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Abstract

Evidence has demonstrated the presence of
similarities in language use across people with
various mental health conditions. In this work
we investigate these relationships both as de-
scribed in literature and as a data analysis prob-
lem. We also introduce a novel transfer learn-
ing based approach that learns from linguis-
tic feature spaces of previous conditions and
predicts unknown ones. Our model achieves
strong performance, with F; scores of 0.75,
0.80, and 0.76 at detecting depression, stress,
and suicidal ideation in a first-of-its-kind trans-
fer task and offering promising evidence that
language models can harness learned patterns
from known mental health conditions to aid in
their prediction of others that may lie latent.

1 Introduction

Mental health conditions are a pervasive but his-
torically often overlooked societal and individual
concern (Bertolote, 2008). In recent decades their
study has gained increasing priority, and within the
past decade this study has extended to techniques
for automated analysis and detection of mental
health conditions, including through patterns de-
tected in written and spoken language (Resnik et al.,
2014). Most work on automated assessment of
mental health seeks to identify and possibly allevi-
ate specific mental health conditions. Researchers
have focused on a myriad of target illnesses and di-
agnoses such as depression (Schwartz et al., 2014a),
schizophrenia (Gutiérrez et al., 2017), or even sui-
cideal ideation! (Homan et al., 2014). However,
to date they have not yet examined the overlap or
interplay between these target illnesses. This over-
lap may present a valuable source of information,

"Presence of Suicidal Ideation (SI) is not an illness, but
a diagnosis which encompasses thoughts ranging from con-
templation to preoccupations with death via suicide (Harmer
et al., 2022).
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particularly in the resource-poor settings common
in mental health and healthcare applications more
generally.

In this paper we ask three important research
questions centered on the interplay between the
linguistic footprints of known and latent mental
health conditions (MHCs),? and present answers to
them with evidence.

o RQ1: How do features relate across multiple
MHCs?

e RQ2: Can we represent different MHCs un-
der the same feature spaces and find rela-
tions?

o RQ3: Can we identify underlying MHCs us-
ing the language of known ones?

Our first question relates to the linguistic mark-
ers of MHCs. We comprehensively examine ex-
isting psycholinguistic and mental health research
to search for common underlying threads (§3). To
answer our second question, we investigate the re-
lation between the identified features using well
defined and trusted NLP baselines (§4). Finally, we
answer our last question by experimentally deter-
mining the success with which we can use similar
and dissimilar linguistic feature spaces to predict
the presence of latent MHCs (§5). To do so, we
leverage transfer learning to achieve a strong bench-
mark accuracy of 85%.

2 Background

According to the National Institute of Mental
Health, 43.6 million adults (nearly 18.1% of the

>We define MHCs as any condition ranging along the spec-
trum from issues causing mental health concerns such as stress,
to actual defined illnesses such as depression, or diagnoses
such as SI.
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U.S. population) experience mental health condi-
tions in a given year.? Oftentimes, symptoms may
be recognizable when interacting with close rela-
tions (Insel, 2008) or even on social media (Berry
et al., 2017). Berry et al. (2017) investigate the
popularity of social media as an outlet for men-
tal health discussion at length, finding reasons in-
cluding anonymity, sense of empowerment, sense
of community, and perceptions of the internet as
a safe space. A growing number of approaches
have sought to leverage social media data to aid
in the automated identification of specific MHCs,
with work to date including automated detection
of depression (Yasaswini et al., 2021; Schwartz
et al., 2014a; Tasnim and Stroulia, 2019; Rosen-
quist et al., 2010), post-traumatic stress disorder
(Li et al., 2010), anxiety (Shen and Rudzicz, 2017),
and stress (Naik et al., 2018). However, these ap-
proaches have lagged behind the state of the art in
more fundamental NLP tasks. In particular, work
harnessing high-powered transfer learning models
has remained either scarce or singularly focused
on one illness (Pegah et al., 2019; Howard et al.,
2019).

