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Abstract

Distributional semantic models capture word-
level meaning that is useful in many natural
language processing tasks and have even been
shown to capture cognitive aspects of word
meaning. The majority of these models are
purely text based, even though the human sen-
sory experience is much richer. In this paper we
create visually grounded word embeddings by
combining English text and images and com-
pare them to popular text-based methods, to see
if visual information allows our model to bet-
ter capture cognitive aspects of word meaning.
Our analysis shows that visually grounded em-
bedding similarities are more predictive of the
human reaction times in a large priming exper-
iment than the purely text-based embeddings.
The visually grounded embeddings also corre-
late well with human word similarity ratings.
Importantly, in both experiments we show that
the grounded embeddings account for a unique
portion of explained variance, even when we
include text-based embeddings trained on huge
corpora. This shows that visual grounding al-
lows our model to capture information that can-
not be extracted using text as the only source
of information.

1 Introduction

Distributional semantic models create word repre-
sentations that quantify word meaning based on the
idea that a word’s meaning depends on the contexts
in which the word appears. Such representations
(also called embeddings) are widely used as the
linguistic input for computational linguistic mod-
els, with research showing that they can account
for response times in lexical decision tasks (Man-
dera et al., 2017; Rotaru et al., 2018; Petilli et al.,
2021), decode brain data (Xu et al., 2016; Abnar
et al., 2018), account for brain activity during text
comprehension (Frank and Willems, 2017), and
correlate with human judgements of word similar-
ity (Kiela et al., 2018; Derby et al., 2018, 2020).

While such embeddings have proven useful, they
are not cognitively plausible as creating high qual-
ity embeddings requires billions of word tokens.
For instance, the GloVe embeddings developed by
Pennington et al. (2014) are trained on 840 bil-
lion words. It would require a human 80 years of
constant reading at about 330 words per second to
digest that much information. Obviously, humans
are able to understand language after much less ex-
posure, and furthermore, their sensory experience
is much richer than solely reading texts.

Embodied cognition theory poses that our con-
ceptual knowledge is based on the entirety of our
sensory experience (Barsalou, 2008; Foglia and
Wilson, 2013). For instance, reading the word dog
elicits sensory experiences we have with dogs, such
as their sound and how they look. Embodied cogni-
tion theory thus assumes that all our sensory experi-
ences contribute to our conceptual knowledge and
processing, which should be reflected in human be-
haviour. Early priming studies have indeed found
that visual similarities can elicit priming effects
(D’Arcais et al., 1985; Schreuder et al., 1998).

If visual features are part of our conceptual
knowledge, word embeddings incorporating vi-
sual features should be able to explain human be-
havioural data to a degree unattainable by purely
text-based methods (that is, if we assume visual
sensory experiences can never be fully captured
by textual descriptions). That is why recent re-
search has taken an interest in multimodal word
embeddings, combining text with a second source
of information, resulting in visually grounded em-
beddings (VGEs) in the case of visual information.

1.1 Related work

Using image tags as a source of visual context,
Bruni et al. (2013) create visual distributional se-
mantic embeddings and use dimensionality reduc-
tion to map visual and text-based embeddings to the
common VGE space. Derby et al. (2018) combine
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text-based embeddings with the network activa-
tions of an object recognition model and show that
these visual features improve the embeddings’ per-
formance in downstream tasks. Petilli et al. (2021)
use visual embeddings created by an object recog-
nition network, and show that the embedding simi-
larities are predictive of priming effects over and
above text-based similarities.

The studies described above involve separately
trained word and visual embeddings. An end-
to-end approach to combine visual and linguis-
tic information is through a deep neural network
based caption-to-image retrieval (C2I) models (e.g.,
Karpathy and Fei-Fei 2015; Kamper et al. 2017).
While these models are trained to encode images
and corresponding written or spoken captions in a
common embedding space such that relevant cap-
tions can be retrieved given an image and vice
versa, the resulting embeddings have been shown
to capture sentence-level semantics (Chrupała et al.,
2017; Merkx and Frank, 2019; Merkx et al., 2021).
Kiela et al. (2018) showed that pretrained embed-
dings correlated better with human intuition about
word meaning after being fine-tuned as learnable
parameters in their C2I model.

