
Proceedings of the CMLC-10 Workshop (@LREC 2022), pages 20–26
Marseille, 20 June 2022

© European Language Resources Association (ELRA), licensed under CC-BY-NC4.0

20

Matrix and Double-Array
Representations for

Efficient Finite State Tokenization

Nils Diewald
Leibniz Institute for the German Language

Mannheim, Germany
diewald@ids-mannheim.de

Abstract
This paper presents an algorithm and an implementation for efficient tokenization of texts of space-delimited languages based
on a deterministic finite state automaton. Two representations of the underlying data structure are presented and a model
implementation for German is compared with state-of-the-art approaches. The presented solution is faster than other tools
while maintaining comparable quality.

Keywords: Tokenization, Finite State, Corpora

1. Introduction
Tokenization, i.e. the segmentation of a text string into
“distinct meaningful units” (Kaplan, 2005) is a fun-
damental step in the preparation of linguistic corpora.
Character sequences are subdivided (like “Look it up
at p. 124! ;-)” into “Look|it|up|at|p.|124|!|;-)|”) to

make the individual units accessible for search engines
and further linguistic analysis. Since errors in tokeniza-
tion often have a significant impact on further process-
ing and analyses, high accuracy is of great importance.
As ambiguities concerning sentence boundaries have to
be resolved for tokenization, they are usually marked in
the same step.
Although tokenization – especially for space-delimited
languages such as English or German – is considered
one of the simpler applications of natural language pro-
cessing (NLP) and is often regarded as a solved prob-
lem, there are some cases where programmatic recog-
nition of token boundaries pose challenges and naı̈ve
approaches may fail, for example, in distinguishing the
period character at the end of an abbreviation from
marking the end of a sentence. More recent phenomena
of computer-mediated communication (CMC), such as
emoticons, URLs, or email addresses, pose difficulties
in particular.
Tokenization is rarely a time-critical process, espe-
cially in preprocessing for much more time-consuming
syntactic or semantic analyses. And the quality of the
results is clearly the most important measure for eval-
uating this task. However, in the case of very large
corpora in research data preparation, tokenization can
be challenging – and speed of processing, accompanied
by low resource consumption, can be an important cri-
terion in deciding which tool to choose.
In many areas of NLP, rule-based approaches have been
replaced by machine-learning (ML) methods in recent
years. This is due to more efficient algorithms and
better hardware for the implementation of such solu-
tions on the one hand, and to the availability of large

1

2

␣
4

a

6

b

7

c

␣

3

c

5

b c
b

Figure 1: Lexical analyzer for tokens a, b, c, ab∗c
and whitespace sequences (+).

annotated corpora for training these systems on the
other hand. Tokenization and sentence segmentation
are still exceptions to this (although there are signif-
icant differences with respect to different languages).
The main reason is that accuracy of rule-based tokeniz-
ers for space-delimited languages is already very high.
For German, for example, rule-based approaches con-
tinue to outperform ML approaches significantly both
in terms of accuracy and speed (Ortmann et al., 2019;
Diewald et al., 2022).

1.1. Lexical Analyzers
Rule-based tokenizers and sentence segmenters have
traditionally been based on lexical analyzers (Aho et
al., 2007, ch. 3) using a general purpose lexical scan-
ner generator such as Lex (Lesk and Schmidt, 1975)
or modern successor systems like Flex, JFlex or Ragel.
Rules for lexical units are formulated as regular expres-
sions and transformed into a deterministic finite state
automaton (FSA), which linearly searches the input
stream, executes arbitrary code when reaching terminal
states, and for ambiguous inputs follows the principle

21

1

<␣:ε> 2a

3b,c
<ε:T>

c

4

b

<ε:T>

c

b

Figure 2: Tokenizing automaton segmenting a, b, c,
ab∗c, ignoring whitespace sequences (+) and intro-
ducing token boundaries (T).

of the longest match (see Fig. 1).
Modern rule-based tokenizers also follow this ap-
proach, for example the Stanford Tokenizer1, Bling-
Fire2, or KorAP-Tokenizer3 (Kupietz and Diewald,
2020). Tokenizers that rely on dictionaries to vector-
ize an input stream follow a similar approach (Song et
al., 2021).

