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Abstract

Definition modeling is the task to generate a
valid definition for a given input term. This
relatively novel task has been approached ei-
ther with no context (i.e., given a word em-
bedding alone) and, more recently, as word-in-
context modeling. Despite their success, most
works make little to no distinction between re-
sources and their specific features (e.g., type
and style of definitions, or quality of examples)
when used for training. Given the high diver-
sity lexicographic resources exhibit in terms
of topic coverage, style and formal structure,
it is desirable for downstream definition mod-
eling to better understand which of them are
better suited for the task. In this paper, we pro-
pose an empirical evaluation of the well-known
lexical database WordNet, and specifically, its
dictionary examples. We evaluate them both
directly, by matching them against criteria for
good dictionary writing, and indirectly, in the
task of definition modeling. Our results sug-
gest that WordNet’s dictionary examples could
be improved by extending them in length, and
incorporating prototypicality.

1 Introduction

Definition modeling (DM), as introduced by No-
raset et al. (2017), is the task of generating a dic-
tionary definition for a given word. This task was
made possible by the adoption in NLP of sequence-
to-sequence architectures based on RNNs (Gardner
etal., 2022). Recently, DM systems have shown im-
pressive performance in several intrinsic and down-
stream tasks, mostly thanks to being able to go from
context-less (Noraset et al. only used the definien-
dum' as a conditioning token at all timesteps) to
a contextually richer setting, e.g., by conditioning
the generated definition to an example of usage
of the target word (Ni and Wang, 2017; Gadetsky

"The genus-et-differentia Aristotelian definitions follows
an A is a B which Z structure, with A being the definiendum, B
the genus and Z the definiens or differentia specifica.
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et al., 2018; Chang et al., 2018; Zhu et al., 2019;
Mickus et al., 2019; Ishiwatari et al., 2019).

Recently, a notable leap in DM was achieved
in Bevilacqua et al. (2020), who fine-tuned BART
(Lewis et al., 2019) on example-definition pairs,
and reported high results in intrinsic benchmarks
and, more importantly, used their DM system
for downstream NLP, specifically word sense dis-
ambiguation (WSD) and word-in-context classi-
fication. DM has also been explored from other
perspectives, e.g., generating definitions with ap-
propriate specificity using re-ranking mechanisms
(Huang et al., 2021), or extending the generation
cross-entropy loss with a reconstruction objective
(Kong et al., 2022) (reminiscent of works that used
dictionary definitions for improving word embed-
dings via autoencoders (Bosc and Vincent, 2018)
or LSTMs (Hill et al., 2016)). Moreover, Barba
et al. (2021) explore a BART-based model for per-
forming the reverse task to DM, i.e., exemplifica-
tion modeling, or generating a dictionary example
given a term and its definition. Other applications
of DM range from the aforementioned lexical se-
mantics tasks to reverse dictionary (predict a word
given a definition), interpretability, or for clarifying
technical and medical terminology (Chen and Zhao,
2022; August et al., 2022), whereas recent applica-
tions of BART to tasks not originally designed to
be solved generatively are semantic role labeling
(Bevilacqua et al., 2020), relation extraction (Cabot
and Navigli, 2021) or entity linking (De Cao et al.,
2020).

Despite the above successes, little attention has
been paid so far to the quality of the dictionary
examples (or contexts) used for fine-tuning these
models. In fact, most existing DM systems train
on WordNet (WN) (Miller, 1995), which is the de-
facto lexical database for English. However, we
are not aware of previous work that has explored
the quality (and hence, suitability for DM) of WN
examples. Therefore, in this paper, we first inves-
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tigate the quality of WN examples by evaluating
against the GDEX (Good Dictionary Examples)
set of criteria (Kilgarriff et al., 2008), and use as a
point of comparison a widely adopted open dataset
used in DM, which is primarily based on the Ox-
ford Dictionary (Chang and Chen, 2019) (CHA). It
is worth noting, however, that these two resources
were built for different objectives, as the initial
purpose behind creating WN was to explain how
lexical meaning is stored in the mind (Broda et al.,
2009), and its primary use may be as a sense inven-
tory (Agirre and Edmonds, 2007). However, with
this caveat in mind, and given how lexicographic
resources are currently converging into useful pre-
training and fine-tuning datasets for lexical seman-
tics, we also propose to extrinsically test these two
resources in the DM task. Specifically, in our sec-
ond set of experiments we fine-tune a BART-based
model on WN and CHA, and show that generally
speaking, results of models fine-tuned on WN per-
form slightly worse than if fine-tuned on CHA. Our
preliminary results suggest that WN’s examples
sometimes do not provide enough context, mak-
ing it difficult to learn a good representation for
the word being contextualized. We also report an
experiment comparing DM modeling results on
WN nouns vs. WN verbs; which suggests that a
DM model trained on WN nouns performs slightly
better.