We aim to fill this translational gap by synthesiz-
ing fundamental progress with the applied problem
of detecting the presence of underlying MHCs. We
follow Blodgett et al. (2020)’s lead and model our
approach not only on existing NLP models, but on
findings from pyscholinguistic and other domain-
specific literature as well, including those correlat-
ing retention (Shen et al., 2009), cognitive attention
and complexity (Vuilleumier, 2006; Tausczik and
Pennebaker, 2010), reasoning (Jung et al., 2014),
and problem-solving skills (Isen et al., 1987) with
specific mental health conditions. Little has been
done towards this problem with RQs of multi-task
learning from social media being very recent (Ben-
ton et al., 2017b). This work, to the best of our
knowledge, is the first of its kind to study corre-
lation among diseases in both theory and practice.
We examine prior literature to identify correlat-
ing themes across illnesses, analyze language data
from individuals with different mental health con-
ditions to find practical correlations and trends, and
present transfer learning-based classification mod-
els to identify undiagnosed illnesses given known
features grounded in mental health and psycholin-
guistic theory and NLP practice.

Swww.nimh.nih.gov/health/statistics/p

revalence/any-mental-illness—ami-among-u
s—adults.shtml
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3 Feature Correlation Across Varying
Mental Health Conditions

A natural question that arises when using social me-
dia data is its reliability as an information source.
Social media is increasingly seen as a popular
choice and acceptable platform for healthcare in-
formation exchange (Gkotsis et al., 2016a), and
its use has been investigated in numerous pre-
dictive healthcare tasks. Classical models (e.g.,
support vector machines) trained on simple text-
based features have reliably predicted mental health
emergencies (Franco-Penya and Mamani Sanchez,
2016). Audio features have also been found to
be excellent markers of mood or other prosodic
signals, including for automated detection of de-
pression (Lamers et al., 2014). Language mod-
els have demonstrated an ability to learn powerful,
quantifiable signals from tweets to predict users’
mental states (Coppersmith et al., 2014), and more
clinically advanced mental health conditions such
as psychosis have also been detected using short
appraisals of social media posts (Birnbaum et al.,
2017). Predicting depression on social media is a
long standing research track (De Choudhury et al.,
2021), and social media has also shown that signals
to identify suicidal ideation can be traced with high
efficacy (Choudhury et al., 2016). Platforms like
Reddit* can be instrumental in terms of support,
resources, and self-disclosure about mental health
(Choudhury and De, 2014; Valizadeh et al., 2021).

One of the first traceable thematic identifications
of correlated, quantifiable information regarding
mental state and wellbeing was by Fleming et al.
(1992), suggesting that a lack of social support
combined with social isolation was present in pa-
tients showing signs of depression or post-partum
depression. The same work also identified effects
of psychological stress on attitude, emotion, and
behavior. The relationship between social isolation,
loneliness, and clinical depression was later also
validated by MNSc et al. (1996), and the relation-
ship between latent stress and surface depression
has since persisted as a recurring theme across men-
tal health literature (Scott et al., 2000).

Homan et al. (2014) found that high levels of
stress or distress are related to higher levels of sui-
cidal ideation. Schwartz et al. (2014b) also pointed
to trepidation, frustration, annoyance, helplessness,
and again stress as major themes correlating with
expression of mental illness. Depression and stress

‘reddit.com
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co-exist in latent forms for other surface illnesses
such as schizophrenia as well, as demonstrated
by Mitchell et al. (2015) who extracted LIWC
(Tausczik and Pennebaker, 2010) features from so-
cial media data to detect advanced psychosis and
schizophrenia in social media.

Perhaps one of the most interesting finds in trans-
lational mental health research is the direct rela-
tionship between depression, suicidal ideation, and
stress (Preotiuc-Pietro et al., 2015). Preotiuc-Pietro
et al. (2015) provide evidence that depressive lan-
guage correlates with sustained periods of low sen-
timent and has similar topical themes to language
produced by suicidal or dysphoric individuals.

