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Introduction

This volume contains the papers presented at the CLASP Conference on (Dis)embodiment at the
Department of Philosophy, Linguistics and Theory of Science (FLoV), University of Gothenburg, held
on September 15–16, 2022.

(Dis)embodiment brings together researchers from several areas examining the role of grounding
and embodiment in modelling human language and behaviour – or limits thereof. The conference
covers areas such as machine learning, computational linguistics, theoretical linguistics and philosophy,
cognitive science and psycholinguistics, as well as artificial intelligence ethics and policy.

Papers were invited on topics from these and closely related areas, including (but not limited
to) large-scale neural language modelling, both text-only and multimodal; training corpus and test
task development; visual, dialogue and multi-modal inference systems; neurolinguistic and psycho-
linguistic experimental approaches to human language processing; philosophical discussions of linguistic
groundedness and embodiment (or limits thereof) as it pertains to computational modelling; semantics
and pragmatics in neural models; dialogue modelling and linguistic interaction; formal and theoretical
approaches to language production and comprehension; statistical, machine learning and information
theoretic approaches that either avoid or embrace groundedness and/or embodiment; methodologies and
practices for annotating dialogue and multi-modal datasets; visual, dialogue and multi-modal generation;
text generation in both the dialogue and monologue settings; multimodal and grounded approaches to
computing meaning; semantics-pragmatics interface; social and ethical implications of the development
and application of neural language models, as well as relevant policy implications and debates.

This conference aims to initiate a genuine discussion between these related topics and to examine
different approaches and how they can inform each other. It features 3 invited talks by leading
researchers, 9 peer-reviewed archival papers and 7 non-archival presentations.

We would like to thank all our contributors and programme committee members, with special thanks
to CLASP for organising the hybrid conference and our sponsors SIGSEM http://sigsem.org, the ACL
special interest group on semantics, and the Swedish Research Council for funding CLASP.

Simon Dobnik, Julian Grove and Asad Sayeed

Gothenburg

September 2022
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Invited talk 1: Afra Alishahi

Getting closer to reality: Grounding and interaction in models of human language acquisition

Humans learn to understand speech from weak and noisy supervision: they manage to extract structure
and meaning from speech by simply being exposed to utterances situated and grounded in their daily
sensory experience. Emulating this remarkable skill has been the goal of numerous studies; however
researchers have often used severely simplified settings where either the language input or the extralin-
guistic sensory input, or both, are small-scale and symbolically represented. I present a series of studies
on modelling visually grounded language understanding.

Invited talk 2: Felix Hill

Three studies that show that artificial models of general intelligence learn better with language

Having and using language makes humans as a species better learners and better able to solve hard
problems. I’ll present three studies that demonstrate how this is also the case for artificial models of
general intelligence. In the first, I show that agents with access to visual and linguistic semantic knowl-
edge explore their environment more effectively than non-linguistic agents, enabling them to learn more
about the world around them. In the second, I demonstrate how an agent embodied in a simulated 3D
world can be enhanced by learning from explanations – answers to the question “why?” expressed in
language. Agents that learn from explanations solve harder cognitive challenges than those trained from
reinforcement learning alone, and can also better learn to make interventions in order to uncover the
causal structure of their world. Finally, I’ll present evidence that the skewed and bursty distribution of
natural language may explain how large language models can be prompted to rapidly acquire new skills
or behaviours. Together with other recent literature, this suggests that modelling language may make a
neural network better able to acquire new cognitive capacities quickly, even when those capacities are
not necessarily explicitly linguistic.

Invited talk 3: Magnus Sahlgren

The Singleton Fallacy: why current critiques of language models miss the point

There is currently a lively debate about the semantic (in)capabilities of current language models: do
language models really understand language or are they simply stochastic parrots? Are we wasting our
time in the pursuit of bigger and bigger models, and should we instead be climbing some other hill in the
NLP landscape? This talk provides an overview over the different positions in the debate, and attempts
to disentagle the debate by pointing out an argumentation error that is referred to as the singleton fallacy.
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Abstract
Pre-trained Vision and Language Transform-
ers achieve high performance on downstream
tasks due to their ability to transfer represen-
tational knowledge accumulated during pre-
training on substantial amounts of data. In this
paper, we ask whether it is possible to com-
pete with such models using features based on
transferred (pre-trained, frozen) representations
combined with a lightweight architecture. We
take a multimodal guessing task as our testbed,
GuessWhat?!. An ensemble of our lightweight
model matches the performance of the fine-
tuned pre-trained transformer (LXMERT). An
uncertainty analysis of our ensemble shows
that the lightweight transferred representations
close the data uncertainty gap with LXMERT,
while retaining model diversity leading to en-
semble boost. We further demonstrate that
LXMERT’s performance gain is due solely to
its extra V&L pretraining rather than because
of architectural improvements. These results ar-
gue for flexible integration of multiple features
and lightweight models as a viable alternative
to large, cumbersome, pre-trained models.

1 Introduction

Current multimodal models often make use of a
large pre-trained Transformer architecture compo-
nent, which is then fine-tuned for the final task.
This setup can lead to high performance, due to
the immense amount of data embodied in the pre-
trained component, together with its large capacity
in terms of parameters. However, these models
are also extremely costly to train; even fine-tuning
requires non-negligible resources. Here we wonder
whether the need for pre-training data, and for large
and computationally costly neural networks could
be mitigated by feeding the models with richer can-
didate representations, and by using an ensemble
of lightweight models.

* Work done while at CIMeC - University of Trento.

Is it a living thing? Yes
Is it black and white? Yes
Is it in the background? Yes
Are its ears up in the air? Yes

“dog”

“pillow”

“dog”

“dog”

“dog”

Game Candidates

Figure 1: An example of a game from GuessWhat?!:
The Guesser receives the image and dialogue as input,
and has to pick the correct target (in green) from the
list of candidates. We consider different ways of repre-
senting the candidates, e.g. using category information,
visual features, and/or spatial position.

The motivation for this paper is to disentangle
the contributions to good model performance on
grounded multimodal tasks: is it due to better archi-
tecture, e.g. Transformers for text, vs LSTMs? Or
to exposure to large amounts of multimodal data
during pretraining? Or learning good representa-
tions for the task during fine-tuning?

As the task for this case study we take
a multimodal referential game, Guess
What?! (GW) (de Vries et al., 2017), specif-
ically the final guessing task. Here the aim is to
guess which object in the image is the correct
target, based on the dialogue history (the series of
questions) and the image. The model receives as
input an image and a sequence of question-answer
pairs, which are together passed to the multimodal
encoder. The final hidden layer of the encoder
is then the Guesser’s input representation. The
Guesser classifier then generates a representation
for each of the candidate objects in the image, and
selects the target based on the similarity between
the candidate representations and the input (image
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and dialogue) encoding. The creation of the
Guesser representation is the focus of this paper.
We examine both the effect of input encoding
(LXMERT vs V-LSTM) and the effect of using
different features to represent the candidate targets.
Our results show that these two factors interact: a
lightweight input encoding can be compensated
for by richer candidate targets; conversely, a heavy
encoder can work with impoverished features.

When introducing the GW task and the baseline
models, de Vries et al. (2017) run a comparative
evaluation of the Guesser model; the visual embed-
ding was shown to be not informative in selecting
the target object and better results were obtained by
using just the embedding learned from the category
label and spatial coordinates. All the following
work on the GW task retained the baseline candi-
date representations. We put the attention on this
evalution again situating it in the new context of
the pre-trained large encoders we are now familiar
with. Our motivation behind re-evaluating the fea-
tures used by the Guesser is the observation that
in GW, guessing the right target could require dif-
ferent sorts of information about the candidates.
For instance, in the game illustrated in Figure 1,
the Guesser requires candidate representations that
encode the ontological information that dogs are
living things whereas pillows are not, in order to
make sense of the dialogue. The candidate repre-
sentations also have to distinguish the target dog
from the other dogs: here, visual features encod-
ing the colour could differentiate the black and
white dogs from the other two dogs. Finally, spa-
tial information is essential to locate the target in
the background. Note that if the choice set con-
tained other distractors, other features might have
been needed to identify the target. We hypothe-
size (and our results confirm) that the combina-
tion of visual features and spatial location infor-
mation on the level of individual candidates, plus
some kind of semantic information about candidate
categories (e.g. task-specific embeddings or gen-
eral pre-trained embeddings) will lead to the best
Guesser.

