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Abstract

Writing the conclusion section of radiology re-
ports is essential for communicating the radiol-
ogy findings and its assessment to physician in
a condensed form. In this work, we employ a
transformer-based Seq2Seq model for generat-
ing the conclusion section of German radiology
reports. The model is initialized with the pre-
trained parameters of a German BERT model
and fine-tuned in our downstream task on our
domain data. We proposed two strategies to im-
prove the factual correctness of the model. In
the first method, next to the abstractive learning
objective, we introduce an extraction learning
objective to train the decoder in the model to
both generate one summary sequence and ex-
tract the key findings from the source input.
The second approach is to integrate the pointer
mechanism into the transformer-based Seq2Seq
model. The pointer network helps the Seq2Seq
model to choose between generating tokens
from the vocabulary or copying parts from the
source input during generation. The results of
the automatic and human evaluations show that
the enhanced Seq2Seq model is capable of gen-
erating human-like radiology conclusions and
that the improved models effectively reduce
the factual errors in the generations despite the
small amount of training data.

1 Introduction

For patients with cancer, imaging findings are criti-
cal for primary diagnosis and treatment guidance
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during further disease progression. Depending on
the tumor entity and stage, the results of imag-
ing examinations may have a significant impact on
the clinician’s treatment decisions and strategies.
Normally, imaging findings are communicated in
clinical routine in the form of written radiology
reports. However, it remains difficult to ensure the
completeness and comprehensibility of relevant in-
formation in traditional written reports. Free-form
narrative reports do not have standardized layout
and uniform terminology, and key findings may be
forgotten, which can lead to serious miscommuni-
cation (Weber et al., 2020).

Weber et al., 2020 implemented the application
of Structured Oncology Reporting (SOR) to ad-
dress the problems of traditional radiology report-
ing. The SOR, which structure is shown in Table
1, demonstrated superiority to the free-text format
of radiology reports by providing disease-specific
report templates and organizing the content in spe-
cific separate sections.

The main goal of this work is to automatically
extract information relevant for treatment planning
from standardized, real-life radiology reports. Ex-
pert validation is on the other hand still essential
for this clinical routine application. For this pur-
pose, we build a system that merges the information
available in the general information and findings
sections of the SOR radiology reports into a con-
clusion, which can be compared to conclusions
generated by human experts.

Our main contributions in this work includes: (i)
We tested the effectiveness of applying the generic
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Figure 1: Standardised Layout of SOR (Weber et al., 2020).
Each report has a uniform organization: the general section
expresses background information on imaging and clinical
data, the next section (Findings) describes oncology and non-
oncology findings, and the Conclusion section gives oncologi-
cal and non-oncological impressions.

pretrained German BERT model directly to the tar-
get task of generating conclusions of German radi-
ology reports without domain-adaptive pretraining.
(ii) Our system improves the factual correctness of
the generated conclusions by combining extractive
and abstractive learning objectives compared to
the Seq2Seq baseline model. (iii) Our expert eval-
uation shows that the summarizations generated
by our system are very close to the human refer-
ence. Since our work focuses on the application
of NLP with pretrained language models to auto-
mated radiology documentation, the above contri-
butions are limited to German SOR data. However,
our experiments suggest that good results can also
be obtained in low-resource domains by applying
lightweight pretrained language models and minor
modifications to standard architectures.

2 Related Work

Existing text summarization models can be broadly
classified into three categories: extractive, abstrac-
tive and hybrid. Early extractive approaches relied
on human-designed features extracted from texts
to identify key sentences. Deep learning meth-
ods show good performance in various of NLP
tasks. The data-driven approaches are able to learn
features representations automatically. Extractive
models have the advantage of producing semanti-
cally and syntactically correct summaries. Abstrac-
tive models employing an encoder-decoder frame-

work with attentive recurrent neural networks, e.g.
on news article corpus, became a standard architec-
ture in abstractive summarization, which translates
the original source content to a concise expression
about the main content of the source input (Nallap-
ati et al., 2016a; See et al., 2017; Gu et al., 2016;
Kryściński et al., 2018; Chopra et al., 2016). In
order to improve the faithfulness of the generated
summarization given the facts in the source input,
abstractive models are usually enhanced to repli-
cate facts from the source combining extractive and
abstractive approaches. Nallapati et al., 2016b in-
corporated a pointer network (Vinyals et al., 2015)
that selects a word from a predefined vocabulary
to replace an unknown word predicted by a RNN-
based encoder-decoder model. Our work aims to
combine both benefits of extractive and abstractive
summarization with a transformer-based model.

