjects were shown both concrete and ab-
stract stimuli. Affolter et al. (2020) reconstructed
the sentences along with categorizing words or
predicting the semantic vector representation from
fMRI brain activity. Schwartz et al. (2019); Wang
et al. (2020a) focused on understanding how multi-
ple tasks activate associated regions in the brain.

To train ridge regression decoder models, earlier
works focused on hand-crafted features (Mitchell
et al., 2008; Wehbe et al., 2014a), which suffer
from various drawbacks like inability to capture
the context and sequential aspects of a sentence,
inability to extract signals for abstract stimuli, etc.
With the success of deep learning based word rep-
resentations, multiple researchers have used dis-
tributed word embeddings for brain decoding mod-
els in place of carefully hand-crafted feature vec-
tors (Huth et al., 2016; Anderson et al., 2017;
Pereira et al., 2018; Oota et al., 2018; Nishida and
Nishimoto, 2018; Sun et al., 2019; Wang et al.,
2020b). Using the distributed sentence representa-
tions, Wehbe et al. (2014b); Jain and Huth (2018);
Abnar et al. (2019); Sun et al. (2019) demon-
strated that neural sentence representations are bet-
ter for decoding whole sentences from brain ac-
tivity patterns. Recently, Transformer models like
BERT (Devlin et al., 2019) and GPT2 (Radford
et al., 2019) have been found to be very effective
for decoding (Gauthier and Levy, 2019; Toneva

and Wehbe, 2019; Affolter et al., 2020). Inspired
by such studies, we leverage BERT representations.
Inspired by such studies, we leverage BERT rep-
resentations. Unlike single-view analysis done in
previous studies, multi-view and cross-view setups
are the main focus of our work.

3 Methodology

3.1 Brain Imaging Dataset

We experiment with the popular dataset
from (Pereira et al., 2018). It is obtained
from 11 subjects (P01, M01, M02, M04, M07,
M09, M10, M13, M15, M16, M17) where
each subject read 180 concept words (abstract +
concrete) in three different paradigms or views
while functional magnetic resonance images
(fMRI) were acquired. These contain 128 nouns,
22 verbs, 29 adjectives and adverbs, and 1
function word. In paradigm-1 (WP), participants
were shown concept word along with picture
with an aim to observing brain activation when
participants retrieved relevant meaning using
visual information. In paradigm-2 (S), the concept
word presented in a sentence allows us to probe
activity in the language areas associated with
contextual information and meaning of a sentence.
In paradigm-3 (WC), the concept word was
presented in a word cloud format, surrounded by
five semantically similar words. These paradigms
provide brain representation of 180 concepts in
three different views.

For each of the 180 concepts, the dataset con-
tains five pictures, six sentences each containing
the concept word, and a word cloud. For exam-
ple, for a concept ‘bird’, dataset has (1) a picture
p showing a red bird sitting on a tree branch, (2)
sentence s like “A green bird flying in the sky”, and
(3) word cloud c with words “bird, purple, flock,
winged, nest, beak”. The dataset also has fMRIs
for each of these three views. This dataset was
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Task Input Output (View type)
Image captioning Word+Picture fMRI Caption (Sentence)
Image tagging Word+Picture fMRI Image tags (Word Cloud)
Keyword extraction Sentence fMRI Keywords (Word Cloud)
Sentence formation Word-cloud fMRI Sentence

Table 1: Cross-View Decoding Task Definitions

meant for single-view decoding and hence follows
a star schema (concept at the center and specific
views like word+picture, sentence, and word cloud
around it). Clearly, we cannot use this dataset as is
for cross-view decoding (CVD). For example, for
the image captioning CVD task, it is wrong to take
an fMRI with the stimuli being a picture showing
a red bird sitting on a tree branch, and use it to
decode a sentence “A green bird flying in the sky”.