Along with improving the candidate representa-
tions, we also investigate the effect of ensembling
multiple models. As well as potentially bringing
a boost in performance, ensembling also allows
us to inspect the uncertainty of the models un-
der a Bayesian interpretation of deep ensembles
as Bayesian model averaging (Lakshminarayanan

et al., 2017; Wilson and Izmailov, 2020; Hüller-
meier and Waegeman, 2021). Hence, after com-
paring models based on their task-success, we use
data and model uncertainty as a post-hoc analy-
sis to get an in-depth comparison of models’ be-
haviour. This allows us to better understand the
effect of richer features: for V-LSTM Guessers,
they provide key information, while for pre-trained
LXMERT they seem to be redundant with the input
encoding. However, for LXMERT without pre-
training, the Guesser is not as able to integrate the
information from the input encoding and candidate
feature representations.

To recap, we investigate whether providing infor-
mative candidate representations (which are, them-
selves, gleaned from pre-trained models) to the
Guesser model can make the task more feasible
when using lightweight input (dialogue + image)
encoders, i.e. V-LSTMs vs LXMERT. LXMERT
has the advantage of significant pretraining on a
large corpus of V&L data, as well as orders of
magnitude more parameters. Hence, we compare
V-LSTM ensembles against LXMERT, both alone
and ensembled. We also compared the LXMERT
architecture trained from scratch on the GW task,
to understand the relative contributions of pretrain-
ing vs architecture. We compare the models both
in terms of task-accuracy as well as doing an un-
certainty analysis. Our results show that

• an ensemble of lightweight models with good
candidate representations can match the per-
formance of a single LXMERT model;

• while with poor candidate representations
V-LSTM models are highly uncertain, richer
candidate representations let these models be-
have similarly to the pre-trained LXMERT in
terms of data/model uncertainty;

• better candidate representations lead to
V-LSTM ensembles with Guessers that use-
fully disagree: ensembles can combine these
disparate predictions into more accurate over-
all predictions.

2 Related Work

2.1 GuessWhat?! Guesser
GuessWhat?! (de Vries et al., 2017) is a dataset of
human dialogues collected via Amazon Mechani-
cal Turk in which two players play a guessing game.
One player (the oracle) is assigned an object in an
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image and the other player (the questioner) has to
ask Yes/No questions in order to discover the target
object. In the first GW model proposed in de Vries
et al. (2017), the questioner player is implemented
by two different models: the Question Generator
and the Guesser. The Guesser is trained to predict
the target object from a set of candidates, using
supervised learning. Candidate objects are repre-
sented by a learned object category embedding and
spatial coordinates.

This simple baseline Guesser has been used in
most of the subsequent work on GW. Shekhar et al.
(2019) proposed an alternative questioner model
(GDSE) in which the Question Generator (QGen)
and the Guesser are jointly trained, but the latter
still receives the simple candidate representations
used by de Vries et al. (2017).

The little work that has focused on the Guesser
has retained the baseline candidate representations.
Pang and Wang (2020) investigate the dynamics
of the Guesser over the course of the dialogue,
while Suglia et al. (2020) add an imagination mod-
ule to improve grounded conceptual learning within
the dialogue encoder.

Greco et al. (2021) evaluate the role of the en-
coder in the Guesser by comparing the blind LSTM
encoder, found to work best in de Vries et al.
(2017), with a multimodal LSTM (V-LSTM) and a
multimodal universal encoder (LXMERT). None
of this work has studied the effect of the candidate
representation choices within the standard model.

Most recently, Matsumori et al. (2021) propose a
new transformer-based architecture for GW, while
Tu et al. (2021) evaluate the impact of VilBERT
as encoder and design a state-estimator for the
Guesser that let it accumulate belief state incre-
mentally. While these models perform well, they
are significantly larger and more complex, and do
not permit the targeted study done in this paper.

2.2 Deep Ensembles and Uncertainties

Initial work on uncertainty estimation in deep neu-
ral networks was within the area of Bayesian Neu-
ral Networks (Gal, 2016; Kendall and Gal, 2017;
Depeweg et al., 2018). Lakshminarayanan et al.
(2017) showed that deep (non-Bayesian) ensembles
can also be used for uncertainty estimation; in fact,
in many empirical settings they work better, due to
better exploration of the parameter space (Ashukha
et al., 2020; Fort et al., 2019). Deep ensembles are
equivalent to Bayesian model averaging, where

averaging over component predictions is analo-
gous to calculating the expected predictive pos-
terior while marginalising over parameters (Wilson
and Izmailov, 2020).

Uncertainty estimation has not received much
attention in the multimodal NLP or grounded dia-
logue setting, with the exception of Xiao and Wang
(2021), who use uncertainty decomposition to un-
derstand the hallucination behaviour of question
generators. Abbasnejad et al. (2018) present a re-
inforcement learner for grounded dialogue which
takes uncertainty into account when learning which
questions to ask, and also for deciding when to stop
asking questions. This is an orthogonal approach to
ours, which uses uncertainty as a post-hoc analysis
method, rather than integrating it into the model.

3 Guesser Model

In this section we describe the Guesser model.
We use the same Guesser architecture introduced
in de Vries et al. (2017) which has been employed
in virtually all follow-up work on GW. The Guesser
receives as input a 512D vector, encoding the
grounded dialogue, and a vector representation of
each candidate. This vector representation is the
result of feeding the concatenated features for each
candidate through a two layer MLP with ReLU ac-
tivations, resulting in a 512D vector. The Guesser
then computes a dot product between the vector
representing the grounded dialogue and each can-
didate representation (processed by the MLP de-
scribed above). The resulting scores are combined
into a softmax layer, resulting in a probability dis-
tribution over the candidates. Note that the MLPs
share parameters between candidates.

In our experiments, we use as encoder LXMERT
or V-LSTM, and study the impact of using an en-
semble of encoders together with the enrichment
of candidate embeddings.

3.1 Grounded Dialogue Encoder
The encoder generates a grounded dialogue repre-
sentation from the image and the set of questions
and answers. In our experiments, we use two dif-
ferent multimodal encoders following (Greco et al.,
2021):

LXMERT is a transformer-based multimodal en-
coder (Tan and Bansal, 2019). It represents an
image by the set of position-aware object embed-
dings for the 36 most salient regions detected by
a Faster R-CNN (Ren et al., 2016) and the text
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by position-aware word embeddings. LXMERT
is pre-trained on five vision-and-language tasks
whose images come from MS-COCO and Visual
Genome (Krishna et al., 2017). In our experiments,
we fine-tune the pre-trained LXMERT model on
GW. We generate our 512D vector representing the
grounded dialogue by taking the 768D vector from
the [CLS] initial token of LXMERT and by giving
it to a feedforward layer with Tanh activation.

We also experimented with LXMERT trained
from scratch. In this case, the encoding of the im-
age is still provided by Faster R-CNN (pre-trained
on Visual Genome) but the language encoding, as
well as the combined representations of L&V, are
learned from the GW dataset only.

V-LSTM is a relatively lightweight encoder that
represents the dialogue history as the 1024D last
hidden state from a LSTM receiving the dialogue,
concatenates that vector with a 2048D representa-
tion of the image extracted from the penultimate
layer of a ResNet-152 pre-trained on ImageNet (He
et al., 2016), and gives the concatenation to a feed-
forward layer with Tanh activation to generate a
512D vector representing the grounded dialogue.

We consider the V-LSTM lightweight because
it has ∼ 18× fewer parameters and thus requires
much less training (data and time) than LXMERT.

3.2 Candidate representation
In de Vries et al. (2017) and following papers
(e.g. Pang and Wang (2020); Greco et al. (2021)),
each candidate is represented by a spatial embed-
ding, encoding its bounding box location, and a
category embedding learned during training, based
on the candidate’s MS-COCO (Lin et al., 2014)
label. We question this representation, which could
be lacking important information about the candi-
date with respect to the dialogue and that cause the
need of a powerful universal multimodal encoder.
According to Shekhar et al. (2019), questions about
category and location make up about 65% of the hu-
man questions: the baseline model might be suffi-
cient for these cases. However, 15.5% of questions
include colour, which the baseline Guesser cannot
see. Nearly as many (14.5%) mention an object’s
super category (‘animal’, ‘utensil’), which also is
information not necessarily included in the embed-
dings learned from the training games. Hence, we
build richer candidate representations starting from
the following components:

https://github.com/airsplay/lxmert

Spatial information spatial is represented
by a 8D vector that encodes the location of the
candidate’s bounding box. Since the Guesser does
not have direct access to the image but only sees
it via the encoded grounded dialogue embedding,
the spatial coordinates locate the object in the im-
age. Hence, they are very informative for the se-
lection task, especially when multiple candidates
look the same at a type/category level and share the
most salient visual attributes (like the two black and
white dogs in Figure 1.) Moreover, dialogues often
refer to objects using their location (e.g. “the dog
on the right”) that the Guesser can exploit better by
having access to the spatial coordinates.