1.2 Current study

In this study we investigate whether VGEs cre-
ated by a C2I model explain human behavioural
data. Our research question is: can VGEs cap-
ture aspects of word meaning that (current) text-
based approaches cannot? To answer this question
we investigate novel end-to-end trained VGEs and
test them on two types of human behavioural data
thought to rely on conceptual/semantic knowledge.
Secondly, we take care to separate the contribution
of the image modality from that of the linguistic in-
formation to see whether visual grounding captures
word properties that cannot be learned by purely
text-based methods. We do this by comparing our
VGEs to three well-known text-based methods.

Throughout our experiments we will use two
versions of the text-based methods: custom trained
on the same data as our VGEs and pretrained on
large corpora. From a cognitive modelling perspec-
tive, the former of these is more interesting. While
the use of large corpora may not be problematic
for natural language processing applications where
performance comes first, we aim to create cogni-
tively plausible embeddings, that is, from a realistic
amount of linguistic exposure. However, the inclu-

sion of pretrained embeddings serves to answer our
main research question.

1.2.1 Semantic similarity judgements
In our first experiment we test whether the VGEs
correlate better with a measure of human intuition
about word meaning than text-based embeddings.
A well-known method to capture human intuition
about word meaning is simply by asking subjects
how similar two words are in meaning. To evaluate
word embeddings, one can then see if embedding
similarities for those word pairs correlate with the
human judgements (e.g., Bruni et al., 2013; Baroni
et al., 2014; Speer and Chin, 2016; Kiela et al.,
2018; Derby et al., 2020).

While the study by Kiela et al. (2018) performed
a similar investigation on pretrained word embed-
dings fine-tuned through their C2I model, they did
not take into account the fact that text might also
contain visual knowledge. It is not unreasonable to
assume that some visual knowledge can be gained
from a large corpus of sentences solely describing
visual scenes. We account for this visual knowl-
edge from text by incorporating word embeddings
trained on the image descriptions in order to in-
vestigate the contribution of the image modality
included in the VGEs.

Collecting word similarity ratings typically in-
volves showing participants two words and asking
them to rate how similar or related their meanings
are, or picking the most related out of several pairs.
Semantic relatedness refers to the strength of the
association between two word meanings. For in-
stance, ‘dog’ and ‘leash’ have a strong relationship
but are not similar in meaning. Semantic similarity
refers to two words sharing semantic properties, for
instance ‘dogs’ and ‘cats’ which are both animals
that people keep as pets (Hill et al., 2015).

1.2.2 Semantic priming
In the second experiment, we test whether our
VGEs are predictive of semantic priming effects
from a large priming experiment (Hutchison et al.,
2013). Semantic priming effects occur when acti-
vation of a semantically related prime word facil-
itates the processing of the target word, resulting
in shorter reaction times. If all our sensory experi-
ences contribute to word meaning, we would expect
visual perceptual properties of the prime-target pair
to influence the response times.

Petilli et al. (2021) performed a similar experi-
ment using visual embeddings derived from acti-
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vation features from an object recognition network
and text-based word embeddings. Their results
show that after accounting for the text-based simi-
larity, the visual embedding similarities contribute
to explaining the human reaction times only for
lexical decision trails with a short stimulus onset
asynchrony (SOA), and not for the naming task or
long SOA trials. They attribute this to: 1) the lexi-
cal decision task being more sensitive to semantic
effects than the naming task (Lucas, 2000), and 2)
visual information being activated in early linguis-
tic processing and rapidly decaying (Pecher et al.,
1984; Schreuder et al., 1998). We will further test
these interactions in our own experiment.

2 Methods

In our experiments, we compare the VGEs from
our own model with three well known text-based
distributional semantic models: FastText (Bo-
janowski et al., 2017), Word2Vec (Mikolov et al.,
2013a) and GloVe (Pennington et al., 2014). For
the purpose of this study, we take two approaches:
1) we train our own text-based distributional
models to allow for a fair comparison to the VGEs,
and 2) we use the pretrained models to investigate
whether our VGEs capture semantic information
that even models trained on large text corpora do
not. The code used in this study can be found
at https://github.com/DannyMerkx/
speech2image/tree/CMCL2022

2.1 Training data

MSCOCO is a database intended for training image
recognition, segmentation and captioning models
(Chen et al., 2015). It has 123,287 images and
605,495 written English captions, that is, five cap-
tions paired to each image. Captions were collected
by asking annotators to describe what they saw in
the picture. Five thousand images (25,000 captions)
are reserved as a development set.