To enable cross-view decoding tasks, it was
critical to build direct pairwise-view relationships
(picture-sentence, picture-word cloud, sentence-
word cloud, and word cloud-sentence). In other
words, it was necessary to have captions and tags
for image-view, keywords for sentence-view, and
3-4 sentences corresponding to wordcloud-view.
Hence, we augment the dataset in Pereira et al.
(2018) by obtaining target annotations manually.
For example, for the fMRI associated with picture
p, we manually annotated it with target sentence
s′=“A red bird sitting on a tree branch”. Pairs like
(p, s′) are then used to train model for image cap-
tioning. Note that these manual annotations do not
involve obtaining more fMRIs.

Fig. 2 shows the input and output examples for
the four cross-view decoding tasks. We make the
augmented dataset publicly available2. Note that
we do not experiment with CVD tasks like image
generation from sentences or word clouds since
obtaining target annotations would mean that we
need to draw images to augment the dataset. We
leave it as part of future work.

3.2 Task Descriptions

We train the decoder regression models on 5000
informative voxels selected from fMRI brain ac-
tivations and evaluate all the models using pair-
wise accuracy and rank-based decoding. Details
of the informative voxel selection, the regression
model, and metrics are discussed in the subsequent
sections. The main goal of each decoder model
is to predict a semantic vector representation of
the stimuli in each experiment. The input view
(word+picture, sentence, or word-cloud) and out-
put representation (word, sentence, or word-cloud)

differ across experiments. We follow K-fold cross-
validation, in which all the data samples from K-1
folds were used for training, and the model was
tested on samples of the left-out fold. We use the
BERT-pooled output for obtaining output seman-
tic representations. We also experimented with
RoBERTa, but the results were very similar to
BERT, and hence we omit them for lack of space.
Multi-View Concept Decoding For each subject
in the dataset, for each of the three input views,
we trained K=18 models (one for each fold) where
each model is trained on the brain activity of 170
concepts and tested on left-out 10 concepts to pre-
dict vector representation of the concept word. The
5000 informative voxels were selected for 170 con-
cepts in each fold, and the same voxel locations
were chosen for test datasets. At test time, the in-
put to each model can belong to any of the three
views. Thus, for each subject, for each fold, we
perform (1) three same-view train-test experiments
and (2) six multi-view zero-shot train-test experi-
ments with different input views at train and test
time. Target is always fixed as a vector representa-
tion of the concept word. We use pairwise accuracy
to report results.
Cross-view Decoding Tasks For each subject in
the dataset, we learn models for the four cross-
view decoding tasks (IC, IT, KE, SF) using 18 fold
cross-validation. The input and output for each of
these tasks is shown in Table 1. Fig. 2 shows an
example for each task. As before, we use 5000
informative voxels, computed separately for each
of the 11 subjects and each of the four tasks. The
regression target is semantic vector representation.

3.3 Informative Voxel Selection

Inspired by the voxel selection method in (Pereira
et al., 2018), we chose the informative voxels for
our linear regression models as follows. The regres-
sion models are trained on each voxel and its 26
neighboring voxels to predict the semantic vector
representation. For each voxel in the training part,
the mean correlation was calculated between “true”
(text-derived) and predicted representations, and
the voxels corresponding to the top 5000 mean cor-
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relation values were selected as informative voxels.
Target semantic representations are word embed-
dings for multi-view zero-shot concept decoding
and ‘word or sentence or word-cloud’ embedding
for cross-view decoding experiments. Voxel selec-
tion provides meaningful cognitive insights across
brain networks.