Category information cat is given by a 256D
category embedding, representing the candidate’s
category according to the MS-COCO label. This
learned embedding encodes the conceptual rep-
resentation of the object emerging from its co-
occurrences with dialogue and image features
within the GW training data.

GloVe embeddings glove representations
are the 300D pre-trained word embeddings
(GloVe (Pennington et al., 2014)) of the word
corresponding to the category label, scaled down
to 256D using a feedforward layer with ReLU
activation. (When the label is a multi-world label,
e.g. “dining table” we take the mean over the
words in the expression). glove embeddings,
despite some limitations, are shown to be effective
at object-property tasks (Lucy and Gauthier, 2017;
Forbes et al., 2019) and at capturing taxonomic
relations (Da and Kasai, 2019).

Visual information visual representations are
obtained from a ResNet-152, pre-trained on Im-
ageNet, which receives as input the crop of the
object. This visual vector is input to a feed-forward
layer with ReLU activation, in order to obtain a
256D vector. This embedding should provide the
visual attributes of the entity it represents, which
are expected to play a crucial role in games in
which there are distractors of the same category
of the target objects. For instance, the dialogue
identifies the target as a “black and white dog” in
Figure 1, but without visual features the dogs are
indistinguishable – in contrast with the results re-
ported in the original GW paper (de Vries et al.,
2017) about the lower performance obtaiend by the
Guesser when given the visual embedding of the
candidates bounding boxes.
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We experiment with different combinations of
these basic components. We evaluate models with
all the 2-input combinations, apart from glove +
cat, which cannot be sufficiently discriminative in
games that contain distractors of the same category
of the target object. The spatial and visual embed-
dings provide token specific complementary infor-
mation, whereas the cat and glove embeddings
are both meant to encode concept representations.
Hence, we experiment only with the following 3-
input representations: cat+visual+spatial
and glove+visual+spatial. Finally, to
check the degree to which cat and glove provide
redundant information, we try the 4-input embed-
ding containing all the basic components above,
cat+glove+visual+spatial.

3.3 Training procedure

We minimize the cross-entropy error with respect
to the ground-truth annotation during training, us-
ing the Adam optimizer (Kingma and Ba, 2014) for
V-LSTM and Adam with a linear-decayed learning-
rate schedule for LXMERT (Devlin et al., 2018).
We perform early stopping with ten epochs of pa-
tience.

3.4 Guesser ensembles

We follow the standard deep ensemble setup (Lak-
shminarayanan et al., 2017) of training independent
Guessers by training them with different random
seeds. All our Guesser ensembles consist of five
Guessers of the same type (i.e., having the same
encoder and set of candidate representation input
information). Different random seeds mean the
Guessers differ in their random initialisations (ex-
cept for the weights of the pre-trained LXMERT en-
coder) and the order in which they see the data. An
ensemble of Guessers generates predictions using
the average of the Guesser prediction distributions.

4 Measuring Uncertainties

The uncertainty of a model, parameterised as θ, is
commonly measured by the entropy of the predic-
tive distribution pθ(y|x), averaged over a test set.
For each example x, a confident model will put
most probability mass on a single choice y, lead-
ing to low entropy, while an uncertain model will
spread its bets, leading to higher entropy.

Within an ensemble, the ensemble total uncer-
tainty is the entropy of its predictive distribution,
which combines the distributions of the N ensem-

ble components:

H[p(y|x)] = H[1/N
N∑

n=1

pθn(y|x)]. (1)

(This is the sample-based approximation to
marginalising over θ.) Note that an ensemble can
have high uncertainty (high entropy) either because
of noisy or ambiguous data leading to an inability
to make a confident decision, or because its compo-
nents disagree (Depeweg et al., 2018; Hüllermeier
and Waegeman, 2021).

We can also measure the average uncer-
tainty of each ensemble component on its own:
1/N

∑N
n=1H[pθn(y|x)]. This factor is known as

data uncertainty: it measures whether the datapoint
is sufficiently informative for each model to make
a confident decision. If x is inherently ambiguous,
then all models should have high uncertainty. Total
ensemble uncertainty will also be high, due to the
combination of uncertain predictions.

The difference between total uncertainty and
data uncertainty is model uncertainty, which mea-
sures the extent to which the models disagree (i.e.,
the extent to which the ensemble’s predictive distri-
bution does not match the average ensemble com-
ponent). Model uncertainty is always non-negative.

In this paper we compare different models, dif-
fering in their choice representations, as ensembles.
Within the GW Guesser, the choice representation
should be considered part of the input x. Inade-
quate choice representation will thus lead to high
data uncertainty, since the representation is not
sufficient to make confident decisions. Since the
humans playing the original GW game, generating
the test and training data, guessed correctly, overly
high “data uncertainty” values point to problems
with data representations, rather than inherently
ambiguous data.

Formally, within a Bayesian framework, it is the mu-
tual information between y and the ensemble parame-
ters θ estimated from data D, derived from the differ-
ence between entropy and crossentropy: H[p(y, |x,D)] =
Eθ|DH[p(y|x, θ)]−MI[y, θ|x,D], where the left hand term
is total uncertainty (marginalising over θ) and the first term on
the right is data uncertainty.

We note here that, while ‘data uncertainty’ has been iden-
tified with ‘aleatoric uncertainty’ (Kendall and Gal, 2017; De-
peweg et al., 2018; Malinin and Gales, 2018), namely the true
uncertainty of the example in the world (Der Kiureghian and
Ditlevsen, 2007), this doesn’t hold inasmuch as the represen-
tation of the data is a modelling decision (see also Hüllermeier
and Waegeman (2021), Sec 2.3). Comparing different data
representations doesn’t change the true aleatoric uncertainty,
which is an lower bound on data uncertainty.
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Whether model uncertainty should also be min-
imised is a different question. In theory, if all
ensemble components have found the global op-
timum, model uncertainty will be zero. In practice,
not being able to find the global optimum, we use
ensembles to approximate a distribution over good
local optima. Ensemble ‘boost’ (the improvement
in performance over the component average) also
requires model diversity. It is thus more useful to
have a collection of strong but different opinions
(low data, high model uncertainty) than homoge-
neous equivocal opinions (high data, low model
uncertainty).

5 Experiments

Prior work has shown that LXMERT outperforms
V-LSTM when using the standard candidate rep-
resentation, which uses only spatial and category
embeddings: LXMERT accuracy is 69.2% while V-
LSTM reaches just 64.5% (Greco et al., 2021). Be-
low we ask whether V-LSTM accuracy can reach
LXMERT’s if provided with different candidate
representations. Improved candidate representa-
tions should make it easier for the fine-tuned model
to learn to match the correct target with the image
and dialogue encoding, by facilitating the match
between features of the candidates and the features
discussed in the dialogue.

Secondly we experiment with ensembling our
models. We find that ensembling the V-LSTM
models leads to a larger boost in accuracy, while
ensembling the LXMERT models helps less. This
is a very convenient result, since training ensembles
of lightweight V-LSTMs is fast and computation-
ally cheap, compared to fine-tuning even a single
LXMERT. Analysing ensemble uncertainty con-
firms that V-LSTM encodings allow the Guesser to
make better use of improved candidate representa-
tions, while they have less of an effect on LXMERT.
Furthermore, we see that an ensemble of V-LSTM
Guessers contains sufficient diversity, in terms of
model uncertainty, to make ensembling worth it.

5.1 Task success

Candidate representations In this experiment,
we evaluate the effect of different candidate rep-
resentations on Guessers based on V-LSTM en-
coders. We combine the candidate representations
described in Section 3.2: cat, glove, visual,
and spatial, in various configurations.

The results in Table 1 show that the rep-

Candidate rep. Guessers Ens.

cat+sp 64.49±0.12 66.40
cat+vis 59.17±0.23 61.07
glove+sp 64.84±0.18 67.21
glove+vis 58.08±0.52 61.03
vis+sp 55.19±0.55 60.58
cat+vis+sp 66.45±0.25 69.61
gl+vis+sp 66.72±0.19 70.12
cat+gl+vis+sp 66.58±0.26 69.58

Table 1: Test set accuracies for Guessers with different
candidate representations, individually and in an en-
semble. cat, gl, vis, and sp stand for category,
glove, spatial, and visual. LXMERT with
cat+sp obtains 69.2% (Greco et al., 2021).

resentation of the candidates has a large ef-
fect on Guesser performance. The worst
combination, visual+spatial, is ten per-
centage points worse than the best combina-
tion, glove+visual+spatial (55.19% vs.
66.72%). Models with three or four types of
candidate representations outperform models with
only two types; however there is not a bene-
fit of combining all four types over only three.
Category/type information is crucial for success:
the model with only token-level information,
visual+spatial, clearly underperforms all the
others. The category representations, namely cat
and glove, lead to similar results when combined
with other representations, and do not benefit from
being combined together (unlike the token repre-
sentations). glove representations do seem to be
slightly more beneficial than cat representations,
indicating that the additional world knowledge that
they contain can be useful. (See Figure 2 for an
example where glove representations allow the
model to guess correctly.)