The captions are provided in tokenised format.
In order to use them in our models we only de-
capitalised all words and removed the punctuation
at the end of each sentence. This results in a total
of 6,184,656 word tokens and 28,415 unique word
types, to which we add start- and end-of-sentence
tokens for training our visually grounded model.

The images are pre-processed by resizing the im-
ages such that the shortest side is 256 pixels, while
keeping the original aspect ratio. We take ten 224
by 224 crops of the image: one from each corner,

one from the middle and the same five crops for
the mirrored image. We use ResNet-152 (He et al.,
2016) pretrained on ImageNet to extract visual fea-
tures from these ten crops and then average the
features of the ten crops into a single vector with
2,048 features. These features are extracted by re-
moving ResNet’s classification layer and taking the
activations of the penultimate layer.

2.2 Models

2.2.1 Visually grounded model

Our visually grounded model is based on our im-
plementation presented in Merkx and Frank (2019),
and we refer to that paper for the details. Here
we will provide a brief overview of the model, any
differences with Merkx and Frank (2019) and the
parameter settings tested in this study.

The VGE model maps images and their corre-
sponding captions to a common embedding space.
It is trained to make the embeddings for matching
images and captions as similar as possible, and
those for mismatched images and captions dissim-
ilar. The model consists of two parts; an image
embedder and a caption embedder. The image em-
bedder is a single-layer linear projection on top of
the image features extracted with ResNet-152. We
train only the linear projection and do not further
fine-tune ResNet.

The caption embedder consists of a word embed-
ding layer followed by a two-layer bi-directional
recurrent Long Short Term Memory (LSTM) layer
and finally a self-attention layer. The embedding
layer has 300 dimensions and is used to represent
the input words as learnable embeddings. The pur-
pose of the LSTM is to create a contextualised hid-
den state for each time-step (input word). Its first
layer has 1028 hidden units, while its second layer
acts as a bottleneck with 300 hidden units. Finally,
the purpose of the attention layer is to weigh each
time-step in order to create a single fixed-length
embedding for the entire caption. The attention
layer has 128 hidden units.

The image embedder has 2 × 300 dimensions
so that the output matches the size of the caption
embeddings. Both image and caption embedding
are L2 normalised and we take their distance as the
loss signal for the batch hinge loss function (see
Merkx and Frank, 2019). The networks are trained
for 32 epochs using Adam with a cyclic learning
rate schedule based on Smith (2017), which varies
the learning rate smoothly between 10−3 and 10−6.
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The obvious way to extract word embeddings
from the trained model would be to use the trained
weights of the embedding layer. Unlike for instance
in GloVe, where each word’s embedding is based
on its full co-occurrence distribution, these embed-
dings are not trained specifically to capture word
context or meaning and they are not necessarily
the best word embeddings. However, our initial
tests showed that they performed very poorly as
semantic embeddings when trained from a random
initialisation 1. Rather than taking the input em-
beddings we create our own embeddings from the
hidden representations of the model.

We create our VGEs from the hidden activations
of the bottleneck LSTM layer. We use the trained
caption encoder to encode all training sentences in
MSCOCO. However, we remove the attention layer
that creates the sentence embedding and we retain
the individual activations of the LSTM at each time
step. As the word representations in this layer can
be used to create semantic sentence embeddings
that capture human intuition about sentence mean-
ing (as we showed for instance in Merkx and Frank,
2019 and Merkx et al., 2021), we expect these rep-
resentations to better capture word meaning than
the input embeddings.

The embedding for each word is then created by
summing and normalising its LSTM layer activa-
tions from all its occurrences in the dataset. As
opposed to Merkx and Frank (2019), where we
used a single recurrent layer and found no further
benefit of additional layers in terms of sentence
embedding quality, we found that the quality of our
VGEs improves when we use a two-layer LSTM,
with the second layer acting as a bottleneck from
which we derive the embeddings.

2.2.2 Text-based models
The text-based distributional models are trained on
the MSCOCO captions. We train Word2Vec and
FastText using the Gensim package (Řehůřek and
Sojka, 2010). We train GloVe using the code that
Pennington et al. (2014) made publicly available2.

Word2Vec and FastText were trained as the Skip-
gram variant with embedding size 300, a context
window of 10 and 10 negative samples. GloVe
was trained with embedding size 300 and a context
window of 10. All resulting word embeddings are

1Kiela et al. (2018) were able to use the input embeddings
because they were initialised using pretrained embeddings.