2 Data

WordNet (WN) is an electronic lexical dictionary
for English that describes words (11,7097 nouns,
11,488 verbs, 22,141 adjectives, and 4,601 adverbs)
organized in groups of synonyms called “synsets”
(Miller, 1995; Fellbaum, 2013). Each synset is
described by its definition, lemmas, examples of
usage (for some but not all words), and the relations
between synsets, e.g., hypernymy (is-a), meronymy
(is-part) or troponymy (manner-of). WN has typ-
ically been used in lexicographic and language
learning settings (Morato et al., 2004), but more
importantly, also in NLP, e.g., as a natural language
interface for optimizing the precision of search en-
gines, WSD or query expansion (Moldovan and Mi-
halcea, 2000; Banerjee and Pedersen, 2002). More-
over, relations in WN have been used extensively,
for example for improving word embeddings via
retrofitting (Faruqui et al., 2014; Espinosa-Anke
et al., 2016; Vuli¢ and Mrksi¢, 2017; MrkSsi¢ et al.,
2017).
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CHA (Chang and Chen, 2019), the other re-
source we consider in this paper, is based on Ox-
ford Dictionaries. It was released with two splits,
namely seen, where definitions in the training set
also exist in the test set, and unseen, which con-
tains a set of words not available in the training
set (Bevilacqua et al., 2020). This is similar to the
lexical splits (as opposed to random splits) present
in other analogous tasks such as graded lexical en-
tailment (Shwartz et al., 2016; Vuli¢ et al., 2017).
In this paper, we are concerned with the quality
of examples in WN (and how they compare with
CHA), i.e., sentences where a target word appears,
and which should be informative enough to con-
vey the necessary contextual information to clarify
fully or partially the word’s meaning (encoded in a
natural language definition or gloss, instead of e.g.,
a word embedding).

We show in Table 1 examples from WN and
CHA, where it becomes apparent that WN exam-
ples have a different pattern, e.g., they are much
shorter, and are crucially limited in the contextual
information they provide, as opposed to the ex-
amples in CHA, which features, first, full-fledged
grammatical examples, and second, associated vo-
cabularies that help position the target word in the
mental lexicon, which is crucial for word access
(Zock et al., 2010).

Data | Lemma | Definition | Example

WN | people |(plural) any group of | old people
human beings (men
or women or children)
collectively

CHA | people | human beings in gen-| each day he has looked
eral or considered col-| at a key issue facing us
lectively as a nation as a people

as frail human beings

WN | sheet |any broad thin expanse | a sheet of ice
or surface

CHA |sheet |a large rectangular | Mary quietly got off the
piece of cotton or|bed and covered him
other fabric used on | with the sheet and blan-
a bed to cover the | ket
mattress and as a layer
beneath blankets when
these are used

WN | tall great in vertical dimen-| tall people
sion; high in stature

CHA | tall of great or more than | the elevator came to a
average height espe-|stop and the doors slid
cially with reference | open revealing the sixth
to an object relative to | floor of the tall building
width

Table 1: WN vs CHA definitions and examples for a
given lemma (in bold).



3 Experiments

In this section, we introduce the two sets of experi-
ments we perform. First, the descriptive compari-
son between WN and CHA examples using GDEX
as a proxy (Section 3.1). Second, we describe the
setting for the DM experiment, where we test WN
as supervision signal (Section 3.2).

3.1 GDEX-based comparison

As a proxy for determining the quality of dictio-
nary examples in WN, and given that there is no
manually annotated dataset for this purpose, we
used GDEX (Good Dictionary Examples) criteria.
GDEX is a system that added around 8,000 new ex-
ample sentences to Macmillan English Dictionary
by automatically finding good examples in corpora
using a set of rules of thumb (Kilgarriff et al., 2008;
Bejoint, 2014).

In our work, we used some of the features that
are introduced in GDEX, specifically:

* sentence length: according to Kilgarriff et al.
(2008), good dictionary examples should
range between 10 and 25 words, and thus we
penalize shorter or longer dictionary examples
proportionally (the more an example deviates
from the acceptable minimum or maximum,
the more it is penalized).

word frequency: a sentence is penalized for
each non-frequent word that is not in the list of
the top 20,000 most frequent words in English
Wikipedia.

anaphoric references: we penalize the num-
ber of pronouns in the dictionary example,
normalized by sentence length.

sentence probability: we use the GPT-2 (Rad-
ford et al., 2019) language model to score the
probability of dictionary examples. Intuitively,
this can be a useful metric for semantic coher-
ence and fluency.