Ensembling The results of ensembling five ver-
sions of each V-LSTM Guesser are reported in
Table 1. We compare them against the accuracy
reached by the guesser based on LXMERT, viz.
69.2% (Greco et al., 2021). Surprisingly, the accu-
racy reached by the simple but well informed en-
semble model, V-LSTM with the spatial, visual and
glove embeddings, is as high as the task-accuracy
reached by the guesser based on LXMERT. Indeed,
ensembling V-LSTM brings in a boost of 3.4 points
from 66.72% to 70.12% accuracy.

We believe this to be a remarkable result, given
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category+spatial (failure) vs. 
glove+spatial (success)

do you hold it in your hand? No
is it human? No

does it have numbers on it? Yes

glove+spatial (failure) vs. 
glove+spatial+vision (success)

a phone? Yes
one of the three? No

the top blue? Yes

Figure 2: Representative examples of the contribution
of different features. On the left: contribution of Glove
embeddings on common sense reasoning (cars have
numbers on them – plates). On the right: contribution
of visual features (colors).

the difference in number of parameters (V-LSTM
ensemble: 11M vs. LXMERT: 209M) between the
two models and that training a single LXMERT
takes significantly longer than training an en-
semble of V-LSTM Guessers (V-LSTM Ensem-
ble: 45m×5=3h54m; one LXMERT: 21hrs).

We interpret these results as showing that indeed
LXMERT has better visual representations of the
input image and better lexical grounded informa-
tion gained through the pretraining on multimodal
corpora, but that such gain acquired through its
heavy pretraining phase, can be easily reached by
simply enriching the candidate representations.

Next, we check whether LXMERT could also
benefit from ensembling and from the richer candi-
date representations. We evaluate both pre-trained
LXMERT and LXMERT-scratch trained only on
GW. When ensembling pre-trained LXMERT, the
only source of randomness is in the order of the
training data, while for LXMERT-scratch, the ran-
dom initializations also differ between ensemble
components. For both LXMERT and LXMERT
scratch, training an ensemble for GW requires
21hrs × 5 = 4.3 days, 27 times more compute
than the V-LSTM Ensemble.

As shown in Table 2, ensembling the pre-trained
LXMERT brings only a minimal increase in accu-
racy, while it does provide a boost for LXMERT-
scratch. Both the individual models and the en-
sembled LXMERT-scratch perform only on par
with V-LSTM. Interestingly, ensembling LXMERT-
scratch shows a similar pattern to V-LSTM, where
using improved glove+visual+spatial rep-
resentations leads to a larger ensemble boost than
the cat+spatial representations.

Together these results indicate that LXMERT’s

improved performance hinges on being able to
use the information seen during pretraining, rather
than architectural improvements. Furthermore, for
LXMERT, adding candidate representations (like
glove and visual) that are extracted from pre-
trained models, and thus incorporate similar kinds
of pretraining knowledge to the LXMERT encoder,
does not help over the weaker candidate represen-
tations (cat+spatial). We presume this is due
to the pre-trained LXMERT model already hav-
ing learned the relevant ontological information, as
well as the ability to localise visual information,
and thus not needing it to be provided explicitly.
This hypothesis is strengthened by the weaker per-
formance of LXMERT-scratch, which has not been
able to learn the relevant features from additional
pretraining data.

5.2 Uncertainty analysis

As described in Section 4, we can distinguish be-
tween model and data uncertainty in the ensem-
ble. Data uncertainty measures the average uncer-
tainty of each ensemble component on an exam-
ple. In our setting, we expect improved candidate
representations to lead to lower data uncertainty,
since models should be better informed. As we
can see from Figure 3, V-LSTM models show this
pattern, with glove+visual+spatial candi-
dates leading to lower data uncertainty compared to
the cat+spatial baseline. However, LXMERT
models do not: regardless of candidate representa-
tions, they show the same level of data uncertainty.
LXMERT-scratch shows a reduction of data uncer-
tainty with glove+visual+spatial but to a
lesser degree than V-LSTM. In this case the trans-
former architecture is actually preventing the best
use of the information from the candidate features.

The model uncertainty measures the extent to
which the models disagree (i.e., the extent to which
the ensemble’s predictive distribution does not
match the average ensemble component). Here
again, the pre-trained LXMERTs show no effect of
candidate representations. However, for V-LSTM,
and again to a lesser extent LXMERT-scratch, the
improved representations increase the model un-
certainty, indicating an increase in model diver-
sity (and subsequently leading to a larger ensem-
ble boost). This again demonstrates the impor-
tance of good candidate representations for this
model: with cat+spatial, all ensemble com-
ponents were uncertain in the same way, while
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Model Candidate Rep. Guessers Ensemble Boost

V-LSTM cat+sp 64.49±0.12 66.40 1.9
V-LSTM gl+vis+sp 66.72±0.19 70.12 3.4
LXMERT-scratch cat+sp 64.70±0.41 66.50 1.8
LXMERT-scratch gl+vis+sp 66.3 ±0.39 68.90 2.6
LXMERT cat+sp 69.73±0.46 71.55 1.8
LXMERT gl+vis+sp 69.56±0.27 71.57 2.0

Table 2: Average guesser performance vs Ensemble performance: Boost is improvement in performance due to
ensembling. Ensembling benefits V-LSTM with good candidate representations most.

Figure 3: Total, data, and model uncertainty for different ensembles considering games with 5 candidate objects.
Improved candidate representations decreases data uncertainty for V-LSTM, but not for LXMERT or LXMERT-
scratch.

glove+visual+spatial representations lead
to useful diversity.

6 Conclusion

In this paper, we re-evaluated the need for a deep
pre-trained multimodal encoder on a testbed multi-
modal guessing task (GW). We demonstrated that
a lightweight V-LSTM model was able to achieve
matching performance, given useful features and
the reduction in uncertainty enabled by ensembling.

We show that for GuessWhat?!, the candidate
representations that lead the V-LSTM ensemble to
reach higher accuracy are those encoding ontologi-
cal (glove), visual and spatial information. The
pre-trained model does not profit from either of the
richer representation, or the ensemble. The uncer-
tainty analysis of the ensemble models shows that
while with poor candidate representations V-LSTM
models are highly uncertain, richer candidate repre-
sentations let these models behave more similarly
to the pre-trained LXMERT in terms of both data
and model uncertainty.

The richer candidate representations effectively

transfer information from other corpora (glove)
or visual recognition models (visual). These
features do not match exactly what LXMERT sees
during pretraining, but given that LXMERT does
not benefit from them, they do not seem to add
crucial information for LXMERT. Conversely, V-
LSTM benefits from these ‘cheap’ features to the
extent of matching deep contextual model perfor-
mance, indicating a continuing role for these types
of representations in grounded language tasks.

Hence, we conclude that the good performance
obtained by the Guesser when based on the pre-
trained multimodal Transformer is not due to its
architecture or to the representation learned during
fine-tuning, but rather to the exposure to a large
amount of multi-modal data during pre-training.
Our results may help mitigate environmental issues
given by the training of large models. It remains to
be seen whether these results hold for other tasks
and other unimodal and multimodal models.
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Abstract

Relative word importance is a key metric for
natural language processing. In this work, we
compare human and model relative word im-
portance to investigate if pretrained neural lan-
guage models focus on the same words as hu-
mans cross-lingually. We perform an exten-
sive study using several importance metrics
(gradient-based saliency and attention-based)
in monolingual and multilingual models, in-
cluding eye-tracking corpora from four lan-
guages (German, Dutch, English, and Russian).
We find that gradient-based saliency, first-layer
attention, and attention flow correlate strongly
with human eye-tracking data across all four
languages. We further analyze the role of word
length and word frequency in determining rela-
tive importance and find that it strongly corre-
lates with length and frequency, however, the
mechanisms behind these non-linear relations
remain elusive. We obtain a cross-lingual ap-
proximation of the similarity between human
and computational language processing and in-
sights into the usability of several importance
metrics.