2https://nlp.stanford.edu/projects/
glove/

Table 1: Description of the word similarity/relatedness
evaluation datasets. #available is the number of word
pairs included in the evaluation. Type indicates whether
the dataset captures similarity or relatedness. NA in-
dicates subjects were not specifically instructed on the
difference.

Dataset #word-pairs #available type
WordSim353 353 240 NA
WordSim-S 203 147 Similarity
WordSim-R 252 166 Relatedness
SimLex999 999 793 Similarity
-SimLex999 Q1 249 141 Similarity
-SimLex999 Q4 250 249 Similarity
MEN 3000 2889 Relatedness
RareWords 2034 204 NA

then L2 normalised.
In addition, we use the following pretrained

vectors (all 300 dimensional): Word2Vec trained
on 100 billion tokens of the Google News corpus
(Mikolov et al., 2013b), FastText trained on 600
billion tokens of Common Crawl (Mikolov et al.,
2018) and GloVe trained on 840 billion tokens of
Common Crawl (Pennington et al., 2014).

2.3 Evaluation data
2.3.1 Semantic similarity judgements
We include both semantic relatedness and similar-
ity datasets in our analysis. It has been argued that
subjects’ intuitive understanding of similarity is not
necessarily in line with the ‘scientific’ notions of
similarity and relatedness explained in the intro-
duction (Hill et al., 2015). Thus, if subject are not
clearly instructed on these notions of similarity or
relatedness, we consider the nature of the dataset
undefined.

The WordSim353 dataset by Finkelstein et al.
(2002) contains 353 word pairs annotated with sim-
ilarity ratings. While the name suggests it is a simi-
larity rating dataset, more recent studies consider
it a hybrid dataset, as subjects were not specif-
ically instructed to judge relatedness or similar-
ity. In a later study by Agirre et al. (2009), the
WordSim353 data was split into similar and re-
lated pairs by annotating the word pairs. WordSim-
S (similar) contains word pairs annotated as be-
ing synonyms, antonyms, identical, or hyponym-
hyperonym. WordSim-R (related) contains word
pairs annotated as being meronym-holonym, and
pairs with none of the above relationships but with
a similarity score greater than 5 (out of 10). Both
sets contain all unrelated words (words not anno-
tated with any of the above relationships and a
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similarity lower than 5).
SimLex999 was created with the caveats of the

original WordSim353 in mind in order to create a
dataset of 999 word pairs annotated for similarity
rather than relatedness (Hill et al., 2015). Sim-
Lex999 furthermore contains concreteness ratings
for the word pairs. Hill et al. (2015) divided the
the dataset into concreteness quartiles based on the
sum of the concreteness ratings for each pair. Using
these quartiles we also look at the 25% most con-
crete word pairs versus the 25% most abstract pairs
in the dataset, of course expecting our grounded
model to perform best on the concrete words.

MEN contains 3000 word pairs annotated for
semantic relatedness (Bruni et al., 2013). Ratings
were collected by showing subjects two word pairs
and asking them to select the most related one.
MEN was specifically collected to test multi-modal
models, by selecting only words that have a visual
referent that appeared in a large image database.

The RareWords dataset contains 2034 word
pairs, where at least one word of each pair has
a low frequency in Wikipedia (Luong et al., 2013).
Modelling low-frequency words is a challenge for
many models of distributional semantics.

Not all of the words in these databases are avail-
able in our training data and thus some will not have
a word embedding. Table 1 contains an overview
of the datasets described here and the number of
word pairs that could be entered in our evaluations.

2.3.2 Semantic priming
The Semantic Priming Project (SPP) dataset
(Hutchison et al., 2013) contains lexical decision
times and naming times from a large priming ex-
periment. The database is large for its kind, with
1,661 target words (and 1,661 non-words for the
lexical decision task), each paired with a strong
and weak prime and two unrelated primes. Further-
more, each prime-target pair was presented with
a short (200ms) and a long (1200ms) SOA. Ev-
ery combination of prime-target and SOA received
responses from 32 subjects.

This gives us 26,576 (1661 target words × 4
priming conditions × 2 SOAs × 2 tasks) trials
(disregarding the non-word word trials). We pre-
processed the data by removing target words that
mistakenly had more or fewer than the required
four primes, trials with erroneous responses and
missing data. We also lowered any capitals in
the prime and target words, averaged the response
times over the 32 subjects, and removed any prime-

target pair that did not occur in our training data,
resulting in 18,326 datapoints.