3.4 Model Architecture

We trained a ridge regression based decoding
model to predict the semantic vector representa-
tion associated with the fMRI informative voxels
for a type (view) of each language stimulus. Each
dimension is predicted using a separate ridge re-
gression model. Formally, we are given the infor-
mative voxel matrix X ∈ RN×V and stimuli vec-
tor representation Y ∈ RN×D, where N denotes
the number of training examples, V denotes the
number of informative voxels (we fix it to 5000),
and D denotes the embedding dimension of lan-
guage stimuli. For BERT, D=768. The ridge re-
gression objective function is f(Xi) = min

Wio

∥Yo −

XiWio∥2F +λ∥Wio∥2F where, Xi denotes the input
voxels for view i (out of {word+picture, sentence,
wordcloud}), Yo denotes the matrix with embed-
dings o (out of {word, sentence, word cloud}), Wio

denotes the learned weight coefficients for each
input view i and output embedding o, ∥.∥F denotes
the Frobenius norm, and λ > 0 is a tunable hyper-
parameter representing the regularization weight.
Besides ridge regression, of course, various other
models could be used. However, the goal of this
paper is to analyze novel decoding setups using
the most popular decoding model in neuro-science
literature, namely, ridge regression. We leave ex-
ploration of complex models as part of future work.
Hyper-parameter Settings: We used sklearn’s
ridge regression with default parameters, 18-fold
cross-validation, Stochastic-Average-Gradient De-
scent Optimizer, Huggingface for BERT, MSE loss
function and L2-decay (λ):1.0.

3.5 Brain Networks Selection

Inspired by Pereira et al. (2018) and based on
the resting-state functional networks, we focused
on four brain networks: Default Mode Network
(DMN) (linked to the functionality of semantic pro-
cessing) (Buckner et al., 2008; Binder et al., 2009),
Language Network (related to language process-
ing, understanding, word meaning, and sentence
comprehension) (Fedorenko et al., 2011), Task Pos-

itive Network (related to attention, salience infor-
mation) (Binder et al., 2009; Duncan, 2010; Power
et al., 2011), and Visual Network (related to the pro-
cessing of visual objects, object recognition) (Buck-
ner et al., 2008; Power et al., 2011). We report the
distribution of 5000 informative voxels across the
four brain networks across various experiments
in Section 4. Across all participants, voxel distri-
bution across networks is as follows: 4670 (Lan-
guage), 6490 (DMN), 11630 (TP), and 8170 (Vi-
sual). Note that the reported distributions in Sec-
tion 4 do not add up to 1 because the contribution
of the remaining brain networks is not considered.

4 Results and Cognitive Insights

Since we are the first to propose multi-view and
cross-view tasks, unfortunately, there are no base-
lines to compare with. For the sake of comparison,
we design a “chance-level” BERT (Random) base-
line where models are trained using BERT embed-
dings of randomly chosen words as a target rather
than BERT embeddings of the actual target word.
For same-view experiments, our results are in line
with that reported in (Pereira et al., 2018).

5 Evaluation Metrics

We use the popular pairwise and rank accuracy
metrics for evaluation. Pairwise Accuracy To
measure the pairwise accuracy, the first step is
to predict all the test stimulus vector representa-
tions using a trained decoder model. Let S = [S0,
S1,· · · ,Sn], Ŝ = [Ŝ0, Ŝ1,· · · ,Ŝn] denote the “true”
(text-derived) and predicted stimulus representa-
tions for n test instances resp. Given a pair (i, j)
such that 0 ≤ i, j ≤ n, score is 1 if corr(Si,Ŝi)
+ corr(Sj ,Ŝj) > corr(Si,Ŝj) + corr(Sj ,Ŝi), else 0.
Here, corr denotes the Pearson correlation. Final
pairwise matching accuracy per participant is the
average of scores across all pairs of test instances.

Rank Accuracy We compared each decoded vec-
tor to all the “true” text-derived semantic vec-
tors and ranked them by their correlation. The
classification performance reflects the rank r of
the text-derived vector for the correct word: 1 −

r−1
#instances−1 . The final accuracy value for each
participant is the average rank accuracy across all
instances.
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Figure 3: Model trained on (A) Word+Pictures (B) Sentences (C) Word-Cloud view. MVD Pairwise and Rank
accuracy when tested on Word+Picture/Sentence/Word-cloud views, averaged across all the subjects.
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Figure 4: Model trained on Word+Pictures view.
MVD Pairwise and Rank accuracy when tested on
Word+Picture/Sentence/Word-cloud views, averaged
across all the subjects.
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Figure 5: Model trained on Sentences view.
MVD Pairwise and Rank accuracy when tested on
Word+Picture/Sentence/Word-cloud views, averaged
across all the subjects.
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Figure 6: Model trained on Word-Cloud view.
MVD Pairwise and Rank accuracy when tested on
Word+Picture/Sentence/Word-cloud views, averaged
across all the subjects.