1.2. Finite State Transducers
An alternative – or generalization – of this approach
is the tokenization using finite state transducers (FST;
Beesley and Karttunen, 2003, ch. 9.2; Beesley, 2004).
FSTs are finite state automata with translating edges.
They not only accept symbol sequences of an input
string, but return for each input symbol an output sym-
bol and thus generate for each accepted input string at
least one output string. By supporting empty charac-
ters (ε) in input and output, i.e. symbols which do not
consume or produce any characters, it is possible to for-
mulate a transducer that converts an input stream into
an arbitrarily segmented output stream (see Fig. 2).
Kaplan (2005) describes an algorithm based on an FST
representation of a tokenizer. Following a breadth-first
traversal, an incremental composition operation is per-
formed on the tokenizing FST with a linear text FSA.
The output of the operation is an FSA of all possible
tokenizations (or a sequence of these FSAs), with the
ambiguities still intact to be resolved by higher-level
lexical constraints.

1.3. Further Models
Further approaches of rule-based tokenizers extend
these models, for example, to a list of finite state au-
tomata that are applied in a defined order (Proisl and
Uhrig, 2016), or by applying context-free rules recur-
sively (Graën et al., 2018, or SpaCy4).

1http://nlp.stanford.edu/software/
tokenizer.shtml

2https://github.com/Microsoft/
BlingFire

3https://github.com/KorAP/
KorAP-Tokenizer

4https://spacy.io/usage/
linguistic-features#tokenization

2. Data Structure
While Lex-like scanner generators allow arbitrary code
executions at terminal nodes, and FSTs support arbi-
trary character transitions, for a finite state tokenizer
the transition types can be reduced to three cases:

Identity: The input symbol corresponds to the output
symbol (e.g., a character within a word);

Deletion: The input symbol can be ignored (e.g., a
whitespace character between word boundaries);

Token Boundary: The input symbol is followed by
the end of a token (e.g., a dot at the end of an ab-
breviation).

Beesley (2004) proposes a mechanism for formulat-
ing an FST-based tokenizer, which inserts a transition
following every acceptable token, which consumes an
empty character (i.e., can always be traversed) and pro-
duces a token boundary marker (T). The above rules
can then be mapped to three types of edges in the au-
tomaton (see Fig. 2 for an application of these rules):

<?> for the identical output of arbitrary
input symbols;

<?: ε> for the deletion of arbitrary input
symbols;

<ε:T> for marking token boundaries with-
out consuming an input symbol.

Compared to an FSA or FST, terminal nodes do not
play a role in finite state tokenizers – the set of terminal
nodes is empty. We can represent it accordingly as a
quintuple:

Σ Finite alphabet of the input language
(ε ∈ Σ);

Φ Finite set of states;
δ State transition function;
s1 Initial state;
δD Finite set of all <?: ε> transitions.

Reducing the transducer to these simple rules guaran-
tees, that for an input symbol to be consumed exactly
one output symbol exists. Ambiguity with respect to
token boundaries arises only when traversing<ε:T>.

2.1. Matrix Representation
A standard representation of all transitions of a finite
state automaton is a state transition table (Tab. 1 shows
the matrix representation of the automaton in Fig. 1).
Additional information includes the initial state and ter-
minal nodes.
A transducer would encode output symbols in addition
to the destination node in this table. Due to the reduced
transition types of the tokenizer, this can be simplified
by encoding all identity transitions with a positive sign
and all deletion transitions with a negative sign5 (see

5In an implementation, the most-significant bit could be
used for marking.

http://nlp.stanford.edu/software/tokenizer.shtml
http://nlp.stanford.edu/software/tokenizer.shtml
https://github.com/Microsoft/BlingFire
https://github.com/Microsoft/BlingFire
https://github.com/KorAP/KorAP-Tokenizer
https://github.com/KorAP/KorAP-Tokenizer
https://spacy.io/usage/linguistic-features##tokenization
https://spacy.io/usage/linguistic-features##tokenization

22

s1 s2 s3 s4 s5 s6 s7

a 4 0 0 0 0 0 0
b 6 0 0 5 5 0 0
c 7 0 0 3 3 0 0

2 2 0 0 0 0 0

Table 1: State Transition Table for FSA of Fig. 1

s1 s2 s3 s4

a 2 0 0 0
b 3 4 0 4
c 3 3 0 3

-1 0 0 0
ε 0 1 1 0

Table 2: State Transition Table for the reduced FST of
Fig. 2

Tab. 2, esp. δ(s1,) = −1 for an example of a dele-
tion transition). Since ε transitions by definition only
mark token boundaries (T) no additional encoding is
necessary.