1 Introduction

Large pretrained neural language models, such as
BERT (Devlin et al., 2019), have in recent years
demonstrated performance equal to that of humans
in a range of natural language understanding tasks
(Wang et al., 2019). This begs the question of
whether the processing and encoding of these mod-
els reflect language properties as described by lan-
guage experts, such as in grammar, semantics,
pragmatics and logic and, furthermore, whether
the models process language similarly to humans.
While extensive research is being done to answer
this question, such as inquiries into what linguistic
knowledge is encoded into contextual word repre-
sentations (Clark et al., 2019; Vulić et al., 2020),
how linguistic information is processed (Tenney

∗E-mail: felix.morger@gu.se

et al., 2019) and the effects of architectural choices
(Rogers et al., 2020), more recent research inspired
by psycholinguistics has emerged, which directly
compares cognitive signals of language process-
ing to pretrained language models. By using tools
such as eye-tracking features and brain activity data
(Abdou, 2022; Goldstein et al., 2022; Hollenstein
et al., 2020a), this line of research skips the step of
having to collect human judgments from speech or
text data by directly comparing them to sources of
cognitive data. As such, this approach is a direct
means of testing whether models process language
similarly to humans or, in other words, of evalu-
ating the cognitive plausibility of computational
language processing.

One method leveraging cognitive data has been
to extract relative word importance, a key metric
for natural language processing, from eye-tracking
data in order to compare these to relative word im-
portance extracted from state-of-the-art pretrained
language models. This has been studied for nor-
mal English reading (Hollenstein and Beinborn,
2021; Bensemann et al., 2022), in task-specific
reading (Eberle et al., 2022), and in question an-
swering settings (Sood et al., 2020). In this work,
we continue in this line of research but apply it
across several languages to measure the extent to
which pretrained language models focus on the
same words as humans cross-lingually. We obtain
human relative word importance from eye-tracking
data (total reading time) and model relative word
importance from pretrained language models us-
ing saliency and attention-based methods. These
methods have in recent years been developed for
the purpose of explainability, however, which meth-
ods serve best for this purpose has been a point of
contention (Jain and Wallace, 2019; Wiegreffe and
Pinter, 2019).

The goal of this study is two-fold: On the one
hand, we aim to obtain a rough estimate of the sim-
ilarity between human and computational natural
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language processing and, on the other hand, from a
usability point of view, see which importance meth-
ods best approximate human relative word impor-
tance. We compare four methods for calculating
relative word importance in pretrained language
models, namely first-layer attention, last-layer at-
tention, attention flow, and gradient-based saliency.
To investigate whether the same trends hold across
multiple languages and are not particular artifacts
of one language, we use eye-tracking corpora of
four different languages (English, Dutch, German,
and Russian) and compare both monolingual and
multilingual language models. More precisely, we
make this comparison by looking at how human
and model relative word importance statistically
correlate across different languages.

Lexical properties such as word frequency and
length are known to have a large effect on eye
movements of any language (Just and Carpenter,
1980; Levy, 2008). Therefore, in an additional
investigation, we analyze their impact on the fit
between human and model relative importance.

To sum up, this work examines the following
research questions:
Q1: Do human and model relative word impor-
tance correlate across languages?
Q2: Is there a difference between language-specific
and multilingual language models?
Q3: Is there a difference between gradient-based
saliency and the attention-based methods first-layer
attention, last-layer attention, and attention flow?
Q4: To what extent is human and model relative
word importance relying on word length and word
frequency?

Contributions We show that human and model
word importance correlate strongly in varying de-
grees across languages (English, Dutch, German
and Russian), although the observed differences
appear to be more corpus-specific than language-
specific (Q1). We observe a slightly stronger cor-
relation of monolingual models over multilingual
models, in particular for first-layer attention and
attention flow (Q2). We see that other attention-
based methods than last-layer attention, i.e., first-
layer and attention flow correlate strongly to human
eye-tracking data with attention flow being on par
with saliency for monolingual models (Q3). We
see a strong correlation with the baselines (positive
correlation to word length and negative correlation
to word frequency). When using linear regression
analysis to measure the ability of word length, word

frequency and model relative word importance to
predict human relative word importance, we see
that word frequency and word length increase the
predictive power over model relative word impor-
tance alone, indicating that these baselines are not
sufficiently accounted for by the models (Q4). The
code for our experiments is available online.1

2 Related Work

This work lies at the intersection of psycholinguis-
tics, interpretability of neural networks, and natu-
ral language processing. More specifically, there
are two current streams of research that this study
directly draws from, namely relative importance
metrics and cognitive analysis of natural language
processing. Below, we outline the related works in
these two subfields.

2.1 Relative Importance Metrics

Approaches for extracting relative word impor-
tance of Transformer-based models can be grouped
into gradient-based, propagation-based, occlusion-
based, and attention-based methods (Bastings and
Filippova, 2020, Section 3). In this work, we fo-
cus on attention-based and gradient-based methods
(see Section 4).

Attention is a key component of Transformer
models and multiple studies have analyzed how at-
tention weights are distributed across tokens. It has,
for example, been shown that attention at different
layers in Transformer models targets different lin-
guistic aspects. For instance, Vig and Belinkov
(2019) find that attention in a GPT-2 model targets
different parts of speech and depths of dependency
relations at different layers within the model and
Li et al. (2021) show that different layers of trans-
former language models perform best when detect-
ing different types of linguistic anomalies. Also,
the findings by Tenney et al. (2019) indicate that
in BERT earlier layers encode more word-level in-
formation than later layers when comparing perfor-
mance across different language-level tasks from
part-of-speech tagging to anaphora resolution.

The methodological merit of attention weights
as a measure of relative importance has, however,
been questioned. For one, the calculated attention
attends to input representations, not the input itself,
and these representations can mix in information
from other inputs, thus diluting the relative impor-

1https://github.com/felixhultin/
relative_importance.
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tance strength of the original input token (Bastings
and Filippova, 2020). Moreover, different atten-
tion distributions can lead to the same predictions,
making the relative importance of attention weights
ambiguous (Jain and Wallace, 2019). To address
the unreliability of attention weights, Abnar and
Zuidema (2020) propose attention flow, a mecha-
nism which computes maximum flow values, from
hidden embeddings to input tokens.

2.2 Cognitive Analysis of Natural Language
Processing

Using cognitive data to evaluate NLP has emerged
as a novel method for interpreting NLP systems
(Toneva and Wehbe, 2019; Ettinger, 2020; Hol-
lenstein et al., 2019). The motivation behind this
research is to assess whether models encode, pro-
cess, or output language similarly to humans and,
thus, provide measurements of their cognitive plau-
sibility (Keller, 2010).

In recent years, more eye-tracking corpora from
natural reading have become available in multiple
languages (see section 3.1). Although cognitive
data, including eye-tracking corpora, have been
available as digitized formats for a long time, only
recently have they been methodically deployed for
the cognitive analysis of NLP systems. For exam-
ple, the CMCL shared evaluation task uses ZuCo
for the modeling of eye-tracking features. In this
task, language models, such as BERT, are used to
predict eye-tracking features (number of fixations,
first fixation duration, total reading time, etc.) (Hol-
lenstein et al., 2021). This work is similar to ours,
but instead of fine-tuning the model to predict eye-
tracking features, we see if the relative word impor-
tance as extracted by different methods correlates
to mean total reading time.

Further work using other sources than eye-
tracking corpora is for example Ettinger (2020),
who proposed a psycholinguistic test suite to di-
agnose language models’ predictions in context
using electroencephalogram (EEG). Moreover, Ab-
nar et al. (2019) use functional magnetic reso-
nance imaging (fMRI) and representational sim-
ilarity analysis (RSA) to compare representations
of the brain and pretrained language models.

In terms of using relative importance metrics,
previous studies have shown that attention weights
do not correspond to human relative word impor-
tance. For example, Sood et al. (2020) compare at-
tention weights from the last layer of Transformer

models to human gaze data. They show that a
higher correlation between model attention and hu-
man attention does not necessarily yield better per-
formance in downstream NLP tasks. Hollenstein
and Beinborn (2021) also find that attention has
a weak correlation to human gaze data. Recently,
Eberle et al. (2022) have found that attention flow
from transformer models correlates strongly with
human fixation times in task-specific English read-
ing.

Finally, gradient-based methods have been pro-
posed as a better method than attention weights
at approximating the relative importance of input
words in neural networks (Bastings and Filippova,
2020). Hollenstein and Beinborn (2021) addition-
ally show that gradient-based saliency might be a
cognitively more plausible interpretability metric
than attention weights.

We follow these results and provide a large cross-
lingual comparison of human eye-tracking data to
a range of relative importance metrics, including
gradient-based saliency, first and last-layer atten-
tion, and attention flow.