tences as well as multi-modal integration and thus 552

are important for decoding across multiple views. 553

Further, brain regions in the angular gyrus (LAngG) 554

and parietal (LPar) each have >5% of informative 555

voxels. These areas may be involved in attention, 556

self-processing, and visuo-linguistic integration. 557

Similarly, we explored the distribution of infor- 558

mative voxels across sub ROIs of visual network, 559

as shown in Fig. 10. In the visual sub ROIs, voxels 560

in the bilateral occipital cortex (LLOC and RLOC) 561

have more informative voxels than other sub ROIs. 562

In particular, the scene ROIs in the parahippocam- 563

pal place area (such as RSC, PPA) display very 564

few informative voxels while bilateral body area 565

(R and LEBA) capture more voxels in the WP view. 566

Interestingly, activation in the superior temporal 567

sulcus (R and LSTS) in all views points out its role 568

in visuo-linguistic integration. 569

Overlapping Voxels: Given the distribution of in- 570

formative voxels across four brain networks, we 571

further examine how these voxels from one view 572

overlap with those from another view. Table 3 573

shows that (1) In the WC-S pair, the language net- 574

work has very high overlap compared to other brain 575

networks. (2) 29% (and 25%) of visual voxels for 576

S (and WC) view are shared with visual voxels of 577

WP view. This makes sense since a large percent- 578
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Figure 3: Model trained on Word+Pictures (A and B), Sentences (C and D), and Word-Cloud (E and F) view. MVD
Pairwise and Rank accuracy when tested on Word+Picture/Sentence/Word-cloud views, averaged across all subjects.
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Figure 4: Model trained on Word+Pictures view (left), Sentences view (middle), Word-Cloud view (right). MVD
Pairwise (PW) and Rank (R) accuracy when tested on Word+Picture (WP)/Sentence (S)/Word-cloud (WC) views.
Each colored dot represents a subject. The bar plot shows averages.

5.1 Multi-View Concept Decoding

5.1.1 Pairwise and Rank Accuracy Results

Fig. 3 and Table 2 show detailed results for models
trained on word+picture (WP), sentence (S), and
word-cloud (WC) views and tested on each of the
three views. Specifically, Fig. 3(A) shows pairwise
accuracy results when we train using the WP view
but infer using voxels corresponding to any of the
three views. Ground-truth is the BERT embedding
vector. In comparison to the “chance-level” BERT
(Random) baseline with random target vectors, our
proposed BERT embedding-based method is much
better. Fig. 4 shows subject wise results.

Test↓/Train→ WP S WC
WP 0.72/0.65 0.70/0.60 0.68/0.59
S 0.67/0.58 0.70/0.64 0.71/0.61
WC 0.63/0.56 0.69/0.61 0.62/0.57

Table 2: Multi-View Zero-shot Concept Decoder Re-
sults (Pairwise/Rank Accuracy)

Same view versus MV zero-shot: In most cases,
same-view results are better than multi-view zero-
shot results. However, this does not hold for the
WC view, where a model trained on sentence view
performs better (Left green bars in Fig. 3 (C and
D) vs. Fig. 3 (E and F)).
Can we train MV decoders that can decode con-
cepts from brain recordings for any view? We
experimented with three different MV decoders,
each trained on one of the three views. Fig. 3 and
the statistical significance test results in Table 3
show that either of the WP and sentence (S) views

can be used to train MV decoders. This means that
if we train a model with WP or S view fMRIs, and
test it using any of the three views, the results are
better or equivalent to any other model. This does
not hold for the WC view. Thus, an MV decoder
trained with a WC view is not very effective.