2.2. Double-Array Representation
However, the matrix representation can cause a prob-
lem: Not only the number of states in the automaton
has an influence on the model size and thus on the re-
quired storage space, but also the size of the alphabet
|Σ|. This can be an issue depending on the language to
model and the sparseness of the transition table. Alter-
natively, the finite state tokenizer can be implemented
based on a double-array (DA) trie (Aoe, 1989) as a DA
finite state machine (Mizobuchi et al., 2000). In a DA
trie the state transition function of an automaton can be
represented in two one-dimensional numeric arrays of
equal length (base and check). Both state and input
symbols are encoded as numeric values > 0. A state
transition t0 = δ(t, x) is thereby valid if:

t0 = base[t] + code[x]

check[t0] = t

A target state is recorded in the base array at the po-
sition of the sum of the current state and the numeric
code of the input symbol. In the construction of the
DA trie6 care is taken, that the transitions are stored
compactly and possibly overlapping, therefore in the
check array at the target position the parent state must
be checked.
The difference between a trie and a regular FSA is that
the in-degree of a state in the FSA can be > 1 and
that circular structures may exist. While the represen-
tation as a DA allows for circular structures, it can not
represent nodes with an in-degree > 1. Mizobuchi
et al. (2000) therefore introduce groups of “separate
states” for nodes that have an in-degree > 1, pointing

6Regarding the efficient construction of static DA tries,
please refer to Niu et al. (2013).

1

2a

3
c

5

<_:ε>

10
b

<ε:T>

4
b

8

c

6

<ε:T>

7b

9c

Figure 3: Double-array FST resembling the automaton
in Fig. 2

to a “representative state” to encode FSAs in DA struc-
tures (Fig. 3 shows the automaton from Fig. 2 with sep-
arate states in dashed circles pointing to representative
states). To model the relationship of separate states to
representative states in the DA, they introduce an in-
termediate step in the base array, which encodes with
a negative sign. If base[t] has a negative sign, the
transition corresponds to a separate state whose value
points to the representative state. Accordingly, in addi-
tion to the condition above, the following is true:

tt = base[t] + code[x]

t0 =

{
base[|tt|], if tt < 0
tt, otherwise

}
When traversing the edges, this intermediate step must
be taken into account.
Corresponding to this mechanism, <?: ε> edges can
be represented in the double array to model a finite state
tokenizer, in that for transitions with the destination t
the value in check[t0] is given a negative sign. Note,
that this check must be performed before the resolution
of a separate state (Tab. 3 shows one possible represen-
tation of the automaton in Fig. 3 as an extended DA
FSA with representative state references and deleting
transitions).
As this representation is independent of |Σ|, it can lead
to smaller models under certain conditions.

3. Algorithm
Algorithm 1 shows the simplified (see below) tokeniza-
tion of an input sequence in into the tokenized out-
put sequence out. The algorithm is representation-
agnostic, the only difference to be noted is that with
a DA representation, the sign of the target node comes
from the check and the value corresponds to the rep-
resentative state from base.
Valid transitions: For each input character ini the
transition δ(t, ini) is checked in the automaton. Char-
acters leading to targets with a positive sign are written

23

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

base 1 4 -3 3 -1 8 -3 -1 -1 -6
check 10 1 1 1 -1 2 2 4 2 6

Table 3: Extended double-array FSA of Fig. 3, with code[a]=1, code[b]=2, code[c]=3, code[]=4,
code[ε]=5. The length of the DA is stored in check[1].

Algorithm 1: Main tokenization loop
Input: in is a character stream
Output: out is a tokenized character stream

1 newChar ← true;
2 i← 0; // position in in

3 j ← 0; // position in out

4 tε ← 0 (6= s1); iε ← 0; jε ← 0; t← s1;
5 while i < |in| do
6 if newChar then
7 char ← ini;
8 if char /∈ Σ then char ←?;
9 t0 ← t;

10 if δ(t0, ε) 6= 0 then tε ← t0; iε ← i;
jε ← j;

11 t← δ(t0, char);
12 if t = 0 then
13 if char 6= ε and tε 6= 0 then
14 t0 ← tε; i← iε; j ← jε; char ← ε;
15 else
16 if to = s1 then
17 i← i+ 1; outj ← ini;
18 else
19 t0 ← s1;

20 outj ← T ; j ← j + 1;
newChar ← true;

21 restartLoop
22 newChar ← false
23 restartLoop
24 if char = ε then
25 outj ← T ; j ← j + 1;

26 else
27 i← i+ 1;
28 if t > 0 then
29 outj ← char; j ← j + 1;

newChar ← true;

30 if t < 0 then t← −t;
31 newChar ← true;

unchanged to the output stream (see line 28f). Char-
acters that lead to targets with a negative sign are con-
sumed only.