See et al., 2017 used the pointer network Nal-
lapati et al.2016b as a soft switch to either pro-
duce a word from the vocabulary distribution or to
select a word from a copy distribution provided
by a target-source attention distribution. Chen
and Bansal; Kryściński et al., 2018; 2018 also
applied the copy mechanism to the RNN-based
model, but decomposed the decoder into a first-
stage extraction model and a second-stage gen-
erator. In the first stage, the encoders in both
works processed sequential document representa-
tion and provided sentence-level representations
to the extractor for selection. In the second stage,
Kryściński et al., 2018 used the language model
to rewrite the selected sentences into the summary.
Chen and Bansal, 2018 trained the decoder from
scratch by using ROUGE (Lin, 2004) scores as a
reward strategy for reinforcement learning to gen-
erate summaries based on the selected sentences.
In our work, we integrate the pointer network to a
transformer-based encoder-decoder model.

Summarizing radiology findings with neural
Seq2Seq learning of Zhang et al.; Zhang et al. is
very closely related to our work. Zhang et al., 2018
collected a large set of domain-specific training
data to train the RNN-based pointer-generator (See
et al., 2017). Because there are usually two sec-
tions in radiology reports: background and findings,
to provide relevant information for the summary,
Zhang et al., 2018 incorporated an extra encoder
for encoding the background information and find-
ings separately. In contrast, we feed the combina-
tion of sequences of the background and findings
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section as one input and into one encoder. Zhang
et al., 2019b improved the radiology summariza-
tion model by optimizing the factual correctness
of the summaries via policy learning. In order to
combine extraction and abstraction in one model,
we propose two target sequences paired with an in-
put sequence. One target sequence is the reference
summary and the other is a sequence consisting of
key sentences extracted from the input. Our goal
with the dual target sequences is to encourage the
encoder-decoder model to retain some of the input
while generating new phrases for the summaries.

Pretrained language models have advanced the
state-of-the-art when fine-tuned in various NLP
tasks, as well as in automatic text summarization
(Miller, 2019; Liu and Lapata, 2019; Zhang et al.,
2019a). Rothe et al., 2019 demonstrated the ef-
ficacy of warm-starting the encoder and decoder
from checkpoints of publicly available large lan-
guage models, including BERT(Devlin et al., 2018)
and GPT-2(Radford et al., 2019), for text gener-
ation task such as machine translation and text
summarization. Depending on different initial-
ization combinations, they investigated variants
of the Seq2Seq model, such as BERT2Random,
BERT2BERT, BERT2GPT, etc. Warm-starting the
Seq2Seq model leveraging these pretrained lan-
guage models checkpoints can reduce computa-
tional resources and time by orders of magnitude,
while improving the sequence generation perfor-
mance. We adopt the warm-starting idea and ini-
tialize both the encoder and decoder with a generic
pretrained German BERT model (deepset.ai, 2019).
We fine-tune the model with our German radiology
report data and enhance the model by combining
extractive and abstractive objectives.

3 Models

The main task of summarizing radiology findings
is to transform the salient and clinically signifi-
cant findings from a source of words and phrases
X = {x1, x2, ..., xT }, to a sequence of concise ex-
pressions Y = {y1, y2, ..., y′T }. Background infor-
mation in the radiology report conveys important
information for short-term or long-term examina-
tion of each patient in the clinical routine, which is
why abstractive models needs to incorporate back-
ground information into the summary generation
(Zhang et al., 2018). The content of the source
sequence X contains the background information
and imaging findings. These findings convey the

information about the location of the primary tu-
mour, the presence of metastases at different body
regions, and other non-oncological findings. Y is
the conclusion of the radiology report, which on the
one hand assesses the patient’s condition according
to the detailed findings and on the other hand con-
cisely summarizes the significant findings from the
source sequence X . We use a collection of aligned
X and Y pairs to train Transformer-based Seq2Seq
models to generate Y .

Baseline Model Warm-starting the Seq2Seq
model leveraging pretrained checkpoints can re-
duce computational resources and time by orders
of magnitude, while improving the sequence gener-
ation performance (Rothe et al., 2019). We utilize
the BERT2BERT model defined in Rothe et al.,
2019, as our abstractive summarization baseline
model.