2.4 Analysis
2.4.1 Semantic similarity judgements
To test whether the word embedding models cap-
ture human intuitions on word similarity, we use
the models to calculate embedding cosine similari-
ties for each word pair and correlate them with the
human annotations. From the correlations r we de-
rive R2 values, that is, the percentage of variance in
the human similarity judgements that is explained
by the model similarity scores. This allows us to
evaluate our custom trained word embeddings to
see which method best extracts word-level seman-
tics from the MSCOCO dataset.

Next, we also compute semi-partial correlations
between the human annotations and our VGE
model using each of the text-based models as
a control. Simply put, the semi-partial correla-
tion between the VGE similarities and human an-
notations removes the effect of the control (i.e.,
text-based similarities) from the VGE similarities.
Semi-partial R2 gives us the percentage of variance
that is uniquely explained by the VGE similarities.
Given that all models are trained on the same tex-
tual data, with only the VGEs having access to the
visual modality, this allows us to see whether visual
grounding captures information that the text-based
methods do not.

Finally we also test the semi-partial correlations
using the pretrained embeddings as a control. For
each pretrained model we also add in its custom
MSCOCO-trained equivalent as a control, to take
into account the information that text-based models
can extract from the MSCOCO captions.

2.4.2 Semantic priming
Using linear regression models, we analyse how
well embedding similarities predict human (log-
transformed) reaction times in the SPP data using
the Statsmodels package in Python (Seabold and
Perktold, 2010). We code SOA and Task as factor
variables. The reaction times are not on the same
scale due to differences in the required response
for the lexical decision and naming tasks so we
standardise the log-transformed reaction time data
separately for each combination of SOA and Task.
This removes the main effects of SOA and Task
but we include them in the regression as we are
interested in their interactions with the similarity
measures.
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We fit a baseline regression including the target
length (number of characters), Task and SOA as
regressors. We furthermore include several regres-
sors based on SUBTLEX-US (Brysbaert and New,
2009): log-transformed word-frequency counts,
contextual diversity (the number of SUBTLEX-US
documents a word appears in) and the orthographic
neighbourhood density (the number of SUBTLEX-
US words that are one character edit away) for the
target words.

Next, for each of our embedding models, we
include the prime-target embedding similarities as
a regressor to the baseline model. We also add
two two-way interactions to test the claims made in
Petilli et al. (2021): 1) the interaction between the
embedding similarities and Task to test the differ-
ence between lexical decision and naming in terms
of sensitivity to semantic effects and 2) the interac-
tion between the embedding similarities and SOA
to test their claim about the time-frame in which
visual information plays a role. These regression
models allow us to compare the word embedding
models to each other and to the baseline using the
Akaike Information Criterion (AIC), where a lower
AIC indicates a better model fit.

We also test if our VGEs can explain variance in
the human reaction times that the text-based meth-
ods do not. We do this by refitting the regression
models for each of the text-based similarity mea-
sures and adding the VGE similarity measures and
their interactions with Task and SOA as extra re-
gressors. For each of these regressions we then
calculate the log-likelihood ratio (LLR) with the
corresponding regression without the VGEs, indi-
cating the decrease in model deviance due to adding
the VGE similarity measures. Higher LLRs indi-
cate a larger contribution of the VGEs to explaining
variance in the human response times beyond what
the text-based embedding similarities explain. Be-
cause the LLR follows a χ2 distribution, we can
test whether including the VGEs significantly im-
proves the regression model.

We apply a similar approach to the pretrained
text-based embeddings, but we also want to account
for the information that text-based embedding mod-
els can extract from the MSCOCO captions. We do
this by fitting a regression model as in the previous
step except that we include both the pretrained and
MSCOCO trained embeddings and their interac-
tions with SOA and Task. We then follow the same
procedure as described above by adding the VGE

similarities and calculate LLRs to see if adding
VGEs improves the regression fit.

3 Results

3.1 Semantic similarity judgements

Figure 1 shows the R2 (explained variance) based
on the Pearson correlation coefficients between the
human similarity annotations and the embedding
similarities. On top of the text-based R2 values, we
display the semi-partial R2 of the VGEs using the
text-based model as control. As total explained
variance equals the semi-partial R2 plus R2 of
the control(s), this clearly visualises both the total
amount of explained variance and the amount of ex-
tra variance that is uniquely explained by the VGEs.
All Pearson correlations were positive, as expected,
except for two non-significant semi-partial correla-
tions which are therefore not included in the figure.