Backtracking: <ε:T> edges allow a transition in the
automaton without consuming a character of the input
stream. This means that whenever a transition δ(t, ini)
is available, a possible transition δ(t, ε) must also be
considered (cf. δ(2,b) in Fig. 2). Since this by defini-

tion implies a token boundary mark T , this can be used
for backtracking semantics to follow a longest-match
strategy (Lesk and Schmidt, 1975): During traversion,
the last available <ε:T> transition is remembered
(see line 10), but character consumption is always pri-
oritized. If a character cannot be consumed during
traversion, the system repositions out and in, jumps
to the last <ε:T> source state (see line 13–14), tra-
verses it, and continues.
Invalid transitions: If no valid transition of an input
symbol exists and backtracking is not possible, a token
boundary marker T is added to the output stream and
the remaining input stream is continued from the initial
state s1 of the tokenizer. If the automaton is already
initial, a character is consumed beforehand (see lines
15–21). This guarantees robust output of all input data
with all automata. In carefully designed tokenizers, this
behavior is rarely triggered.

The representation of the algorithm is simplified in that
an implementation (and also the model) must be able to
handle characters /∈ Σ. In addition, special treatments
are necessary with respect to the end of the process-
ing. By concatenating several token boundary mark-
ers T , it is also possible to mark sentence boundaries
(see Sec. 4.2).
The worst time complexity of the algorithm is O(nm),
where n = |in| and m is the maximum path length ex-
cluding<ε:T> edges. Intermediate memory require-
ment corresponds to the length of the text, whereby the
processing can be handled by a buffer which can be
flushed after each successfully parsed token.

4. Implementation
4.1. Datok
Datok (Diewald, 2022) is an implementation of a fi-
nite state tokenizer based on the aforementioned algo-
rithm and datastructures. It is written in Go as a com-
mand line tool and was designed to be compatible with
KorAP-Tokenizer.
Datok relies on XFST (Beesley and Karttunen, 2003)
for the construction of its automaton in the free imple-
mentation of Foma (Hulden, 2009) (see next section;
other FST toolkits should be equally suitable).
To create an automaton that can be interpreted by Da-
tok, first Foma must compile the rule set into a com-
patible FST and subsequently Datok must convert the
FST into a finite state tokenizer (optionally in matrix or
DA representation). The final automaton can then be
applied to arbitrary data input streams, and can output

24

different forms of tokenization data (like new-line de-
limited surface forms or character offset information).

4.2. Construction
While the implementation of the algorithm and the un-
derlying data structures are relatively simple, the com-
plexity lies in the automaton and thus the challenge in
its construction.
Rule creation in XFST essentially follows Beesley
(2004), with the supplement to restrict rule formulation
to valid transitions <?>, <?: ε>, and <ε:T>. The
special symbol “@ TOKEN BOUND @” is introduced as
the token bound marker.
A very simple tokenizer that follows the introduced
rules, can be seen in Listing 1.

1 define TB "@_TOKEN_BOUND_@";
2 define WS [" "|"\u000a"|"\u0009"];
3 define PUNCT ["."|"?"|"!"];
4 define Char \[WS|PUNCT];
5 define Word Char+;
6
7 ! Compose token boundaries
8 define Tokenizer
9 [[Word|PUNCT] @-> ... TB] .o.

10 ! Compose Whitespace ignorance
11 [WS+ @-> 0] .o.
12 ! Compose sentence ends
13 [[PUNCT+] @-> ... TB \/ TB _];
14 read regex Tokenizer;