Setting 1 Setting 2 p-value
Train(WP)-Test(WP) Train(S)-Test(WP) 0.098
Train(WP)-Test(WP) Train(WC)-Test(WP) 0.026*
Train(S)-Test(WP) Train(WC)-Test(WP) 0.474
Train(WP)-Test(S) Train(S)-Test(S) 0.485
Train(WC)-Test(S) Train(S)-Test(S) 0.469
Train(WP)-Test(S) Train(WC)-Test(S) 0.420
Train(WP)-Test(WC) Train(WC)-Test(WC) 0.691
Train(WP)-Test(WC) Train(S)-Test(WC) 0.134
Train(S)-Test(WC) Train(WC)-Test(WC) 0.045*

Table 3: p-values for measuring if setting 1 is stat sig-
nificantly better than setting 2. Only rows with * mark
denote statistically significant improvements.

5.1.2 Cognitive Insights based on Distribution
of Informative Voxels

Table 4 and Fig. 5 show the distribution of informa-
tive voxels among four brain networks for various
MV models. In this figure, (WP, D) means input
view=WP (Word+picture), brain network=DMN
(D). The figure clearly shows that a lot of informa-
tive voxels belong to the visual brain region for the
WP view. Also, for sentence view, a large percent-
age of informative voxels are from the language
region.

Figs. 6 to 8 show more distribution details by
zooming further into language and visual regions.
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Figure 5: Distribution of informative voxels among
four brain networks: DMN (D), Visual (V), Language
(L), Task Positive (T). Models trained on Word+Picture
(WP), Sentence (S) or Word-Cloud (WC) views.

When the model is trained on the WP view (unlike
other views), Table 4 and Fig. 6 show that most in-
formative voxels (about 53%) lie in the visual brain
network, which is expected for the predominantly
visual information-driven task.

Word+Picture Sentence Word-Cloud
DMN 0.162 0.222 0.137
Visual 0.534 0.202 0.161
Language 0.177 0.246 0.192
Task-Positive 0.064 0.135 0.145

Table 4: Distribution of informative voxels among four
brain networks for various Multi-View models

We also observe that DMN and Language net-
work voxels are higher in the sentence view than
in the word cloud view. Compared to the model
trained on WP view, the distribution of voxels
among the four brain networks shows that the
model trained on sentence view has a higher per-
centage of voxels among the Language, DMN, and
Task-positive networks and lower in the visual net-
work. This is in line with our understanding that
linguistic and attention skills are essential for under-
standing sentence stimuli. As for the model trained
on the WC view compared to other views, we
see that the informative voxels are spread equally
among all the networks. From Fig. 6, we observe
that in all the views, the region corresponding to
language processing in the left hemisphere (Lan-
guage_LH) has higher informative voxels than that
of the right hemisphere (Language_RH). This is
in line with the left hemisphere dominance for lan-
guage processing (Binder et al., 2009). When the
visual network dominates as in the case of WP view,
the majority of these are located in the object pro-
cessing area, followed by face and body processing
areas. In the following, we investigate these two
regions in detail.

In the language network, the distribution of
informative voxels in the sub regions (LPTG,
LMTG, LATG, LFus, LPar, LAngG, LIFGorb,
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Figure 6: Distribution of informative voxels among nine
brain regions for Multi-view Decoding

LIFG, LaMFG, LpMFG, and LmMFG) are shown
in Fig. 7. We find that regions in the posterior
(LPTG), middle (LMTG), and anterior (LATG)
temporal gyrus share a higher percentage of in-
formative voxels than other regions in the language
network, such as those in the middle and inferior
frontal areas. This indicates that the language func-
tions sub-served by the temporal cortex, such as
comprehension and semantic processing, are criti-
cal for processing sentences as well as multi-modal
integration and thus are important for decoding
across multiple views. Further, brain regions in the
angular gyrus (LAngG) and parietal (LPar) each
have >5% of informative voxels. These areas may
be involved in attention, self-processing, and visio-
linguistic integration.
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Figure 7: Distribution of informative voxels among
eleven sub regions of Language network for MVD