The encoder and decoder of the model are ini-
tialized from a public available BERT checkpoint
(deepset.ai, 2019), except the encoder-decoder at-
tention layers in the decoder. Taking advantage
of the Transformer architecture and pretrained lan-
guage models, among the 221 millions trainable
parameters in the BERT2BERT model, only 26
millions parameters in the encoder-decoder atten-
tion layers are initialized randomly, and 195 mil-
lions are loaded from the pretrained BERT model.
The reduction of randomly initialized, trainable pa-
rameters, allows for fewer fine-tuning steps, and the
model’s ability to perform well on small training
data sets.

BERT2BERT + Extraction Most abstractive
systems suffer from the problem of creating spuri-
ous facts due to their ability to paraphrase. Hybrid
systems that combine extraction and abstraction
are expected to improve the correctness of the gen-
erated facts by using more criteria to extract the
original facts from the source (Kryscinski et al.,
2019; Cao et al., 2017; Zhang et al., 2019b; Chawla
et al., 2019; Falke et al., 2019). Different to previ-
ous works, which incorporated separate extraction
and abstraction stages (Hsu et al., 2018; Li et al.,
2018; Chen and Bansal, 2018), we propose a new
learning scenario with little modification to the ar-
chitecture of the BERT2BERT model by adding an
extraction learning objective (BERT2BERT+Ext).
Therefore, during training, we optimize the follow-
ing combined loss:

Loss = lossabstraction + lossextraction (1)
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Figure 2: BERT2BERT model adding Extraction Loss. In
order to train the decoder to extract the key findings through
generation, we supply an additional target sequence (”Back-
ground + Key Findings”), which consists of the key findings
selected from the source sequence.

The setup is illustrated in Figure 2. Through the
extraction objective, the model is trained to recon-
struct the key sentences in the generation.

In the original setting of BERT2BERT, we
only train the model using our source and tar-
get sequence pairs (X , Y ). As showed in Fig-
ure 2, X symbolizes the source input and contains
”Background + Findings” and Y is the target in-
put ”Conclusion”. During training, the decoder of
BERT2BERT+Ext is fed with additional target
sequences (”Background + Key Findings”) includ-
ing the general section and key sentences from the
findings sections as input. Section 4.3 explains
how to extract these key findings from the find-
ing section from our training data. Extractive loss
encourages the model to reconstruct key phrases
from the source input. Abstractive loss prompts the
model to generate new formulations that are not
from the source sequence.

Figure 3: BERT2BERT model incorporating the Pointer
Mechanism.

BERT2BERT + Pointer Pointer networks allow
the model to copy words from the source sequence
through an alignment between the target sequence
and the source sequence (See et al., 2017). The
benefits of incorporating the pointer to the gener-
ation procedure are not only to reduce the num-
ber of tokens, which are not known to BERT, but
also to ensure factual correctness while generating
new phrases. Pointer networks have been used for
abstract summaries of Seq2Seq models based on
RNNs as a standard architecture. However, to the
best of our knowledge, there has been little explo-
ration of incorporating pointer networks into the
Transformer encoder-decoder model for summa-
rization tasks. Figure 3 illustrates the combina-
tion of BERT2BERT and the pointer mechanism
(BERT2BERT+Ptr). The pointer network consists
of one linear layer followed by a sigmoid function
which generates a pseudo-probability pgen in the
range of [0, 1]. In the original function of See et al.,
2017, pgen is given by:

pgen = sigm(wT
ptr[h

x
t ; yt; st] + bptr) (2)

where wT
ptr and bptr are learnable parameters. pgen

is determined by the concatenated representation
containing the word embeddings of the input token
yt, the decoder hidden state st and the weighted en-
coder hidden representations hxt , at each decoding
step t.

See et al., 2017 recycled attention scores directly
from the encoder-decoder attention layer. How-
ever, in the BERT2BERT model, we not only have
multiple encoders and decoders, but also multiple
heads of the encoder-decoder attention. We can
solve the dimension of multiple heads in the atten-
tion distribution using the mean of the multi-head
attentions (Deaton, 2019). These hidden states
from the final encoder are used as context vectors
passed to each decoding step. Each decoder state
st used for predicting the next token is also from
the last decoder, as well as the multi-head encoder-
decoder attention scores at. hxt in Equation 3 rep-
resents the hidden output from the final encoder
weighted by the sum of the heads of the encoder-
decoder attention layers at each decoder step from
the last decoder, analogous to the RNN-based con-
text vector. hxt is given by:

hxt =

Tx∑

j

Nheads∑

i

at · hxj (3)
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where i is the index of the attention head, j is the
position of the source sequence and Tx is the total
length of the source sequence. The formula for
computing the final distribution Pfinal(w) is as
follows:

Pfinal(w) = pgen·Pvocab(w)+(1−pgen)·
∑

i:wi=w

ati

(4)
Pvocab(w) has the dimension of the size of the vo-
cabulary. at contains the values for each token in
the source sequence, and each value has a corre-
sponding index i in the vocabulary dimension. The
encoder and decoder of BERT2BERT share the
same vocabulary. Hence, we can sum the values
from at and Pvocab at the same indices.