Listing 1: Compliant Tokenizer written in XFST

First, the token inventory of the tokenizer is defined
using regular expressions (lines 1–5). The direct re-
placement operator “@->” (Karttunen, 1996), which
performs a replacement on the longest possible path,
and the context operator “...”, which allows to in-
sert arbitrary symbols around a match, are helpful for
the creation of <ε:T> transitions. In the example
tokenizer these operators append the token boundary
marker to the longest possible matches of all entries of
the token inventory (line 9).
The <?: ε> transitions are realized by replacing arbi-
trary characters with ε (“0” in XFST; used in the ex-
ample for whitespace characters in line 11).
By using the direct replacement rules it is also possi-
ble to specify sequences of token boundary markers
which can be interpreted separately by an implemen-
tation. For example, it is possible to mark sentence
boundaries within the framework (line 13).
The direct replacement operations yields an unam-
biguous transducer for the unique processing of input
streams. Unfortunately, such automata (especially in
intermediate steps during compilation) can reach a very
large size and thus require an enormous amount of re-
sources. Due to the longest-match and backtracking
strategy of the algorithm, however, it is possible to
achieve unique outputs even with ambiguous transduc-
ers. Thus, when constructing the finite state tokenizer
in XFST, automata of individual token inventories can

first be created separately using direct replacement op-
erators and then be unified, e.g., for the composition of
sentence ending rules and whitespace treatment. This
flexible construction of the tokenizer enables a trade-
off in terms of model size and processing speed (which
decreases when backtracking is utilized to a great ex-
tent).

4.3. Benchmarks
In a real world tokenizer, these rules are more com-
plex with respect to applicable contexts for token and
sentence boundaries and the defined automata of the to-
ken inventory (e.g., abbreviation lists, emoticons, num-
bers). Datok (v0.1.5) contains a real world tokenizer
for German with more than 18 thousand states, more
than 2 million edges and |Σ| = 167. The ruleset is
based on preliminary work by KorAP-Tokenizer and
Çöltekin (2014). The matrix representation requires
∼10.9 MB of memory, the DA representation ∼18.5
MB (with a load factor7 of ∼70.8%).
Diewald et al. (2022) presents a detailed compari-
son of 15 different tools (both ML and rule based ap-
proaches) for the tokenization and sentence segmenta-
tion of German language data including Datok. Table 4
gives a summary of the results regarding the quality
of Datok in the form of F1 values with respect to tok-
enization and sentence segmentation in 3 different cor-
pora: Version 2.9 of the German Universal Dependency
GSD Corpus (McDonald et al., 2013) and the CMC
and Web corpora of the EmpiriST Shared Task Chal-
lenge (Beißwenger et al., 2016). While all tested tools
achieve values well above 99% for the tokenization of
the UD-GSD corpus, the F1 values for the CMC and
Web corpora are comparatively very high.8 The values
for sentence segmentation are in the middle range.

Tokens Sentences
UD-GSD CMC Web UD-GSD

F1 99.45% 98.79% 99.21% 97.60%

Table 4: Evaluation of the quality of Datok’s sentence
and token boundary detection for German (v0.1.5).

Figure 4 presents the performance in tokens per mil-
lisecond at different batch sizes (here logarithmi-
cally represented in 2x × 1000 tokens) of four dif-
ferent tokenizers: Datok (in matrix and DA repre-
sentation), BlingFire (as the fastest competitor tok-
enizer according to Diewald et al. 2022; v0.1.8 with
the “wbd.bin” model using the Python API), KorAP-
Tokenizer (v2.2.2), and Stanford Tokenizer (v4.4.09;
probably the most widely used tokenizer tool). The test

7I.e. the proportion of non-empty elements to all elements
in the representation.

8For a detailed account of the evaluation, please refer to
Diewald et al. (2022). The full evaluation suite including all
results is available at https://github.com/KorAP/
Tokenizer-Evaluation .

9Including sentence segmentation.

https://github.com/KorAP/Tokenizer-Evaluation
https://github.com/KorAP/Tokenizer-Evaluation

25

2⁰ 2¹ 2² 2³ 2⁴ 2⁵ 2⁶ 2⁷ 2⁸ 2⁹
0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

Datok (DA)

Datok (Matrix)

BlingFire

KorAP-Tokenizer

Stanford

2¹⁰ 2¹¹ 2¹² 2¹³ 2¹⁴ 2¹⁵ 2¹⁶

Figure 4: Benchmarks in t/ms for different batch sizes
(averaged over 10 runs).

system is an Intel Xeon CPU E5-2630 v2 @ 2.60GHz
with 12 cores and 64 GB of RAM. As can be seen,
model loading and startup time has a big impact on very
short texts but becomes negligible for longer texts.10