3 Data

3.1 Eye-tracking Corpora

We use eye-tracking data collected from native
readers of the following corpora to extract the hu-
man relative importance metrics based on the mean
total reading time of each word (see Table 1). For
English, we use the GECO corpus, which contains
eye tracking data from English monolinguals read-
ing an entire novel (Cop et al., 2017), and the ZuCo
corpus (Hollenstein et al., 2018, 2020b), which
includes eye-tracking data of full sentences from
movie reviews and Wikipedia articles.2 For Dutch,
we also use the GECO corpus, which additionally
contains eye tracking data from Dutch readers that
were presented with the same novel in their na-
tive language (Cop et al., 2017). For German, we
leverage the Potsdam Textbook Corpus, which con-
tains 12 short passages from college-level biology
and physics textbooks, which are read by expert
and laymen German native speakers (Jäger et al.,
2021). We also use the Russian Sentence Corpus
which includes naturally occurring sentences ex-
tracted from the Russian National Corpus (Lauri-
navichyute et al., 2019).3 We exclude a small set

2We use Tasks 1 and 2 from ZuCo 1.0 and Task 1 from
ZuCo 2.0.

3https://ruscorpora.ru
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Language Corpus Subjs. Sents. Sent. length Tokens Types Word length

English GECO 14 4,559 10.5 (1–69) 56,410 5,916 4.6 (1–33)
ZuCo 30 853 19.5 (1–68) 20,545 5,560 5.0 (1–29)

Dutch GECO 19 4,863 11.6 (1–60) 59,716 5,575 4.5 (1–22)
German PoTeC 75 89 19.5 (5–51) 1,895 847 6.5 (2–33)
Russian RSC 103 143 9.4 (5–13) 1,357 993 5.7 (1–18)

Table 1: Descriptive statistics of all eye-tracking datasets. Sentence length and word length are expressed as the
mean with the min-max range in parentheses. Sents. is the number of the subset of sentences we process for this
work, while sentence length and word length are calculated from all sentences in the corpora.

of sentences from the original corpora because of
token alignment issues.

3.2 Language Models

All monolingual models and the multilingual model
are based on the BERT architecture (Devlin et al.,
2019). We use the pretrained checkpoints from the
HuggingFace repository of the multilingual base
model and language-specific monolingual base
models. See Table 3 in the Appendix for the com-
plete list of models and references.

4 Method

For each sentence in the eye-tracking corpora, we
calculate human and model relative word impor-
tance values. The same sentences are, however,
tokenized differently by the built-in tokenizers of
the pretrained language models, resulting in longer
sequences of relative word importance values than
those obtained from humans. To remedy this, we
align human and model importance values by dis-
carding the importance values of special tokens
(e.g. [SEP] and [CLS]) and merging subtokens
and adding their values. Once aligned, we calcu-
late Spearman’s correlation coefficient ρ between
human and model relative word importance for
each sentence. Finally, we calculate an average
Spearman’s ρ across all sentences for each eye-
tracking corpus (human relative word importance)
and model, corpus, and importance metric tuple
(model relative word importance). Additionally, us-
ing the same procedure, we explore the correlation
of human and model relative word importance to
word length and frequency baselines.

We analyze the following importance metrics:

Human relative importance In this work, we
use the total reading time per word in the eye track-
ing corpora as the source for defining human rel-
ative word importance. It refers to the sum of all
fixation durations for each word including regres-

sions (i.e. when a subject goes back to the same
word after the first pass). We use the average total
reading time across all subjects and normalize the
resulting values such that each word is assigned an
importance value between 0 and 1, and all values
within a sentence sum up to 1. These values are
calculated sentence by sentence.

Gradient-based saliency As described in Hol-
lenstein and Beinborn (2021), we define a saliency
vector for a masked token to indicate the impor-
tance of each of the tokens in the context of cor-
rectly predicting the masked token (Madsen, 2019).
The saliency sij for input token xj for the pre-
diction of the correct token ti is calculated as the
Euclidean norm of the gradient of the logit for xi:

sij = ∥∇xjfti(Xi)∥2 (1)

Last-layer attention We approximate relative
importance using the attention values from the last
layer and calculate the mean of all heads of each
Transformer model as Sood et al. (2020).

First-layer attention Previous work has indi-
cated that earlier layers encode information closer
to word-level than later layers (Tenney et al., 2019).
Therefore, we also include the first-layer attention
weights by averaging over all heads to approximate
relative word importance.

Attention flow Finally, we compute attention
flow (Abnar and Zuidema, 2020), which has been
shown to correlate stronger with human gaze than
raw attention weights (Eberle et al., 2022). Atten-
tion flow considers the attention graph as a flow
network and computes maximum flow values from
later attention layers to the input embedding layer.
Unlike raw attention weights, which consider to-
ken importance at layers in isolation, attention flow
computes importance scores that account for mix-
ing of information across layers and, thus, identifies
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Figure 1: Upper: Spearman’s correlation ρ between
human (total reading time) and model relative word im-
portance (BERT monolingual models). Lower: Spear-
man’s correlation ρ between human (total reading time)
and model relative word importance (BERT multilin-
gual model).

the important tokens for the model prediction. Be-
cause of the high computational resources needed
to calculate attention flow, we do not calculate at-
tention flow of the BERT multilingual model for
English (GECO).

Baselines We compare human and model rela-
tive word importance to two word-level baselines:
word length (the number of characters in a word)
and word frequency (the proportion of times a word
occurs in a corpus). To obtain the word frequencies,
we use the wordfreq Python package (Speer
et al., 2018) (version 2.3.2), which calculates to-
ken frequencies based on corpora from different
Internet text resources, such as Wikipedia, Google
Books, and Reddit.

Regression Analysis In addition, we use a mixed
linear regression analysis (ordinary least squares)
to measure the extent to which, model relative word
importance, word frequency, and word length can
predict human relative word importance. We let
human relative word importance be the dependent
variable and fit multiple linear regression models
with different combinations of model word impor-
tance, word frequency and word length as indepen-
dent variables. This is done to measure each and
every variable’s effect in isolation. We analyze the
resulting coefficient of determination R2.

In the Spearman correlation analysis outlined
above, the correlations were calculated per sen-

tence and then averaged. In contrast, we now fit
the model to tokens which means that all relative
word importance values and all word lengths and
frequencies are fitted into the same model.4.

Since all independent variables (word frequency,
word length and model relative word importance)
and the dependent variable (human relative word
importance) are intrinsically skewed, we log-
transform all data. Furthermore, we use an ex-
tended version of linear regression (mixed linear re-
gression (Gałecki and Burzykowski, 2013)) to deal
with dependency between samples (i.e., one word
appearing more than twice) which otherwise would
break the assumption of linear regression models
that each observation is independent of each other.

5 Results

5.1 Human vs. Model Word Importance
Figure 1 shows the Spearman correlation between
human relative word importance and model relative
word importance of importance methods for each
eye-tracking corpus. The results show a strong cor-
relation (ρ > .5) between human and model word
importance across all languages. There are, how-
ever, considerable differences between languages.
For example, German reaches a Spearman’s ρ of
.8, while Russian, English (GECO) and Dutch
(GECO) only reach .5 (Q1). When comparing
the multilingual BERT model to language-specific
BERT models, we observe for some importance
metrics, attention flow and first-layer attention, a
slightly stronger correlation to monolingual models.
In the German and English (ZuCo) monolingual
models, in particular, first-layer attention and flow
are equally strong as saliency while in the multi-
lingual model they all have more than .1 weaker
correlation. Attention first-layer seems even more
strongly correlated to monolingual models, where
we see +.11 and +.17 for the language-specific
BERT model of Dutch (GECO), English (GECO)
and ZuCo (English), respectively. Russian, how-
ever, is a slight outlier in that it has a +.3 difference
in favor of the multilingual BERT model (Q2).

When comparing importance methods, we see
similar results to previous findings on English data.
Saliency shows a strong correlation to human rel-
ative word importance, while last-layer attention
shows a weaker correlation. Furthermore, attention
flow and, surprisingly first-layer attention in most

4Most sentences are too short for the number of indepen-
dent variables we use to fit a linear regression model.
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Figure 2: Upper: Spearman’s correlation ρ between
word length and human (total reading time) and model
(BERT monolingual) relative word importance. Lower:
Spearman’s correlation ρ between word length and hu-
man (total reading time) and model (BERTmonolingual)
relative word importance.

cases, show similar strength than saliency, albeit
slightly weaker for multilingual models (Q3).