4 Experiments

4.1 Datasets for Training and Testing

The concept of structured oncology reports (SOR)
has been implemented to generate high-quality radi-
ology reports for the general follow-up assessment
of cancer patients in the clinical routine at the Uni-
versity Hospital Heidelberg (UKHD) in Germany
by Weber et al., 2020. The design and application
of SOR can be accessed using the internet link:
http://www.targetedreporting.com/
sor/. For our experiments, we use a collection
of 10,514 structured reports from the years 2018
and 2019 from the radiology department of the
UKHD. The HIPAA-compliant retrospective study
was approved by the Institutional Review Board
(S-083/2018), and informed consent was waived.
The reports are divided into a training set (80%), a
validation set (10%), and a test set (10%).

training (8410) valid (1052) test (1052)
general 2.0 2.0 2.0
findings 21.1 ± 8.2 20.5 ± 7.5 21.7 ± 7.5

conclusion 3.1 ± 2.0 3.4 ± 2.0 3.5 ± 2.0

Table 1: The average number of sentences after segmentation
in each section. The general section contains 2 sentences of
the background information. The number of sentences in the
findings section averages about 22 sentences, with a variation
of 7-8 sentences. The conclusion consists of approximately
3-6 sentences.

Sentence Segmentation Each section of the
SOR report contains documentation in a tabulated
form. Different sections have different table blocks.
We need to customize different methods to segment
sentences from different sections. In the general

section, there are normally two sentences express-
ing the treatment situation and previous examina-
tions. In the finding sections, we have notes or-
ganized in different blocks and free-text content.
There are four main blocks: primary tumour lo-
cation, metastases, reference measurements and
non-oncology findings.

The first step is to detect the boundaries of the
blocks. After that, we apply a tailor-made regu-
lar expression segmenter to split the text in these
blocks into sentences. In report texts, periods are
usually used to mark the end of sentences and can
be used to split text into sentences. However, apply-
ing this rule to the findings and conclusion sections
requires consideration of several cases, such as ab-
breviations, dates, and serial numbers, where the
period is part of the tokens. We customize the reg-
ular expressions to handle the above exceptions.
The average number of sentences in each section
calculated for each split set can be found in Table 1.

Patient Degree Categories Weber et al., 2020
used a uniform terminology to ensure the formal-
ities of the content in the conclusion section as
assessments of patient responses. These terminolo-
gies are shown in Table 2.

Figure 4: Number of reports for the three data partitions
after matching to patient degree categories. We have
significantly more reports in the Without Evidence and
Stable Disease categories than in the other two cate-
gories, and the fewest reports are found in the Partial
Response category.

The reports from different patient degree cate-
gories challenge our model to varying degrees. For
example, a report that contains findings indicating
progressive disease is much more complex than a
report that does not show findings regarding tumour
burden. It would be more appropriate to judge the
performance of the model based on the patient de-
gree class of the report. As shown in Figure 4, after
dividing the reports into four patient categories, the
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Patient Degree SOR Category German Template

Without Evidence (WE) no tumour burden
evidence

Oncological regular findings without evidence of recrudesce or metastasis
(Onkologisch regelrechter Befund ohne Nachweis von Rezidiv oder Metastasierung)

Partial Response (PR) significant decrease of
tumour burden

Oncological improvement of findings; constancy of findings with a tendency
to decrease (Onkologisch Befundverbesserung; Befundkonstanz mit tendenzieller Abnahme)

Stable Disease (SD) no significant change of
tumour burden

Oncological constancy of findings (Onkologisch Befundkonstanz)

Progressive Disease (PD) significant increase of
tumour burden

Oncological worsening of findings; constancy of findings with a tendency to
increase (Onkologisch Befundverschlechterung; Befundkonstanz mit tendenzieller Zunahme)

Table 2: Patient degree categories and corresponding uniform terminology in conclusion. The SOR categories are defined by
threshold criteria for tumour burden development in the implementation. For example, if there is a significant decrease of tumour
burden (more than 30%), the patient degree is defined as Partial Response.