Datok can process up to ∼4,000 t/ms in matrix rep-
resentation, ∼3,900 t/ms in DA representation, and
BlingFire ∼3,600 t/ms. KorAP-Tokenizer (∼350 t/ms)
and Stanford Tokenizer (∼220 t/ms) are significantly
slower.
The implementation as a DA is slower than the matrix
implementation (presumably due to the additional par-
ent check for each traversion and the resolution of sep-
arate states), but still competitive and therefore a possi-
ble variant for implementations with large alphabets.
In view of the processing of very large corpora, such
speed differences can play a significant role. Da-
tok (like KorAP-Tokenizer) was primarily developed
for tokenizing the German reference corpus DeReKo
(Kupietz et al., 2018), which currently comprises over
50 billion tokens. Complete processing of this cor-
pus on the test system would take ∼13.5h using Da-
tok (in matrix representation; assuming a batch size
of 100,000 tokens and a single core), BlingFire ∼33h,
KorAP-Tokenizer ∼8 days, and Stanford Tokenizer (in-
cluding sentence segmentation) ∼12.5 days. For the
same task, some other tools require several years to
complete and can therefore be considered impractical
in this application scenario (Diewald et al., 2022).

5. Summary and Outlook
The algorithm and the corresponding data structures
presented in this paper show a high performance in to-
kenizing large corpora in the implementation of Datok.
At the same time, the model allows complex rule sets
that achieve a very high quality for space-delimited lan-

10Caching effects cannot be ruled out, since batches are
based on a concatenated, repetitive text of ∼98 thousand to-
kens.

guages. Thus, Datok can be used as a suitable tool in
research data preparation.
However, there are some limitations associated with
the algorithm that need to be taken into account. For
example, long-distance relationships between tokens
(Graën et al., 2018) cannot be used for disambiguation
(e.g., opening single quotes that can help distinguish
a closing single quote from being used as an apostro-
phe). Also, the left longest-match rule prevents valid
tokens from being further subdivided, even though this
may result in shorter segments on the right side of the
analysis (e.g., the string “Go tohttp://google.com/”,
in which a space was omitted by mistake, would
be tokenized using common word and URL rules
into “Go|tohttp|:|/|/|google|.|com|/|” instead of
“Go|to|http://google.com/|”). Since the output pro-
duced is unambiguous and no longer contains possible
interpretations, ambiguities can not be resolved by
higher-level lexical constraints (Kaplan, 2005).
Extensions to the algorithm and the data models are
possible. Token boundaries could be marked to mod-
ify the backtracking behaviour (e.g., to exempt some
ε edges from being considered as backtracking posi-
tions). And, specifically in matrix representation, token
classes can be associated with token boundary mark-
ers (e.g., to additionally mark that a token is an URL),
as is common in several tokenizer tools. This exten-
sion would also make it possible to resolve parts of the
aforementioned restrictions by re-evaluating doubtful
cases based on token classes in a second step.
Currently, Datok is in the evaluation phase for future
use in tokenizing DeReKo, for which KorAP-Tokenizer
is presently being used. Datok is open source11 and
published under the Apache 2.0 License. Language
models for English and French are under preparation.

6. Bibliographical References
Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D.

(2007). Compilers: Principles, Techniques, and
Tools. Pearson Education, Addison-Wesley, second
edition.

Aoe, J.-I. (1989). A fast digital search algorithm using
a double-array structure. Systems and Computers in
Japan, 20(7):92–103.

Beesley, K. R. and Karttunen, L. (2003). Finite State
Morphology. CSLI Studies in Computational Lin-
guistics. CSLI Publications.

Beesley, K. R. (2004). Tokenizing Transducers. Tech-
nical report, Xerox Research Centre Europe, Octo-
ber.

Beißwenger, M., Bartsch, S., Evert, S., and Würzner,
K.-M. (2016). EmpiriST 2015: A Shared Task on
the Automatic Linguistic Annotation of Computer-
Mediated Communication and Web Corpora. In
Proceedings of the 10th Web as Corpus Workshop,
pages 44–56, Berlin, August. Association for Com-
putational Linguistics.

11https://github.com/KorAP/Datok

https://github.com/KorAP/Datok

26

Çöltekin, Ç. (2014). A set of open source tools for
turkish natural language processing. In Nicoletta
Calzolari, et al., editors, Proceedings of the Ninth In-
ternational Conference on Language Resources and
Evaluation (LREC’14), pages 1079–1086, Reyk-
javik, Iceland. European Language Resources Asso-
ciation (ELRA).