Although NLP researchers have experimented
with a wide range of linguistic features for men-
tal health assessment and analysis, several have
emerged as being particularly discriminating. Meta-
data such as hashtags or the name of a forum (Mills,
2017) can be powerful features to detect mental
health conditions such as suicidal ideation (Gkot-
sis et al., 2016b). Specific words or hashtags can
be used to identify personality profiles, as well
as stigma or awareness of mental health condi-
tions on social media (Hwang and Hollingshead,
2016). Degrading or negative n-grams (e.g., crazy,
mad, or nuts) can distinguish personality types and
mental health outlook (Hwang and Hollingshead,
2016), and part-of-speech (POS) tags can also be
informative in social media data (Gkotsis et al.,
2016b). Tausczik and Pennebaker (2010) charac-
terize speech at a granular level with social and
personal profiles, and present LIWC, a powerful
tool to extract such features (Malmasi et al., 2016).
N-grams have been powerful markers of depression
or PTSD (Pedersen, 2015), and can be valuable
tools for feature discovery (Tanana et al., 2016).
Lexicon-based features, word embedding features,
or annotated posts from social media are also infor-
mative (Shickel et al., 2016). Across this system-
atic review of mental health within NLP literature,
the following key relations become evident:

e Stressful and emotional events affect mea-
sured cognitive complexity (Shen et al., 2009;
Vuilleumier, 2006; Isen et al., 1987).

e Depression, stress, and suicide are related
with often overlapping diagnoses, and have
intersecting themes of general negativity and
hopelessness (Fleming et al., 1992; MNSc
et al., 1996; Scott et al., 2000; Schwartz et al.,
2014b; Homan et al., 2014).
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e N-grams, lexicon-based features, word em-
beddings, and POS features are powerful tools
for social media analysis of mental health
problems (Gkotsis et al., 2016b; Hwang and
Hollingshead, 2016; Pedersen, 2015; Malmasi
et al., 2016).

We experiment further with these features in the
following subsections.

4 Feature Relationships in Mental
Health Data

4.1 Data Sourcing and Ethical Guidelines

To fully understand the relationships among linguis-
tic features in mental health contexts we explore
datasets associated with three different MHCs.
Gaining access to datasets in this area proved chal-
lenging, as also discussed by Harrigian et al. (2021),
for numerous reasons including IRB restrictions,
personal reluctance, or unresponsiveness to data
access requests. We ultimately acquired datasets
pertaining to suicide (Shing et al., 2018; Zirikly
et al., 2019), stress (Turcan and McKeown, 2019),
and depression (Losada and Crestani, 2016; Para-
par et al., 2021).

In conducting our exploration, we followed the
ethical and privacy guidelines defined by Benton
et al. (2017a). No identifiable information is col-
lected, and all data is stored on secured servers and
obtained via written agreements from the creators.
The institutional review board (IRB) at our institu-
tion declared our experiments on these datasets as
exempt from further review.

4.2 Data Description

We studied and analyzed each dataset. All datasets
were created with a mixed and randomized popu-
lation of social media users; thus, the selection of
participants was not constrained by gender, back-
ground, or other factors. Our suicide dataset is
sourced from Reddit (Shing et al., 2018; Zirikly
et al., 2019) and contains posts and labels for users
diagnosed as having suicidal ideation or matched
controls. Our stress dataset is the Dreaddit dataset
published by Turcan and McKeown (2019). It is
a publicly available dataset with binary labels in-
dicating the presence of stress® (stressed and not

3The authors also ask annotators to indicate instances for
which the label is unclear; instances for which this is the
majority label are later dropped.
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Figure 1: Top four topics identified when applying LDA to depression.

stressed) in individuals posting on Reddit. Our de-
pression dataset is sourced from Twitter® and has bi-
nary labels (depression and no depression/control)
and raw and pre-processed tweet text (Losada and
Crestani, 2016; Parapar et al., 2021).

Depression contains 531,453 posts from 892
users, and stress contains 187,444 posts. Our sui-
cide dataset samples 1097 users at random from
a pool of 11,129 initial users, and picks 934 from
among those to create a four-class dataset with risk
assessment classes: None, Low, Moderate, and Se-
vere. We aggregate these into binary labels of 0
(None, Low) and 1 (Moderate, Severe).

As per our agreements with the creators of these
datasets we are unable to share data directly, but
we provide a table in the Appendix to summarize
dataset statistics. We encourage researchers to ex-
amine the data and related private datasets, and
thank the respective authors as well as Harrigian
et al. (2021) for creating a curated repository of
mental health data and pointers facilitating data
discovery.