BERT2BERT baseline
BERT2BERT+Ext adding extraction learning objective
BERT2BERT+Ptr integrating pointer network
BERT2BERT+Ext+Ptr combining extraction and pointer

Table 3: The abstractive models are warm-started with the
checkpoints from the German BERT (deepset.ai, 2019).

number of reports is imbalance across patient cat-
egories, however, is kept similar across the three
data splits. The number of training samples is an
important factor in the performance of the model.
Given uneven quantity and the varying complexity
of reports across categories, we expect inconsistent
performance of the models across the four patient
degree categories.

4.2 Experimental Setup

In our experiments, we evaluate the efficacy of the
proposed BERT2BERT baseline and its enhance-
ments, shown in Table 3. The implementation of
all BERT-based models is based on the open source
library HuggingFace Transformers by Wolf et al.,
which is dedicated to supporting state-of-the-art
Transformer architectures and to collecting and
supplying pretrained models for the community.
The models are fine-tuned on 8410 reports and val-
idated on 1052 samples during the training. The
maximum number of training epochs is 10 with an
early stopping setting according to the validation
loss metric: when the validation loss is no longer
decreasing within 3 epochs, the training process
is terminated. All fine-tuning processes are con-
ducted using one single GPU of 32GB memory and
completed in no longer than 6 hours.

Input Sequences We combine the sentences
from the background and finding sections in one
input sequence and feed them into the encoder of
the model. We adopt the idea from Liu and Lap-
ata, 2019 of inserting ”[CLS]” tokens between the
sentences to construct structured sequences. Since

BERT is not a generative model and does not learn
an end of text token like GPT-2 does, we use the
”[SEP]” token to make the end of the whole se-
quence, so that the decoder in BERT2BERT stops
the generation when it sees this special token.

Evaluation Metrics For quantitative evaluation,
we firstly apply the ROUGE metric (Lin, 2004) and
report the F1 scores for ROUGE-1 and ROUGE-
L about the tokens overlaps between the system-
generated summaries against the reference conclu-
sions. Secondly, we propose the patient degree
matching metric, evaluating whether the assess-
ments generated by the abstractive models can
be categorized to the same patient degree cate-
gory as their reference. After that, we conduct
a human evaluation with two domain experts in
which the annotators are asked to score the system-
generated conclusions as well as the reference
based on three criteria: comprehensibility, oncol-
ogy and non-oncology correctness.

4.3 Extracting Key Sentences
We propose the BERT2BERT+Ext model in Sec-
tion 3 to improve the extraction ability of the de-
coder during generation, however, we lack key sen-
tences for training. For finding the most effective
way to extract the key sentences, we evaluate sev-
eral non-neural, automatic extractive methods on
the test data:

1. Longest-k. This method simply extracts the
k longest sentences from the findings. We
hypothesize the longer a sentence of findings
is, the more information it may communicate
in the summary.

2. Tfidf-Ex. This approach is built on the scores
of TF-IDF (Jones, 1972). TF-IDF produces
a vocabulary based on the collection of docu-
ments and outputs a TF-IDF vector of vocabu-
lary breadth. We can set a threshold to extract
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the top keywords from the TF-IDF vector. The
sentences are ranked based on the scores by
summing up the TF-IDF of all the keywords
found in the sentence of a document. Top
k sentences are extracted as the salient sen-
tences.

3. TextRank (Mihalcea and Tarau, 2004) algo-
rithm scores sentences based on the graph the-
ory. In the algorithm, a graph is constructed
with each sentence in the document as a ver-
tex, and the score of edges between sentences
are determined based on the number of over-
lapping tokens indicating the similarity be-
tween sentences.

All the extractive approaches assign an importance
score to each sentence from the findings section
and rank the sentences according to the scores. We
compare the results of the different methods in
Table 4. All the three extractive methods return
comparable results. The Longest-k method is the
simplest extractive method for which no computa-
tion is required and indicates that phrases from the
longest sentences in the finding sections are usually
included in the human-written summaries.

Longest-k Tfidf-Ex TextRank
ROUGE-1 41.9 40.6 40.4
ROUGE-L 40.8 38.7 39.6

Table 4: The recall scores of ROUGE metrics for the different
extractive approaches. The scores imply how much of overlaps
between the key sentences and the reference is found. The 2
sentences from the general section are always included in the
extraction. Because the average number of sentences in the
reference summaries does not exceed 6, we evaluate the key
sentences given k=4, i.e, 4 key sentences from the findings
section.