Finally, though not specifically defined in the
goals and research questions of this study, we make
the separate, but important, observation that the
most impactful variable for correlation strength
seems to be the size and text domain of the eye-
tracking corpora. This becomes apparent when
comparing Dutch (GECO), English (GECO) and
English (ZuCo). Even though English (GECO) and
English (ZuCo) are of the same language, the per-
formance on English (GECO) and Dutch (GECO)
are quite similar, while not very similar to English
(ZuCo). While the language-specific impact on the
results is difficult to grasp due to the differences
between the eye-tracking corpora, we, nonetheless,
see the same trends hold for all four languages.

5.2 Corpus Statistical Baselines

Figures 2 and 3 show the correlation of word fre-
quency and length baselines to human and model
relative word importance. We see a strong cor-
relation between models of all languages and the
two baselines word length and word frequency: A
strong positive correlation to word length and a
strong negative correlation to word frequency, as
also observed by Hollenstein and Beinborn (2021).

For the baselines, however, we see considerable
differences between languages. German shows the
strongest correlation for word length with 0.85 for

Figure 3: Upper: Spearman’s correlation ρ between
word length and human (total reading time) and model
(BERT multilingual) relative word importance . Lower:
Spearman’s correlation ρ between word length and hu-
man (total reading time) and model (BERT multilingual)
relative word importance.

humans and 0.82 and 0.85 for mono- and multilin-
gual BERT, respectively, and also the strongest neg-
ative correlation for word frequency with -0.78 for
humans and -0.85 as well as -0.87 for mono- and
multilingual BERT, respectively. Russian shows
the weakest human correlation to the baselines,
0.61 for word length and -0.51 for word frequency,
while having a relatively strong saliency baseline
correlation of 0.72 and 0.67 for word length as well
as -0.78 and -0.82 for word frequency.

Looking at the relative word importance metrics,
which had the strongest correlation to human im-
portance, namely saliency and attention flow, we
see that their correlation strength with respect to
the baselines correlate equally strong or stronger
than their human counterparts. This indicates that
the more similar their baselines are to the human
baselines, the stronger they correlate in terms of
relative word importance (see previous section).
This is especially the case when looking at (1) at-
tention last-layer, where there weaker correlation
to human relative word importance is also reflected
in its weaker correlation to word frequency and
word length, which are much lower than its hu-
man counterpart and (2) word frequency, where the
model relative word importance of Dutch (GECO),
English (GECO) and Russian have a weaker cor-
relation to human relative word importance but a
considerable stronger negative correlation to word
frequency than human relative word importance
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Table 2: Linear regression (R2) fitted to predict human
relative word importance from word frequency and/or
word length.

freq length freq+length

Dutch 0.08 0.15 0.16
English (GECO) 0.07 0.12 0.14
German 0.31 0.38 0.41
Russian 0.22 0.49 0.49
English (ZuCo) 0.13 0.26 0.30

has to word frequency. This effect does not, how-
ever, seem to be as pronounced with word length.

These results show that word length and word
frequency are powerful indicators of word impor-
tance and support the presumption that they play
an important role in determining the correlation
strength between human and model relative word
importance (Q4). In the next subsection, we will try
and quantify how much these baselines account for
this relation, by measuring the explanatory power
word length, word frequency and model relative
word importance have in predicting human relative
word importance.

5.3 Word Length & Frequency Regression
Analysis

We fitted linear mixed models to predict human
word importance using either word frequency, word
length, model relative word importance, or com-
binations of the features. Table 2 shows the R2

results for using word frequency and word length
as independent variables, and Figure 4 shows the
results for using model relative word importance as
an independent variable in combination with word
frequency and word length. See Figure 5 and Table
4 in the Appendix for full results.

In Table 2 we see a weak R2 score or in other
words a weak linear relationship between human
relative word importance and word frequency and
word length. Word frequency, however, appears to
have a weaker R2 than word length and differences
are large between corpora. Russian, for example,
has four times stronger R2 for word length than
English (GECO). Using both word frequency and
word length (freq+length) appears only to be as
strong as the strongest word length value (length),
such that a combination of word frequency and
word length (freq+length) does not make the rela-
tionship stronger.

Comparing Figure 4 to Table 2 we see a much
stronger linear relationship (R2) when model rel-

ative word importance is used as an independent
variable. When combined with word frequency
(model+freq) we see a considerable increase of R2,
but combined with word length (model+length and
model+freq+length) we see an even stronger linear
relationship. Similarly to Table 2, combining word
frequency and word length (freq+length) only gives
as much benefit as adding length to model word im-
portance (model+length and model+freq+length).

Comparing the R2 of model importance, we see
different scores than that of the results in section
5.1 and section 5.2. Here, we see saliency achiev-
ing the lowest R2 across all models and corpora,
meanwhile the attention-based metrics (attention
first/last layer and flow) show a much larger R2.
Although comparing the R2 and Spearman’s ρ is
not equal due to the methodological differences
outlined in Section 4, this difference nevertheless
suggest that relation between saliency and human
relative word importance is less linear in nature
than attention-based ones.

6 Discussion

6.1 Findings on Human vs. Model Relative
Word Importance

This cross-lingual study shows that model relative
word importance has a strong correlation to human
relative word importance. We confirm the findings
of other English-based studies that saliency (Hol-
lenstein and Beinborn, 2021), first-layer attention
(Bensemann et al., 2022) and attention flow (Eberle
et al., 2022) show a strong correlation to human rel-
ative word importance as well as last-layer attention
showing a weak correlation (Q1 & Q3). This re-
search, thus, from a usability perspective supports
the critique against using attention weights for ex-
planation, while providing supporting evidence for
the use of attention flow. Comparing monolingual
and multilingual models, we see slightly stronger
results for monolingual models, in particular for
attention first-layer and attention flow, indicating
that some importance-bearing information are more
readily available in the attention weights of mono-
lingual models. However, given that these results
are not vastly different, there is still a strong argu-
ment for training multilingual models over mono-
lingual models because of their resource-efficiency
and saving of computational resources (Q2).

The secondary finding of this study that corpus-
specific differences have a big impact on correla-
tion strength, indicates the need to control the size
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Figure 4: Linear regression (R2) fitted to predict human
relative word importance from model word importance
(model), word frequency (freq), word length (length) or
combinations thereof (+) (BERT monolingual). A1, Al,
Af , and S are short for first-layer attention, last-layer
attention, attention flow, and saliency, respectively.

and text domain for cross-lingual comparison. A
promising avenue for future work could be to apply
our analyses to the recent multilingual eye-tracking
corpus MECO (Siegelman et al., 2022).

6.2 The Role of Word Length And Word
Frequency

Measuring the effect of word length and word fre-
quency using Spearman’s ρ and linear regression
we find that they play an important role in deter-
mining relative word importance. First, we see that
similarity in correlation strength to the word length
and especially word frequency baseline mirrors
a stronger correlation between model and human
relative word importance (Q4). Secondly, we see
that when using linear regression to quantify the
linear relationships between the two lexical base-
lines, model relative word importance, and human
relative word importance, stronger predictions can
be made when model relative word importance is
combined with word frequency or word length, es-
pecially the latter (see Figure 4). This suggests that
word frequency and especially word length might
not be sufficiently accounted for by the language
models. Furthermore, the discrepancy between the
lower impact of word frequency and the higher
impact of word length has several potential expla-
nations. Firstly, word frequency might be better ap-
proximated by the model than word length (which
is supported by the fact that word length is not

explicitly processed in Transformer-based architec-
tures). Secondly, the relationship between word
frequency and relative word importance is proba-
bly less linear than that of word length and relative
word importance (as suggested by the results in
Table 2) and could, therefore, not be as adequately
fitted by linear regression. The nature of the re-
lationships between word length, word frequency,
and human relative word importance, thus, remains
elusive. To gain clarity on this, future work could
control for word length and frequency more ex-
plicitly, by, for example, grouping and comparing
relative word importance by length and frequency
in isolation as well as using probing tasks to test
the extent to which contextual word representations
themselves can predict word length and frequency.

7 Conclusion

In this work, we show that the strong correlation
between relative word importance of neural lan-
guage models and humans holds across several
languages, namely, English, German, Dutch, and
Russian. This is the case for both monolingual as
well as multilingual pretrained Transformer models,
which yield similar performance in our correlation
analyses.

We also find that several relative importance met-
rics for pretrained language models, both first-layer
attention and attention flow as well as saliency,
perform similarly well and that these importance
values, as their human counterparts, strongly corre-
late to word length and word frequency. However,
as expected, we have found that last-layer attention
correlates more weakly.