4.3 Data Analysis

As noted in §3, trauma, stress, depression, and men-
tal illness measurably impact reasoning, problem
solving, and overall cognitive complexity. Tausczik
and Pennebaker (2010) map these effects to psy-

Swww.twitter.com
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cholinguistic features including sentence complex-
ity, words per sentence, and average word length on
a scale of 0-100, where scores less than 50 denote
lower cognitive reasoning and analysis.

We perform Latent Dirichlet Allocation (LDA)
across the depression and stress data to identify top-
ical themes. We present a graph in Figure 1 show-
ing the four top themes identified for depression,
visualized with frequency counts for the thematic
terms (a similar graph for stress is provided in Fig-
ure 3 in the Appendix). To determine thematic
titles, we apply Ryan and Bernard (2003)’s Key-
words In Context (KWIC) approach, qualitatively
examining context and finding the words that ad-
here to it. We detail our outcomes in Tables 1 and 2,
considering the top words identified per theme us-
ing LDA and subsequently using KWIC to assign
theme names. We find that social support, con-
nections, and familial stress are common topical
themes across both illnesses, validating our find-
ings in §3 that similarities in language exist among
people suffering from different MHCs. This man-
ifests in our n-gram analyses as well (e.g., with
terms such as feel, don’t know, and life), further
highlighting the intersection of themes across dif-
ferent MHCs.

We further assess the cognitive complexities of
a random sample of 380 individuals from depres-
sion and suicide, measured as the average of (a)


www.twitter.com

Identified . Identified .

Theme Keywords in Context Theme Keywords in Context

Social Subport Life, Friend, Love, Happy, Failed Relationship, Didn’t, Work,
pP Everyone, Reason Connections Someone, Need

Feelings & Feel, Good, Anyone, Never, Social and Doesn’t, Feel, Right, Dad,

Connections Find Familial Stress  Girl, Kid

Action Taken  One, Someone, Might, Tell

Anxiety, Mean, End, Talk,
Better

Therapeutic

Table 1: Identified themes applying KWIC to LDA top-
ics for depression.

the ANALYTIC feature extracted by LIWC and (b)
the average number of short (length < 6) words
per sentence, mapped to a 0-100 scale. We plot the
cognitive complexity scores (Y axis) in for each in-
dividual in the sample (X axis bars), and observe a
slightly lower cognitive complexity for individuals
in suicide (see Figures 4 and 5 in the Appendix).
This is in line with our first finding in §3, and the
complementary knowledge that suicidal ideation
is often a more extreme expression of depression
(Bradvik, 2018).

Finally, to examine the role of sentiment, nega-
tivity, and hopelessness (our second finding in §3),
we also quantitatively analyze the most frequent
trigrams associated with depression, suicide, and
stress (see Figures 6, 7, and 8 in the Appendix). We
similarly analyze bigrams and unigrams (see Fig-
ures 9 and 14 in the Appendix). We find that the top
n-grams for all three illnesses are evocative of emo-
tion, confirming substantial overlap across illnesses.
N-grams associated with depression place addi-
tional emphasis on memories (e.g., “campsite tent
fire”) and specific mental health diagnoses (e.g.,
“major depressive disorder”), whereas n-grams as-
sociated with suicide place greater emphasis on
confusion (e.g., “basically i’'m wondering”) and
helplessness (e.g., “someone please help”). N-
grams associated with stress echo many of these
themes, with an additional emphasis on uncertainty
(e.g., “don’t really know”).

5 Classification and Transfer Learning

5.1 Task Outline

We model the primary task as a binary classifica-
tion problem to predict labels at the user level as
1 (Diagnosed) or 0 (Undiagnosed) for a mental
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Don’t, Can’t, Family, Know,

Pessimi
essimism Good
Chronic Stress Ye_ar, Still, Issue, Hard,
Without

Table 2: Identified themes applying KWIC to LDA top-
ics for stress.

illness or disease D. This can be formulated as:

Y, = M(D)

where Y is the label of a classification model M
on a domain D. This domain, D, can be defined
as:

ey

where X is the feature space and P(X) is the
marginal probability distribution for:

D ={X,P(X)}

X ={x1,29,...,xn}

For our MHC domain, we can define a task, 7',
as follows:

T={Y,f()} )

Here, Y is the label space. This is obtained from a
classification function f(-), which learns from our
data having features X and labels Y as follows:

{(@i,y)li € {1,2,...,n}, 2z, € X,y; €Y} (3)

In Equation 3, each data point in the task is rep-
resented by the subscript i, where (x;,y;) corre-
sponds to the feature vector and label for point 7 in
a dataset of length n. Represented mathematically,
our function predicts a label y; = f(x;) using the
conditional probability distribution of Y given X:

T ={Y,P(Y|X)} 4)

Thus, given a transfer learning task with source
(S) and target ('T), there are four aspects of the task
which might differ:



Task A

| Model with Trainable +
Untrainable Layers

|

Learn from
P(Xs|Ys)

Freeze Dense
Layer

Till End of All Tasks

Evaluate
Performance

Train on

P(Xt|Yt)

Xs 1= Xt
P(Xs) 1= P(Xt)

Evaluate
Performance

Load Best
Performing
Weights

Train on
P(Xt|Yt)

Xs = Xt
P(Xs) I= P(Xt)

Evaluate
Perfomance

N

Figure 2: Model Architecture Flow. When Xs = Xt, both datasets use LIWC features. This keeps the feature
space the same, with differing marginal distributions owing to separate datasets. When Xs # Xt, datasets have
LIWC features in the source space and Word2Vec features in the target space.

The feature space X of the source and target

The marginal distribution P(X)

The label space Y

The conditional distribution P(Y|X)

We conduct our experiments under two variable
conditions. In the first, we keep the feature space
similar across transfer tasks, using LIWC (Tausczik
and Pennebaker, 2010) features for both the source
and target tasks. In the second we keep the fea-
ture space different between the two tasks, using
LIWC features for the source task and Word2Vec
(Mikolov et al., 2013) features for the target task.
The label spaces are also the same, with binary
classification labels across all tasks.

5.2 Feature Description

We extract both Word2Vec and LIWC features for
each dataset. Word2Vec is a popular vector repre-
sentation model that learns to predict words given
their contexts from millions of online resources
(Mikolov et al., 2013). Linguistic Inquiry and
Word Count (LIWC) features are common in men-
tal health tasks due to their demonstrated high per-
formance for a wide range of applications including
personality modeling, mental state assessment, af-
fective analysis, and language understanding (Lud-
wig et al., 2013; Park et al., 2014; Schwartz et al.,
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2013; Pervin and Cervone, 2010; Coviello et al.,
2014; Tumasjan et al., 2010; Riffe et al., 2019).
They leverage syntactic patterns to provide feature
representations that correlate with psycholinguistic
characteristics (e.g., measuring cognitive complex-
ity based on word length and words per sentence).
The creators of the stress, depression, and sui-
cide datasets use a variety of features in their own
work. We choose Word2Vec features and LIWC
features since these exhibit the highest overlap
across tasks in prior task-specific work. For in-
stance, Losada and Crestani (2016) use TF-IDF
vectorized text, and vectorized embeddings and
LIWC features are also used by both Turcan and
McKeown (2019) and Shing et al. (2018). The
former use Word2Vec embeddings with BERT
(Devlin et al., 2019) along with several attributes
from LIWC including clout, tone, and pronoun fea-
tures. The latter use domain-specific word embed-
dings from a SkipGram model trained on Reddit
data, as well as bag-of-words features, topical fea-
tures, readability scores, and features induced from
LIWC, a mental health lexicon (Zirikly et al., 2016),
and NRCLex (Mohammad and Turney, 2013).

5.3 Model Architecture and Training

Each model trains on K tasks, where K €
{1,2,.., N}, and is comprised of trainable and un-
trainable layers. Before all of our transfer tasks,
each training dataset is padded to the same size (the



vocabulary size from the largest training dataset).
We consider a convolutional neural network (CNN),
as well as to a lesser extent other models such as
bidirectional long short-term memory (BiLSTM),
LSTM, and RNN models.’

Each model in the input layer accepts the training
data, consisting of the distribution of the feature
space and labels to predict a classification label.
Accuracy and F; scores are calculated for each
task, and during transfer the dense trainable layer
is frozen and the weights from the best perform-
ing epoch are loaded. Training then proceeds on
the next task. This loop continues until all tasks
have been learned and evaluation metrics have been
calculated. Figure 2 illustrates this process.