Similarly, we explored the distribution of infor-
mative voxels across sub regions of the visual net-
work, as shown in Fig. 8. In the visual sub regions,
voxels in the bilateral occipital cortex (LLOC and
RLOC) have more informative voxels than in other
sub regions. In particular, the scene regions in the
parahippocampal place area (such as RSC and PPA)
display very few informative voxels, while the bi-
lateral body area (REBA and LEBA) captures more
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Figure 8: Distribution of informative voxels among
sixteen sub regions of Visual network for MVD
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Figure 9: Brain Maps for Multi-View and Cross-View Decoding Tasks (plotted using nilearn Python library).
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Figure 10: Cross-View Decoding Pairwise and Rank
accuracy for Image Captioning (IC), Image Tagging
(IT), Keyword Extraction (KE), and Sentence Formation
(SF) averaged across all the subjects.

voxels in the WP view. Interestingly, activation in
the superior temporal sulcus (RSTS and LSTS) in
all views point out its role in visio-linguistic inte-
gration. Lastly, Fig. 9 shows the spatial distribution
of informative voxels (plotted using nilearn Python
library) across models trained on different forms
of stimuli (WP, S, and WC). The value of each
voxel is the fraction of 11 participants for whom
that voxel was among the 5000 most informative.

5.1.3 Informative Voxel Overlap across Views

Given the distribution of informative voxels across
four brain networks, we further examine how these
voxels from one view overlap with those from an-
other view. Table 5 shows that (1) the language
network has a very high overlap compared to other
brain networks in the WC-S pair. (2) 29% (and
25%) of visual voxels for the S (and WC) view
are shared with visual voxels of the WP view. This
makes sense since a large percentage of informative
voxels for WP view are from the visual network.

DMN Visual Language Task Positive
WP-S 0.24/0.17 0.11/0.29 0.25/0.17 0.09/0.05
WC-S 0.25/0.16 0.25/0.20 0.30/0.22 0.07/0.07
WP-WC 0.14/0.16 0.08/0.25 0.15/0.15 0.06/0.03

Table 5: For each pair of views and each brain network,
we show coverage ratios (second task on first/first task
on second) of the voxels.
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Figure 11: CVD Pairwise (PW) and Rank (R) accuracy
for IC, IT, KE and SF tasks. Each colored dot represents
a subject. The bar plot shows averages.

IC IT SF KE
DMN 0.114 0.067 0.152 0.214
Visual 0.572 0.736 0.154 0.236
Language 0.116 0.081 0.182 0.275
Task Positive 0.045 0.007 0.141 0.118

Table 6: Distribution of informative voxels among four
brain networks for all 4 CVD Tasks.

5.2 Cross-View Decoding
5.2.1 Pairwise and Rank Accuracy Results
Fig. 10 illustrates pairwise and rank accuracy
for Image Captioning (IC), Image Tagging (IT),
Sentence Formation (SF), and Keyword Extrac-
tion (KE). Subject wise results are reported in
Fig. 11. We observe that (1) our proposed BERT
embedding-based method is much better compared
to the “chance-level” baseline with random target
vectors. (2) For all the four tasks, pairwise accu-
racy is ∼80%, and rank-based accuracy is ∼70%
(except for SF), which shows that CVD is possible
with good accuracy.

5.2.2 Cognitive Insights based on Distribution
of Informative Voxels
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Figure 12: Distribution of informative voxels among
nine brain regions for CVD tasks.
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Figure 13: Distribution of informative voxels among 11
sub regions of Language network for CVD tasks.
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Figure 14: Distribution of informative voxels among 16
sub regions of Visual network for CVD tasks.