4.4 Human Evaluation
Since the ROUGE metric only assesses the similar-
ity between the system-generated conclusions and
the references, we conduct an expertise evaluation
with two domain annotators (one radiologist and
one final year medical student) to understand the
clinical validity of the conclusions generated by the
abstractive models. According to the radiologist,
there are two important criteria to judge the clinical
validity of the conclusions, namely the degree of
correctness of the oncological and non-oncological
impressions based on the patient’s condition. In
addition, we ask the annotators to score the compre-
hensibility of system-generated and referenced find-
ings with expert judgment to investigate whether

the abstractive models could produce medical terms
that are as comprehensible as those written by spe-
cialists. In the evaluation, we first create a pool
of samples, where each sample has scored higher
ROUGE-1 scores than the average in the entire test
set for all four abstractive models. Next, we ran-
domly select five examples from the pool for each
patient degree category, totalling twenty samples.
We present the general information, findings se-
cions and the four system-generated conclusions as
well as the reference conclusion of each sample to
the annotators in a random order. They are asked
to score the conclusions on a likert scale from 0
to 5, indicating oncological and non-oncological
correctness degrees as well as comprehensibility
from very poor to very good. A score of 3 indi-
cates satisfaction. The annotators have no prior
knowledge of the models nor the reference. The
annotator instructions are given in Appedix A. The
annotation was performed with the open source text
annotation tool doccano (Nakayama et al., 2018).

5 Results and Discussion

whole WE PR SD PD
BERT2BERT 36.15 55.27 30.86 32.09 30.93
BERT2BERT+Ext 42.13 58.99 38.19 38.17 36.68
BERT2BERT+Ext(random) 37.27 57.22 31.43 32.71 31.32
BERT2BERT+Ptr 42.25 55.9 38.66 39.88 39.04
BERT2BERT+Ext+Ptr 43.32 57.91 40.15 39.39 38.65
BERT2BERT+Ext+Ptr(random) 42.10 57.37 38.71 39.41 37.81

Table 5: ROUGE-1 F1 scores of BERT2BERT-based Models
on the whole test set and different partitions of four Patient De-
gree Classes. BERT2BERT+Ext(random) has random selected
sentences targets. When the target sentences to be extracted
are replaced with randomly selected sentences, no significant
improvement is found in BERT2BERT+Ext models.

Table 5 shows the F1 scores of ROUGE-1 metric
across the different settings of the abstractive model
overall reports and according to the patient de-
gree categories. The hybrid models outperform the
BERT2BERT model by nearly 6 points. Integrat-
ing extraction or pointer mechanism yields com-
parable results. According to the metrics, the last
hybrid model combining the two facilities achieves
only a small improvement compared to enhancing
the model only with extraction training or pointer
network. One SOR report and the generations of
the abstractive models are shown in Appendix B.

Both the baseline model and the hybrid model
have less difficulty in generating summaries for the
WE class. We hypothesize that this is because in
this category, there are many training samples (al-
most one-third of the reports), uniform templates,
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and barely important information can be extracted
from the findings. In the templates of SD, there
is only one statement about the findings: ”onco-
logical constancy”. For the PR and PD classes,
there are cases in which an oncological constancy
is described, however, with a tendency to an im-
provement or deterioration, which increases the
difficulties of the generation task for the models.

In the case of evaluating oncology facts, their cor-
rectness requires more expertise to assess. Hence,
we need to present examples of system-generated
conclusions to domain experts to assess clinical
validity. The results of the expertise assessment are
presented in Section 5.

Validation of the Extraction Learning Since
we do not have human-annotated labels in the
radiology reports indicating the important sen-
tences, we apply the Longest-k method ex-
plained in 4.3 to extract the key sentences used
as target for training BERT2BERT+Ext. In
BERT2BERT+Ext(random) we replaced the
target sentences with random ones. The re-
sults in Table 5 show that, the performance of
BERT2BERT+Ext(random) drops in comparison
to BERT2BERT+Ext. This verifies the impor-
tance of target sentences for improving the extrac-
tion ability of the BERT2BERT+Ext model. In
BERT2BERT+Ext+Ptr(random), the scores ob-
tained by integrating the pointer mechanism are not
significantly affected when the decoder is trained to
extract sentences that include irrelevant sentences.
From the ROUGE scores, we can conclude that the
hybrid models achieve better results than the base-
line model.