Our best performing model is a CNN fine-tuned
for transfer learning between datasets and a novel
stress—depression—suicide prediction task. This
model, as well as a BILSTM alternative used in
preliminary experiments, uses a one-dimensional
max pooling layer with a poolsize of 2, flattening, a
dropout of 0.5, and a frozen dense layer. The output
layer has one node with a sigmoid activation.

6 Results and Discussion

Our experiments offer a first-of-its-kind examina-
tion of transfer learning across multiple MHCs.
Since there are no directly comparable transfer
learning models, we compare individual task per-
formance to the respective benchmarks established
by the dataset creators using task-specific models.
These models leverage many architectures and fea-
ture types, intersecting in their use of vector rep-
resentations and LIWC features. Specifically, we
compare to the following:

e Depression: Losada and Crestani (2016) use
TF-IDF vectorized embeddings with a logistic
regression classifier.

e Stress: Turcan and McKeown (2019) use
LIWC features and Word2Vec embeddings
with a logistic regression classifier.

e Suicide: Shing et al. (2018) use LIWC fea-
tures, Word2Vec embeddings, bag-of-words
features, LDA features, and NRCLex features
with a CNN classifier.

"Preliminary experiments using RNN and LSTM achieved
weaker performance than CNN and BiLSTM, so we did not
pursue further experimentation with those models.
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Model Depression Stress Suicide

Losada and
Crestani
(2016)
Turcan
McKeown
(2019)
Shing et
(2018)

0.66

and
0.79

al. 0.42

Ours 0.75 0.80 0.76

Table 3: Performance comparison between existing
task-specific models (Losada and Crestani, 2016; Tur-
can and McKeown, 2019; Shing et al., 2018) and our
transfer learning model reported here. Performance is
measured using F;.

For our own transfer CNN model (our highest-
performing model), we train on: stress when using
a target task of depression; depression when using
a target task of stress; and stress and depression
when using a target task of suicide, based on pat-
terns of MHC expression identified in earlier re-
viewed literature. We report our findings in Table
3, using F; to measure performance. As shown, our
model outperforms existing benchmarks with rela-
tive performance improvements of 13.64%, 1.27%,
and 80.95% for depression, stress, and suicide, re-
spectively and achieving a new state of the art with
F; scores of 0.75, 0.80, and 0.76. We hope that
these results will motivate other researchers to ex-
periment with transfer learning across MHCs.

This answers one of our research questions: It
is indeed possible to predict MHCs given infor-
mation about existing ones, validating findings in
mental health literature (Saini and Mandeep, 2020).
However, the accuracy with which we can predict
unseen mental health conditions depends on the fea-
ture space we use. LIWC features, which explicitly
encode the psychological meaning of words, work
better than Word2Vec features which rely purely
on distributional semantics.

We also experiment with an alternative model
grounded in psychological evidence that suicide
may occur as a natural escalation from stress and
then depression. We train our same core CNN
model first on stress, then on depression, and
then on suicide and achieve an 85% accuracy at
the target task of suicide. Our BiLSTM model
achieves an accuracy of 75% on depression when



first trained on stress, and then an accuracy of 76%
on suicide when subsequently trained on depres-
sion, echoing this trend albeit to a lesser degree.
The strong performance of this technique further
supports our finding that shared language charac-
teristics across MHCs make this a promising and
impactful sandbox for experiments with transfer
learning.

7 Research Answers

In §1, we asked three important research questions.
Following our analyses, we present concrete an-
swers to them in this section.

How do features relate across multiple MHCs?
Mental health conditions have similar manifesta-
tions in language, and correspondingly in their lin-
guistic signatures. We provide evidence for this
in our literature review (§3) and analyses (§4). Al-
though we cannot through linguistic analysis con-
clusively measure the similarity of two MHCs, we
can discern that the language usage and its features
have significant overlap across MHCs (see Figure
1 and Tables 1 and 2, and other figures and tables
in the Appendix).