3.2 Definition Modeling

The general formulation of DM is as follows. To
generate a gloss g that defines a target lemma ¢
in a context ¢, the standard sequence-to-sequence
conditional generation probability is computed by
factorising it auto-regressively (Bevilacqua et al.,
2020):
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where g is the k" token of ¢ and g is a special
start token (Bevilacqua et al., 2020). We fine-tune
BART, a pre-trained encoder-decoder system, to
perform the definition generation task by taking the
pair (context, target lemma) as an input to produce
the corresponding definition. The dataset includes
(c, t, g) triples where ¢ is the target word (lemma)
in a context ¢ (example) and g is the gold gloss
which defines ¢ in ¢ (definition). We encode the
input as (¢, c) pairs and special tokens are used
to identify the target lemma in each context such
as The cherry tree <target> bloomed </target>.,
with the lemma “bloom” as the target word in this
context.

Exp. 1 (WN vs CHA) Since we are concerned
with using WN in definition modeling, we trained
and tested the definition generation model (BART)
on WN lemmas that have examples (44,351 lem-
mas) using an 80/20 split for training and testing.
Additionally, we trained the same model using a
CHA-derived training set of the same size as our
WN training set, and tested it on the same WN test
set. We ensured that no duplicates/leakage occured
between sets in both experiments. We train both
models with a maximum of 50 epochs with early
stopping?.

Exp. 2 (WN Nouns vs WN Verbs) We trained
and tested the same BART model with same hyper-
parameters as in the WN vs CHA experiment on
random 10k noun lemmas and 10k verb lemmas
from WN separately (using again an 80/20 ratio for
training and testing) to evaluate whether there are
noticeable differences between these two grammat-
ical categories.

4 Analysis

In this section, we discuss the results of our two
experiments, namely GDEX-wise comparison be-
tween WN and CHA, and WN’s stress test in the
DM task.

We implemented our experiments us-
ing the simpletransformers (http://
simpletransformers.ai/) library, a wrapper on
top of transformers (Wolf et al., 2020).


http://simpletransformers.ai/
http://simpletransformers.ai/
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Figure 1: Empirical distribution functions between WN
(blue) and CHA (orange) for length (a) and frequency
(b) penalties.
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Figure 2: Violin plot showing the difference in log-
likelihood assigned by GPT-2 to WN vs CHA examples
(higher is better).

4.1 GDEX score

Since Kilgarriff et al. did not specify an optimal
weighting for the different factors they took into
account in the GDEX metric, we look individu-
ally at each of the four factors discussed in Section
3.1. We leave for future work investigating op-
timal weighting for these and other metrics, for
example, by tuning them on downstream applica-
tions. When comparing these scores for both WN
and CHA examples, Figure 1 (lower is better in
both metrics) shows that WN has generally higher
penalties both for example length and for usage
of infrequent words. Specifically, for instance, we
found that 80% of CHA’s examples have a length
penalty of .6 or less, whereas for the same propor-
tion, the length penalty reaches more than .8 in
WN. In a subsequent analysis, we found that these
differences, if studied between WN’s nouns and
verbs, clearly favour nouns, that is, WN’s nouns
are in general accompanied by better examples.
Specifically, we found that, on average, the length
penalty is .49 for nouns, and .62 for verbs, and that
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the frequency penalty is .10 for nouns and .15 for
verbs.

Finally, while the sentence probability is a valid
metric, we observe that it is more likely that shorter
sentences exhibit lower perplexity, and therefore
will be scored higher by a language model. To fur-
ther investigate this, we conduct an analysis where
we split WN’s and CHA’s examples into 4 bins,
namely short, mid-short, mid-long and long, with
short examples containing between 1 and 15 to-
kens, mid-short up to 30 tokens, mid-long up to
45 tokens, and long above 45 tokens. Then, we
compared the probability assigned by the language
model to these examples, and verified that, indeed,
WN has better short and mid-short examples, but
worse mid-long examples. It also important to note
that among the long examples, most of them were
close to 45 tokens for WN, while for CHA they are
much longer. To (perhaps anecdotally) illustrate
this point, the longest dictionary example in WN is
only 46 tokens long, while the longest in CHA is
141. Finally, in terms of usage of anaphoric refer-
ences, we did not find significantly different results
between WN and CHA.