For the MSCOCO models (left panel) we see that
while GloVe has the worst performance on each
dataset, there is no single best model. Furthermore,
while the VGEs are outperformed by FastText and
Word2Vec on SimLex999, we see that VGE per-
forms best on the most concrete words (Q4) in
SimLex999. A bit surprising then, is that VGE is
outperformed by FastText and Word2Vec on MEN,
which contains solely picturable nouns.

Looking at the semi-partial R2, that is, the extra
variance explained by the VGEs after controlling
for one of the other embedding models, we see
that for nearly every dataset and every model, the
VGEs explain a significant portion of variance that
is not explained by the text-based models. This is
not very surprising on WordSim, where the VGEs
were the best performing embeddings by quite a
margin. However, we also see that even though the
VGEs are outperformed by FastText and Word2Vec
on MEN, they still explain a large extra portion of
variance even though the R2 for these models was
already quite high.

Lastly, the pretrained models (right panel) out-
perform the MSCOCO models. This was expected,
as the used training data is several orders of mag-
nitude larger than MSCOCO. However, the semi-
partial correlations still show that the VGEs ex-
plain a significant portion of extra variance on Sim-
Lex999 Q4 and MEN.

3.2 Semantic priming

The ∆AIC scores in Table 2 show that all word
embedding models trained on MSCOCO improve
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Figure 1: The coloured bars indicate the R2 scores of the four word embedding models. The grey-scale bars
on top of the R2 scores of the text-based models indicate the semi-partial R2 scores and their significance
(∗p < .05, ∗ ∗ p < .01, ∗ ∗ ∗p < .001, corrected using the Benjamini and Hochberg (1995) procedure with a false
discovery rate of 0.05) of the VGEs after controlling for the variance explained by that text-based model. Left panel:
models trained on MSCOCO. Right panel: pretrained text-based models.

Table 2: AIC comparison of regression models (lower
is better). ∆ indicates the difference in AIC compared
to the VGE model or the Baseline model. β indicates
the coefficient of the embedding similarity main effect
(lower is better) and its significance.

Model AIC ∆VGE ∆Baseline β

VGE 46997.55 — −211.04 −.67***
FastText 47101.90 104.35 −106.86 −.54***
GloVe 47163.70 166.15 −44.88 −.20**
Word2Vec 47184.45 186.90 −24.13 −.22**
Baseline 47208.58 211.03 — —

the regression fit above the baseline. The embed-
ding similarity effects were all negative, that is, a
higher similarity correctly predicts a lower reaction
time. We furthermore see that the VGE-derived
similarity measures result in the best model fit by
quite a margin, as evidenced by the AIC scores and
effect size.

We also find significant interactions between
Task and the embedding similarities for the VGE
(β = 0.201, P = 0.009) and FastText regression
models (β = 0.197, P = 0.027), meaning that the
effect of embedding similarity is stronger for the
lexical decision task. We find no significant in-
teractions between the embedding similarities and

Table 3: LLRs between regression models with the in-
dicated text-based similarity measures and the same
model with the VGE similarities as extra regressors. β
VGE are the regression coefficients for the VGE simi-
larities in each model. Higher LLRs indicate a larger
improvement in model quality due to adding the VGEs.

MSCOCO + Pretrained
LLR β VGE LLR β VGE

Word2Vec 193.72*** −.77*** 69.72*** −.49***
FastText 111.46*** −.63*** 47.32*** −.42***
GloVe 168.34*** −.72*** 49.80*** −.36***

SOA.

Table 3 shows the LLRs between regression
models including the (pretrained) text-based and
our VGE word similarity measures and the cor-
responding model including only the text-based
measures. We see that our VGEs significantly im-
prove the regression fit for every type of text-based
method, even when we include both the pretrained
and MSCOCO text-based measures. The coeffi-
cients of the VGE effects in these models are all
positive, meaning a higher VGE similarity predicts
a lower reaction time.

In the regression models including the VGEs and
the MSCOCO text-based embeddings we found
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significant interactions between the VGE similar-
ities and Task in the regression models that also
include Word2Vec (β = 0.239, P = 0.007) or
GloVe (β = 0.234, P = 0.01) and no other inter-
actions with Task or SOA.