Fig. 12 shows the distribution of informative
voxels among nine brain regions across all four
tasks. As expected, a high percentage of visual
voxels are involved in IC and IT tasks, and a high
percentage of language voxels are involved in the
SF and KE tasks, especially in the left hemisphere.
Further, from Table 6, we observe that IC involves
relatively higher language voxels compared to IT.
This could be because generating a caption involves
a higher level of language (sequence) skills than
generating a set of keywords.

To further investigate the informative voxel dis-
tribution across Language and Visual networks, we
display the sub region voxels distribution for the
Language network in Fig. 13, and for the Visual net-
work in Fig. 14. In all the tasks, the left hemisphere
language network activation is dominated by activ-
ity in the temporal gyrus (middle: LMTG and pos-
terior: LPTG) but more in the KE task. This clearly
demonstrates the importance of language compre-
hension and semantic process common across the
cross-view tasks. Further, the common activation
in the angular gyrus (LAG) in all tasks points out
the role of visio-linguistic integration critical for
all the tasks. The activation profile of the vision
network, in contrast, shows distinct activation dif-
ferences across the tasks (IC & IT vs. KE & SF).
IC and IT tasks are related to a higher proportion
of informative voxels in the primary visual regions
in the lateral occipital areas (LLOC, RLOC) and
bilateral extrastriate body-related areas (REBA and
LEBA). Domination of activation in the vision net-
work in captioning and tagging tasks (IC and IT)
as compared to predominantly sentence processing

based tasks (KE and SF) is along expected lines.
DMN Visual Language Task Positive

IC-IT 0.27/0.44 0.70/0.54 0.32/0.45 0.07/0.32
IC-KE 0.31/0.17 0.11/0.27 0.28/0.12 0.12/0.05
IC-SF 0.16/0.12 0.07/0.25 0.14/0.09 0.08/0.03
IT-KE 0.27/0.08 0.08/0.25 0.22/0.07 0.05/0.01
IT-SF 0.13/0.05 0.06/0.27 0.10/0.05 0.04/0.00
KE-SF 0.19/0.26 0.20/0.29 0.22/0.32 0.09/0.08

Table 7: For each pair of CVD tasks and each brain net-
work, we show coverage ratios (second task on first/first
task on second) of the voxels.

The brain maps (see Fig. 9) corresponding to the
IC and IT tasks clearly activate the visual cortex
and the temporal cortex, the areas known for visual
processing and object identification. On the other
hand, the brain maps of KE and SF exhibit diffuse
activation that includes the temporal and frontal
regions known to be related to the sentence seman-
tics. None of the maps show a left-hemisphere bias,
which is often found in such semantic-related maps.
Lack of frontal-lobe activation and the concentra-
tion of informative voxels in the sensory cortex
suggest that the cross-view embedding may rely on
some non-abstract domain-specific encoding rather
than higher-level semantic concept encoding.

5.2.3 Informative Voxel Overlap across Tasks

Given the distribution of informative voxels across
four brain networks, we further examine how these
voxels from one task overlap with those from an-
other task. Table 7 shows that (1) Many voxels
overlap across different brain networks for IC and
IT tasks. This is expected since the two tasks are
very related. Interestingly, 44% of DMN voxels
needed for IT are shared with IC. Similarly, as high
as 70% of visual voxels needed for IC are shared
with IT. (2) Similarly, KE and SF share a very good
overlap across different brain networks, which is
expected given the textual nature of the two tasks.

6 Conclusion

We studied brain decoding in the context of zero-
shot multi-view concept decoding and cross-view
decoding tasks. We studied four cross-view decod-
ing tasks: image captioning, image tagging, sen-
tence formation, and keyword extraction. We show
that cross-view decoding is feasible with good ac-
curacy. Brain network distribution analysis reveals
insights about the importance of various parts of
the brain for each of these tasks.
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7 Ethical Statement

We reused publicly available Pereira dataset, down-
loadable from https://osf.io/crwz7/, for
this work. Please read their terms of use3 for more
details. We did not collect any new dataset. We do
not foresee any harmful uses of this technology.
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