Results of Expert Evaluation Figure 5 presents
the correctness results of oncological and non-
oncological impressions as well as the compre-
hensibility of the impressions. A score of zero
indicates unacceptable generation given the facts
in the source input, while a score of five means that
the facts in the generation are completely correct.

The results shown in the bar charts are the av-
erage scores of the two annotators, normalized
by number of the examples in each category. In
terms of correctness regarding oncological and non-
oncological impressions in the WE patient degree,
all conclusions generated by the abstractive models
are scored close to 5. In SD category, the gener-
ated conclusions are almost as good as the human-
written conclusions, except for the baseline model.

Summarizing the findings for the PR and PD cate-
gories is more challenging for the models due to the
complexity of the findings and the small number
of training examples. The hybrid models perform
better than the baseline, but the correctness of their
generations are rated very differently in these two
categories. The BERT2BERT+Ext+Ptr model
performs best in ensuring correctness across pa-
tient degree categories in general. Figure 5 shows
that, the abstractive models are capable of gener-
ating good comprehensible radiology conclusions,
except for the baseline model in the PD category.
Although the PR class has the fewest training in-
stances, the abstractive models also achieve results
above 3.

6 Conclusion

In this work, we experiment and demonstrate the ef-
ficacy of the BERT2BERT-based abstractive mod-
els on summarizing German radiology findings in
structured reports. We propose two strategies to
improve the BERT2BERT model with the aim of
optimizing the factual correctness in the conclu-
sions generated by the system, BERT2BERT+Ext
and BERT2BERT+Ptr. Both BERT2BERT+Ext
and BERT2BERT+Ptr models have very few mod-
ifications to the baseline model and improve the
performance of the model. In BERT2BERT+Ext,
we train the model to generate summaries, en-
couraging the model to reconstruct key sentences
based on the source text in the training process.
BERT2BERT+Ptr incorporates the pointer mech-
anism to modify the decoder’s prediction by copy-
ing the salient segments directly from the source
sequence. Despite the limitations of the models and
the imbalanced training data, the issue of unfaithful
facts in the conclusions generated by the baseline
model is greatly improved by these hybrid models.
One pressing issue in the future work is to inves-
tigate the potential advantages of these models on
free-text radiology data or data in other domains.
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Figure 5: Average scores with standard deviation for the three criteria: Oncological correctness, non-oncological correctness
and comprehensibility.
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A Annotator Instructions

We have discussed the criteria with domain experts
for judging the correctness of system-generated
conclusions. We define an annotation task for grad-
ing generated assessments according to certain cri-
teria. The following instructions are presented to
annotators for evaluating the generated summaries.
are a senior medical student and a radiologist.

Evaluation Criteria We consider four summary
models and the reference conclusion. Each model
generates a radiological summary (assessment) un-
der the specification of a source text (general ex-
amination information and radiological findings).
You will be presented with the source text, the four
generations from the models, and the assessment
written by the physician. Please rate the genera-
tions of each model and the reference according
to the following criteria: Oncolgical correctness,
nononcolgical correctness, and readability:

• Oncological correctness: is the summary and
the details about metastases (none, new, pro-
liferation or regressive) correct? (0) not as-
sessable; (1) not at all correct ; (2) correct to
a small extent ; (3) half correct; (4) correct to
a large extent; (5) everything correct.

• Nononcological correctness: is the general
date, organ, and other information correct?
(0) not assessable; (1) not at all correct ; (2)
correct to a small extent ; (3) half correct;
(4) correct to a large extent; (5) everything
correct.

• Readability: is the generation easy to under-
stand, without broken expressions or unknown
words? (0) not assessable; (1) many unknown
words, difficult to read and comprehend; (2)
several unknown words and aborted expres-
sions, not fluent; (3) several unknown words;
(4) fluent and coherent, but some unknown
words; (5) correct words and expressions, flu-
ent and coherent.

If the generation is not assessable, select 0 - not
assessable. Otherwise, the scale are grades from 1
to 5 and must be assigned for each criterion.

B SOR Report Example

We present one SOR example from (Weber et al.,
2020) in Table 6 along with the generations of the
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General Section Untersuchungsregion Thorax (CT), Abdomen (CT) Behandlungssituation Ausgangsbefund. Vergleich Letzte Vergleichsunter-
suchung: 17.11.2017.