Can we represent different MHCs under the
same feature spaces and find relations? Yes,
using semantically descriptive features such as
LIWC it is possible to find relations (§4). We
demonstrate that using standard NLP tools such
as LDA or n-gram language modeling it is possible
to see similar themes and topical relationships (§4).

Can we identify underlying MHCs using the
language of known ones? Yes and No! While
models trained on one task and transferred effi-
ciently can predict unseen MHCs with a higher
accuracy then when predicting them using only tar-
get domain data, these are linguistic classifications
only (§5). Al models are still far from being able
to conclusively identify MHCs, and should not be
considered as replacements for professional mental
health care.

Given these research answers, we close by dis-
cussing how we can carry this forward and what it
means for NLP in mental health.

8 Conclusion and Future Directions

In this work, we examine the utility of trans-
fer learning for the identification of three MHCs:
depression, stress, and suicidal ideation. These
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MHC:s vary in their clinical classification and sever-
ity. Depression is formally defined as a mental ill-
ness (Kanter et al., 2008), stress is a process which
may ultimately result in mental illness (Salleh,
2008), and suicidal ideation is classified as a dis-
order (Fehling and Selby, 2021). Although we
achieve promising performance in detecting these
conditions, nothing—not even actual diagnosis by a
human expert—can conclusively identify a mental
illness with 100% certainty (Allsopp et al., 2019).

We presented a qualitative exploration of the
overlap and interplay between language and men-
tal health across multiple MHCs, and also pre-
sented quantitative correlations among words, to-
kens, themes, topics, and large feature space rep-
resentations using well-known, established NLP
methods. Finally, we introduced a transfer learning
model to predict unseen mental health conditions
using similar and dissimilar feature spaces, the first
of its kind. Our model outperforms the baselines
established by benchmark models for detecting de-
pression, stress, and suicide with percent increases
in measured performance of 13.64%, 1.27%, and
80.95%, respectively. The model also achieved
an 85% accuracy at detecting suicidal ideation in
a psychologically informed model that trains on
datasets in an order established by clinical evidence,
with stress followed by depression® and then ulti-
mately suicide (Orsolini et al., 2020).

Although this paper demonstrated preliminary
evidence that similarities in feature spaces can be
leveraged to better predict unknown MHCs, in the
future we wish to explore this further with a larger
variety of models. We also plan to further examine
the role that transfer learning order has in establish-
ing performance.’ Other work has found that social
media-based models do not always generalize and
may incur substantial performance losses (Harri-
gian et al., 2020), and other factors such as social
concerns, self-disclosure bias, and temporal arti-
facts may also influence model performance (Harri-
gian et al., 2020). We hope that researchers will use
our findings to explore new ways to increase the ef-
ficiency and usefulness of Al-supported treatment
and diagnosis of MHCs (Allsopp et al., 2019).

8www.psychologytoday.com/us/blog/in-p
ractice/201303/why-stress—-turns—-depressi
on

°In some early experiments not reported here, reversing the
transfer learning order of our model resulted in performance
that peaked at an F;=0.48.


www.psychologytoday.com/us/blog/in-practice/201303/why-stress-turns-depression
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A Dataset Descriptions

In Table 4, we present dataset statistics for depres-
sion, stress, and suicide. Further details regarding
these datasets can be found in the original papers
(Losada and Crestani, 2016; Turcan and McKeown,
2019; Shing et al., 2018). We deeply thank all the
authors and creators of these datasets.

B Analytical Figures

In this section we include additional figures pro-
duced during data analysis. Figures 4 and 5 show
cognitive complexity for individuals with depres-
sion and suicidal ideation, and Figure 3 shows
graphical representations of LDA analyses on peo-
ple with stress.

C Extended Qualitative Analysis of
N-Gram Frequency

In this section we include figures showing the most
frequent n-grams associated with depression, sui-
cide, and stress. Trigrams for depression, suicidal
ideation, and stress are shown in Figures 6, 7, and
8, respectively. Bigrams for depression, suicidal
ideation, and stress are shown in Figures 9, 10,
and 11, and unigrams for the same three MHCs are
shown in Figures 12, 13, and 14.
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Labels Used in

Dataset Size Labeling Scheme Our Experiments Baseline Fy
. 531,453 posts from . )
Depression 207 users Binary Binary 0.66
Stress 187,444 posts Binary Binary 0.79
11,129 initial users,
Suicide downsampled to Categorical (4 Categories) Aggregated Binary 0.42
934

Table 4: Additional descriptive statistics regarding depression (Losada and Crestani, 2016), stress (Turcan and
McKeown, 2019), and suicide (Shing et al., 2018).