Diewald, N., Kupietz, M., and Lüngen, H. (2022). To-
kenizing on scale – Preprocessing large text corpora
on the lexical and sentence level. In Proceedings of
EURALEX 2022, Mannheim, Germany, July.

Diewald, N. (2022). Datok. Software;
doi:10.5281/zenodo.6427259, https:
//github.com/KorAP/Datok.

Graën, J., Bertamini, M., and Volk, M. (2018). Cut-
ter – a universal multilingual tokenizer. In Mark
Cieliebak, et al., editors, Swiss Text Analytics Con-
ference, number 2226 in CEUR Workshop Proceed-
ings, pages 75–81. CEUR-WS, June.

Hulden, M. (2009). Foma: A finite-state toolkit and li-
brary. In Proceedings of the 12th Conference of the
European Chapter of the Association for Computa-
tional Linguistics, pages 29–32.

Kaplan, R. M. (2005). A Method for Tokenizing Text.
In Antti Arppe, et al., editors, Inquiries into Words,
Constraints and Contexts. Festschrift for Kimmo
Koskenniemi on His 60th Birthday, CSLI Studies
in Computational Linguistics Online, pages 55–64.
CSLI Publications, Ventura Hall.

Karttunen, L. (1996). Directed Replacement. In 34th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 108–115, Santa Cruz, Cal-
ifornia, USA, June. Association for Computational
Linguistics.

Kupietz, M. and Diewald, N. (2020). KorAP-
Tokenizer. Software. doi:10.5281/zenodo.5040449,
https://github.com/KorAP/
KorAP-Tokenizer.

Kupietz, M., Lüngen, H., Kamocki, P., and Witt,
A. (2018). The German reference corpus DeReKo:
New developments – new opportunities. In Proceed-
ings of the 11th International Conference on Lan-
guage Resources and Evaluation (LREC 2018), 7-
12 May 2018, Miyazaki, Japan, pages 4354–4360,
Paris, France, May. European language resources as-
sociation (ELRA).

Lesk, M. E. and Schmidt, E. (1975). Lex - A Lexical
Analyzer Generator. Technical Report 39, Bell Lab-
oratories, Murray Hill, NJ.

McDonald, R., Nivre, J., Quirmbach-Brundage, Y.,
Goldberg, Y., Das, D., Ganchev, K., Hall, K.,
Petrov, S., Zhang, H., Täckström, O., Bedini, C.,
Bertomeu Castelló, N., and Lee, J. (2013). Univer-
sal Dependency Annotation for Multilingual Pars-
ing. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 92–97, Sofia, Bulgaria,
August. Association for Computational Linguistics.

Mizobuchi, S., Sumitomo, T., Fuketa, M., and Aoe, J.-
i. (2000). An efficient representation for implement-
ing finite state machines based on the double-array.
Information Sciences, 129(1):119–139, November.

Niu, S., Liu, Y., and Song, X. (2013). Speeding Up
Double-Array Trie Construction for String Match-
ing. In Yuyu Yuan, et al., editors, Trustworthy Com-
puting and Services, Communications in Computer
and Information Science, pages 572–579, Berlin,
Heidelberg. Springer.

Ortmann, K., Roussel, A., and Dipper, S. (2019). Eval-
uating off-the-shelf NLP tools for german. In Pro-
ceedings of the 15th Conference on Natural Lan-
guage Processing (KONVENS 2019): Long Papers,
pages 212–222, Erlangen, Germany. German Soci-
ety for Computational Linguistics & Language Tech-
nology.

Proisl, T. and Uhrig, P. (2016). SoMaJo: State-of-the-
art tokenization for German web and social media
texts. In Proceedings of the 10th Web as Corpus
Workshop, pages 57–62, Berlin, August. Association
for Computational Linguistics.

Song, X., Salcianu, A., Song, Y., Dopson, D., and
Zhou, D. (2021). Fast WordPiece Tokenization.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2089–2103, Online and Punta Cana, Dominican Re-
public, November. Association for Computational
Linguistics.

https://github.com/KorAP/Datok
https://github.com/KorAP/Datok
https://github.com/KorAP/KorAP-Tokenizer
https://github.com/KorAP/KorAP-Tokenizer

	Introduction
	Lexical Analyzers
	Finite State Transducers
	Further Models

	Data Structure
	Matrix Representation
	Double-Array Representation

	Algorithm
	Implementation
	Datok
	Construction
	Benchmarks

	Summary and Outlook
	Bibliographical References