Findings Section Primärtumor / Lokalrezidiv Soweit messtechnisch erschwert erfassbar progrediente diffus infiltrierende Raumforderung des
Pankreaskopfs mit Gangstau im Pankreasschwanz und vollständiger Ummauerung des Truncus coeliacus, mindenstens 180°
Ummauerung der A. liniealis .
Bekannter kompletter Verschluss der extrahepatischen Pfortader und V. mesenteria superior mit ausgeprägten Kollateralen .
Regionäre Lymphknoten Gering prominenterer vermehrter Lymphknotenbesatz mesenterial, exemplarisch mit einem KAD von 7
mm, zuvor 5 mm (8-137) .
Metastasen Lunge und Pleura: Keine .
Thorakale Lymphknoten und Weichteile: Keine .
Leber: Keine .
Abdominale Lymphknoten und Weichteile: Keine .
Peritoneum: Kein eindeutiger Nachweis einer Peritonealkarzinose, jedoch Infiltration der Mesenterialwurzel durch den Primarius
und Nachweis geringer freier Flüssigkeit im kleinen Becken .
Skelett: Keine .
Referenzmessungen Keine Referenzmessungen .
Thorax Portsystem in situ .
Kein katheterassoziierter Thrombus .
Abdomen Unveränderte Nebenmilze .
Konstante geringe Cholestase Skelett Im Übrigen ohne besondere Auffälligkeiten .

Conclusion Onkologische Beurteilung Onkologisch Befundkonstanz mit tendenzieller Zunahme der Tumorlast gegenüber 17.11.2017.
Progredient diffus infiltrierende Raumforderung des Pankreaskopfs. Andere Befunde Keine Angabe.(Progressive diffusely infiltrating mass of
the pancreatic head.)

BERT2BERT Onkologische Beurteilung Onkologisch Befundverschlechterung gegenüber dem Ausgangsbefund vom 11.04.2018 und
12.05.2019. In diesem Zeitraum zunehmende Peritonealkarzinose mit Ummauerung der VMS, sowie Ummauerung des
TCs bei bekanntem Magenkarzinom. Andere Befunde Keine Angabe.(During this period, increasing peritoneal carcinomatosis with walling of the VMS, as
well as walling of the TC in known gastric carcinoma.)

BERT2BERT
+Ext

Onkologische Beurteilung Onkologisch Befundkonstanz gegenüber 17.11.2017. In diesem Zeitraum keine wesentliche Änderung
des Pankreasschwanzes mit Infiltration der Pfortader und Ummauerung der Truncus coeliacus, AMS / VMS sowie Arteria
hepatica communis durch die AMS - suspekte Lymphknotenmetastasen. Andere Befunde Keine Angabe.(During this period, no significant
change in the tail of the pancreas with infiltration of the portal vein and walled truncus coeliacus, AMS / VMS and arteria hepatica communis by the AMS - suspicious lymph node metastases.)

BERT2BERT
+Ptr

Onkologische Beurteilung Onkologische Befundverschlechterung zum 17.11.2017. In diesem Zeitraum neu aufgetretene
Lymphknotenmetastase im Oberbauch mit ausgeprägter Infiltration der Pfortader und der V. Pankreatitis. Unveränderte
Darstellung der bekannten Peritonealkarzinose. Andere Befunde Keine Angabe.(Newly appeared lymph node metastasis in the upper abdomen during
this period with marked infiltration of the portal vein and pancreatic vein. Unchanged presentation of known peritoneal carcinomatosis. )

BERT2BERT
+Ext+Ptr

Onkologische Beurteilung Onkologisch Befundkonstanz mit tendenzieller Zunahme der Tumorlast gegenüber 17.11.2017.
In diesem Zeitraum moderate Zunahme des Primärtumors im Pankreasschwanz. Bekannter Verschluss der extrahepatischen
Pfortader und Ummauerung der A. gastrica sinistra und Infiltration der Pfortader. Andere Befunde Keine Angabe.(Moderate increase in
primary tumor in the pancreatic tail during this period. Known occlusion of the extrahepatic portal vein and walling of the gastrica sinistra artery and infiltration of the portal vein.)

Table 6: In conclusion is a human-written summary reference. Followings are the generations by the Seq2Seq models given the
input text combining general and finding sections. In this example, words in red are unfaithful generations comparing to the
input and extracted information (highlighted in green) that appears in the source sequence.

abstractive models given the input from the gen-
eral and findings sections in the report. The date
of the previous radiology examination is very im-
portant information for short-term or long-term
response assessments. The baseline BERT2BERT
model tends to predict more new phrases and al-
ways generate a spurious date. While the other
hybrid models are able to address this issue and
more constraint to the original phrases from the
source input.
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