Word Count and Importance of Topic Keywords
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Figure 3: Top four topics identified when applying LDA to stress.
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Figure 4: Cognitive complexity of a random sub-  Figure 5: Cognitive complexity of a random sub-
sample with depression. sample with suicidal ideation.
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20 Most Frequently Occuring trigrams

i
(make, feel, ike)
(borderline, personality, disorder)

(free, draw, two)
(feel, ke, need)
(feel, free, pm)

(feel, ree, draw)
(draw, two, anything)
(sometimes, feel, lie)
(campsite, tent, fre)

(day, feel, like)

Tigram

(rre, log, st
(g, st would)
akthough, campsite, tent)
(long, story, shorty
(tent,fre, log)

(sit, would, mice)

(w0, anything, athough)

(major, depressive, disorder)

(make, feel, bad)

0

B
# of Occurances

Figure 6: Most frequent trigrams in a random subsam-
ple (depression).

20 Most Frequently Occuring trigrams

(fee, tike,im)
(basically, im, wondering)
(someting, along, line)
(someone, please, help)
(hey. guy. n)

(id, really, appreciate)
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(hope, people, done)
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Fioram

(last, month, said)
(ife, apparently,ive)

(subreddit, please, dont)

(allow, level, 60)

(abstractinteresting, Iyic, politcsthe)

(play, audio, seems)

(see, graphical, improvement)
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Figure 7: Most frequent trigrams in a random subsam-
ple (suicide).

20 Most Frequently Occuring trigrams

(don, even, knaw)
(1ong, story, sort

(dont, e, like)

(dont, know, fee)

(dont, realy, know)

(dont; know, anymore)
(dont, want, o)

(mental, healtn, issue)
(would, reatly, apprecioted)

(please, let, know)

Fiogram

(don, know, im)
(know, feeh, ke)
(feel, ke, ive)

(feel ke, cant)
(really, dont, know)
(feel, ke, shit)
(two, year, ago)
(part time, job)
(make, eel, like)

(6, month, ago)

0
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Figure 8: Most frequent trigrams in a random subsam-
ple (stress).

20 Most Frequently Occuring Bigrams

fesl, like)
(make, feel)
(year, old)
(feel, better)
(even, though)
(panic, attack)
(year, ago]
(sound, like)
(feel, bad)
(every, day)

Bigram

(frst, time)
(pretty, much)

(fect, ree)
(depression, aniety)
(someane, else)
(feel, way)

(anyone, else)

(fong, time)

(et better)

(thing, like)

00
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Figure 9: Most frequent bigrams in a random subsam-
ple (depression).

20 Most Frequently Occuring Bigrams

(feel, like)

(dont, know)
(would, lice)
(dont, want)
(im, going)

vear, ola)

(i, k)

(year, ago)
(. sure)

€ (high, school)

g hey.oup

tnever, asked)
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cant. send)
(time, play)
(since, ive)
(dont,really)
(frs, time)

(anyone, else)

(cant, take)
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Figure 10: Most frequent bigrams in a random subsam-
ple (suicide).

20 Most Frequently Occuring Bigrams
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Figure 11: Most frequent bigrams in a random subsam-
ple (stress).

20 Most Frequently Occuring unigrams

(like,)

(feel,)
fpeople,)
fget)
ftime,)
(would,)
fone,)
(know,)
(thing,)
(really,)
(think,)
(make,)
(want,)
go)
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(much,)
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Figure 12: Most frequent unigrams in a random sub-
sample (depression).
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20 Most Frequently Occuring unigrams

im.}
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(get)
(dont,}
L]
(ve,)
tknow)
(would,)
time )

fwant,}

Uni-gram
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Figure 13: Most frequent unigrams in a random sub-
sample (suicide).
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Figure 14: Most frequent unigrams in a random sub-
sample (stress).
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