Lastly, in the regression models including the
VGEs and both pretrained and MSCOCO text-
based embeddings, we find significant interactions
with Task for Word2Vec (β = 0.312, P < 0.001),
FastText (β = 0.297, P = 0.001) and GloVe
(β = 0.443, P < 0.001) vectors, and none for
the VGEs.

4 Discussion

We created Visually Grounded Embeddings using
a caption-image retrieval model in order to test if
these embeddings can capture information about
word meaning that text-based approaches cannot.
Importantly, by testing our VGEs on human be-
havioural measures typically thought to rely on
conceptual/semantic knowledge, we test a central
idea of embodied cognition theory, namely that
our visual experiences contribute to our conceptual
knowledge.

4.1 Semantic similarity judgements

Our first experiment showed that, when trained on
the same corpus, our VGEs are on par with text-
based methods. While there is no clear overall
best method, the VGEs perform well on WordSim
and, as might be expected, on the datasets with
concrete picturable nouns. Even though the text-
based methods outperform the VGEs on one of
these (MEN), the VGEs still explain a significant
amount of extra variance over and above what is ex-
plained by the text-based methods. This indicates
that the text-based embeddings and VGEs capture
non-overlapping conceptual knowledge, which we
attribute to the visual grounding of the VGEs, given
that the training materials were otherwise equal.

The only database where the VGEs performed
notably worse than the text-based methods was
RareWords. This is perhaps because during train-
ing, the VGEs are grounded in the image corre-
sponding to the text input, even if not all words
in the sentence are visible in the picture. As the
words in RareWords are generally not picturable
nouns, any visual information incorporated into the
word-embedding is unlikely to be helpful, or, as
evidenced by the results, counterproductive.

We furthermore found that our VGEs explain

additional variance in the human similarity ratings
even after accounting for both the MSCOCO text-
based models and pretrained models trained on
massive text corpora. The fact that the VGEs ex-
plain a significant amount of extra variance even
after the text-based models have seen billions of
tokens of text, suggests that some aspects of word
meaning cannot be captured solely from text and as
well as that visual similarity plays a role in human
intuition about word meaning.

4.2 Semantic priming

In our second experiment, the VGEs outperformed
the text-based methods on explaining human reac-
tion times from the Semantic Priming Project. Even
after we account for both the MSCOCO text-based
models and pretrained models in our regression, the
VGEs still explain a significant amount of variance
in the reaction times.

In previous work, Petilli et al. (2021) only found
a significant contribution of visual information in
the short SOA lexical decision task. We found no
further proof for their hypothesis that visual infor-
mation is activated in early linguistic processing
and thereafter rapidly decays. Rather, we find that
our VGEs improve the model quality for both short
and long SOA trials.

We did find a significant positive interaction with
Task, meaning that the word embeddings explain
less variance in the naming task than in the lexical
decision task. This interaction was not specific to
the VGEs but also occurred in the models including
FastText and for all the pretrained embeddings. As
claimed in Petilli et al. (2021) and Lucas (2000)
this suggests that naming tasks are in general less
sensitive to semantic effects.

5 Conclusion

We set out to test an end-to-end approach to com-
bining visual and textual input in a single embed-
ding, trained on a cognitively plausible amount of
data. The results from our two experiments suggest
that VGEs capture aspects of word meaning that
text-based approaches cannot. Even though we in-
clude word embeddings trained on corpora several
orders of magnitude greater than any human’s ex-
posure to language, our VGEs still explain a unique
portion of variance in both human behavioural mea-
sures.

While our results indicate that visual grounding
can provide complementary information for certain
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words, it may not play a role in our conceptual
knowledge of rare, abstract words, as shown by our
results on the RareWords corpus. Similar to Petilli
et al. (2021) this then does not support the strongest
formulations of embodied cognition theory which
suggest total equivalence between conceptual and
sensorimotor processing (Glenberg, 2015).

Of course, one could always claim that it is just
current word-embedding models that do not fully
capture word meaning yet. However, given that
VGEs trained on a relatively small amount of vi-
sual data can complement text-based embeddings,
we do not think even larger text-corpora or more
complex embedding models can ever fully capture
human semantic knowledge. The human experi-
ence is rich and varied, and our computational mod-
els can never fully capture human word knowledge
while ignoring visual aspects of this experience.
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