4.2 Definition Modeling

Evaluating the quality of the generated definitions
is a subjective matter, as delivering the meaning
of words can take many forms. Table 2 shows ex-
amples of the predicted definitions generated by
a WN-trained model and a CHA-trained model.
When analysing these definitions and annotating
the error types (following the typification proposed
in Noraset et al. (2017)), it seems that the predicted
definitions generated by the WN-trained model
show evidence of under-specificity (first and sec-
ond rows), since in each case the definition repre-
sents the general idea, but where part of the mean-
ing of the target lemma in context is lost. In the
third row, the generated definition falls into the self-
reference type of error, since it refers to the same
lemma in a circular way.

We also noticed that, generally speaking, the
CHA-trained model learned to explicitly mention
the prototypical concept or the idea to which a
definition applies, and this is interesting from a
commonsense learning point of view, which has
recently received considerable attention (Gajbhiye
et al., 2022; Nguyen et al., 2022). Therefore, given
that CHA has many definitions that start with the
prototypical concept/entity that embodies that prop-



PD_WN

PD_CHA

become more powerful
or efficient

of a vehicle or aircraft
move forward at a high
rate of speed

have a physical form or
appearance

of a book or other prod-
uct reach the shelves of a
bookstore or other store

No. Lemma Example Gold definition

(1) accelerate The car accelerated move faster

(2) appear Did your latest book ap-  be issued or published
pear yet?

(3) immigrate Many people immigrated come into a new coun-

at the beginning of the
20th century

try and change resi-
dency

become immigratory

of a person move to a for-
eign country to settle per-
manently

Table 2: Sample of predicted definitions generated by WN-trained model and CHA-trained model. PD_WN:
predicted definition by WN-trained model, PD_CHA: predicted definition by CHA-trained model

WN CHA
BLEU 0.18  00.16
METEOR 1228 14.89
ROUGE-L 1649 17.37

Table 3: DM evaluation results for WN and CHA

Nouns Verbs
BLEU 3.67 0.47
METEOR 20.66 14.13
ROUGE-L  26.85 18.72
Average 17.06 11.12

Table 4: DM evaluation results for WN Nouns vs WN
Verbs

erty (e.g., “accelerate” having a definition starting
with “of a vehicle”), for the future, this resource
could be helpful to map prototypical features to
concepts, using dictionary examples as additional
contexts.

We evaluated the definitions intrinsically using
automatic string matching measures, specifically
BLEU, ROUGE-L and METEOR. BLEU is a met-
ric used for machine translation evaluation and
compares n-grams matches of the candidate sen-
tence with the reference sentence (Papineni et al.,
2002) (we used the default BLEU-4). Rouge-L
measures the longest common sub-sequence be-
tween the candidate sentence with the reference
sentence (Lin, 2004). METEOR is another im-
proved machine translation evaluation metric that
matches uni-grams based on their surface forms,
stemmed forms, and meanings (Lavie and Agarwal,
2007).

Exp. 1 (WN vs CHA) Table 3 shows the aver-
age BLEU, METEOR and ROUGE-L scores for
the definitions generated by WN-trained model and
CHA-trained model. The results show that the over-
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all scores for evaluating the definition generation
model that uses WN examples are low in general,
even when comparing it with the model that uses
CHA examples for training.

Exp. 2 (WN Nouns vs WN Verbs) Finally, with
regards to the WN nouns vs WN verbs experiment,
Table 4 shows the results of the three metrics used
for evaluating the generated definitions. When com-
paring these results and the average of the scores,
we can see that the quality of generated definitions
of nouns is generally better than that of verbs. We
leave for future work to further explore the differ-
ences between WIN’s noun vs verb examples, and
why nouns seem to be easier to learn.

5 Conclusion

Definition modeling is the task to generate a dictio-
nary definition given an input word and, optionally,
some context. While different lexicographic re-
sources are used as supervision for DM systems,
there is little work analyzing their intrinsic quality.
Our evaluation is focused on the examples avail-
able in WordNet and the Oxford Dictionary, where
we train a sequence-to-sequence definition model-
ing architecture based on BART using these two
dictionaries. We found that WN’s dictionary ex-
amples are written in a style that may make them
hard to learn (especially verbs), and that they are,
generally, (perhaps too) short. For the future, we
would like to explore extrinsic evaluations and per-
form additional experiments with other datasets
and language models.
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