Comparing the correlations of relative word im-
portance is a simple, easily interpretable metric for
evaluating the similarity of human and computa-
tional language processing. Using this metric, we
can evaluate the extent to which the model’s at-
tention compares to approximate human language
processing and, thus, get a gauge of their cogni-
tive plausibility. In addition to the BERT-based
architectures we studied, looking at more recent
cross-lingual models such as GPT, T5 and XLNet
as well as multimodal language models would give
further insights into the role of pre-training tasks
as well as non-textual modalities.
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Appendix

A Limitations

The results and conclusions of this paper should
be read with the following limitations in mind: (1)
Differences between human subjects can be quite
significant, thus, the results will also reflect this
uncertainty (Kidd et al., 2018). (2) Comparing
model relative word importance of saliency-based

20



and attention-based methods to that of human rel-
ative word importance only reflects these meth-
ods’ ability to mimic human behavior, but does not
say anything about their ability to accurately rep-
resent the inner workings, i.e., the faithfulness of
pretrained language models (Jacovi and Goldberg,
2020).
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Table 3: List of models used for each corpora. Hugging Face path refers to the model path used to identify the model
in Hugging Face repository. For models without explicit paper reference, we refer to the Hugging Face website.

Corpus Model name Hugging Face path Reference
GECO (en) BERT bert-base-uncased Devlin et al. (2019)
GECO (en) BERT Multilingual bert-base-multilingual-cased Devlin et al. (2019)
GECO (nl) BERT GroNLP/bert-base-dutch-cased de Vries et al. (2019)
GECO (nl) BERT Multilingual bert-base-multilingual-cased Devlin et al. (2019)
ZuCo BERT bert-base-uncased Devlin et al. (2019)
ZuCo BERT Multilingual bert-base-multilingual-cased Devlin et al. (2019)
Potsdam BERT dbmdz/bert-base-german-uncased https://huggingface.

co/dbmdz/
bert-base-german-uncased
(accessed 2022-03-15)

Potsdam BERT Multilingual bert-base-multilingual-cased Devlin et al. (2019)
Russsent BERT DeepPavlov/rubert-base-cased Kuratov and Arkhipov (2019)
Russsent BERT Multilingual bert-base-multilingual-cased Devlin et al. (2019)

Figure 5: Linear regression (R2) fitted to predict human relative word importance from model word importance
(model), word frequency (freq), word length (length) or combinations thereof (+) (BERT multilingual). A1, Al, Af ,
and S are short for attention (first-layer), attention (last-layer), attention flow, and saliency, respectively.
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Table 4: Linear regression models R2 measuring impact of word length, word frequency and word importance.

Language Model Importance model model+freq model+length model+freq+length

Dutch

BERT

Attn (1st) 0.53 0.58 0.64 0.64
Attn (last) 0.51 0.58 0.63 0.64
Flow 0.52 0.58 0.64 0.64
Saliency 0.27 0.31 0.37 0.37

mBERt

Attn (1st) 0.52 0.58 0.63 0.64
Attn (last) 0.52 0.58 0.63 0.64
Flow 0.52 0.58 0.63 0.64
Saliency 0.33 0.35 0.39 0.38

English (Geco)

BERT

Attn (1st) 0.6 0.65 0.71 0.72
Attn (last) 0.59 0.65 0.71 0.72
Flow 0.59 0.64 0.71 0.72
Saliency 0.28 0.32 0.39 0.39

mBERT
Attn (1st) 0.6 0.65 0.71 0.72
Attn (last) 0.6 0.64 0.71 0.71
Saliency 0.36 0.38 0.45 0.44

English (ZuCo)

BERT

Attn (1st) 0.4 0.49 0.58 0.6
Attn (last) 0.39 0.49 0.58 0.6
Flow 0.4 0.49 0.58 0.6
Saliency 0.17 0.26 0.38 0.39

mBERT

Attn (1st) 0.4 0.49 0.58 0.6
Attn (last) 0.4 0.49 0.58 0.6
Flow 0.4 0.49 0.58 0.6
Saliency 0.22 0.27 0.41 0.41

German

BERT

Attn (1st) 0.47 0.69 0.78 0.79
Attn (last) 0.43 0.67 0.76 0.77
Flow 0.46 0.69 0.78 0.79
Saliency 0.17 0.39 0.5 0.5

mBERT

Attn (1st) 0.46 0.72 0.78 0.8
Attn (last) 0.46 0.72 0.78 0.8
Flow 0.47 0.72 0.78 0.8
Saliency 0.23 0.46 0.53 0.54

Russian

BERT

Attn (1st) 0.1 0.27 0.51 0.51
Attn (last) 0.09 0.28 0.52 0.52
Flow 0.09 0.26 0.51 0.51
Saliency 0.08 0.24 0.5 0.5

mBERT

Attn (1st) 0.1 0.28 0.51 0.51
Attn (last) 0.11 0.28 0.51 0.51
Flow 0.11 0.27 0.5 0.51
Saliency 0.13 0.25 0.49 0.49
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Abstract

The transformer architecture has achieved state-
of-the-art performance on language modelling.
Nonetheless, a more efficient algorithm would
allow for a larger number of tokens, thus
a wider context and better grounding of the
model’s predictions. In this spirit, we intro-
duce a more efficient layer type that aims to
substitute self-attention for unidirectional se-
quence generation tasks. The system is shown
to be competitive with existing methods: Given
N tokens, the computational complexity is
O(N logN) and the memory complexity is
O(N) under reasonable assumptions. The Dis-
patcher layer is seen to achieve comparable
perplexity to self-attention while being more
efficient1.

1 Introduction

The introduction of self-attention (Vaswani et al.,
2017) has produced a considerable surge of lan-
guage models (Devlin et al., 2018; Liu et al., 2019;
Yang et al., 2019; Lan et al., 2020). Originally, self-
attention had been envisioned as a three elements
algorithm (key, query, and value) to be applied onto
an encoder-decoder framework for machine trans-
lation. It soon became evident that the Transformer
architecture can successfully master the most rel-
evant NLP tasks (Devlin et al., 2018) with some
marginal modifications. One key application of
self-attention has been language generation (Rad-
ford et al., 2019), where typically the model at-
tempts to predict the next token given a limited
window of prior elements. A full text can thus be
generated word by word. Self-attention - bidirec-
tional in nature - needs to be masked in order to
avoid backward propagation of information.

Until a few years ago recurrent models
(Sutskever et al., 2011; Graves, 2014; Merity et al.,

1The code is available at https://github.com/
fractalego/dispatcher

† Work done while at QBE Europe.

2017; Melis et al., 2018) outperformed every other
method for language modelling and generation.
This has changed with the introduction of masked
self attention (MSA) models, which have achieved
the state-of-the-art in language generation, culmi-
nating in some unexpected results for multi-task
zero-shot learning (Radford et al., 2019) as well as
intriguing few-shot abilities (Brown et al., 2020).

The main argument of this work is to show that
language modelling can efficiently rely on a mes-
sage passing approach to perform, proposing a
method that does not leverage upon self-attention.
Instead, the system builds a tree-like structure of
forward message passing weighed by dispatching
coefficients. In the end, the Dispatcher architecture
can generate texts as well as the original Trans-
former model, more efficiently. The main contri-
butions of the paper are to introduce the novel al-
gorithm as well as compare perplexity to the "stan-
dard" self-attention on the task of language mod-
elling.

2 Model

The original Transformer architecture is composed
of a number of self-attention, skip connection, and
feed-forward layers. Given N tokens, the self-
attention block has a computational and memory
complexity of O(N2) and is therefore problematic
for long sequences. Here we propose to substitute
each self-attention layer with a different algorithm.

Within the Dispatcher layer, information is
pushed forward onto the next tokens in a recur-
sive fashion. The algorithm is given a list of em-
beddings as input, with the aim to create output
embeddings that contain a mixture of the tokens
that precede them, without any leakage from the
tokens that follow. The system achieves this goal
by summing the tokens with themselves shifted by
a power of two, iteratively. Each of these steps is
labelled shift and sum in Fig. 1.

In the pseudo-code shown in Alg. 1 the dis-
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Algorithm 1: The Dispatcher Layer Algo-
rithm
c← Sigmoid(Linear1(input));
c← c ⊙ mask;
V← Linear2(input);
for row = 0→ log2N − 1 do

V← V + c[row] ⊙ RollRight(V, 2row);
end
output← Linear3(V);

patching coefficients are written as c ∈ RN×log2N ,
whereas V ∈ RN×d is the tensor containing the hid-
den states used as a working memory in the main
loop, with embedding dimension d. The Linear
functions are dense layers, while RollRight shifts
the tokens to the right.

The message coming from the prior tokens fol-
lows a binary tree structure, as depicted in Fig. 1.
The sum is weighed by the dispatching coefficients,
which effectively decide whether information com-
ing from the left of the tree should propagate fur-
ther, and by what amount. These weights are com-
puted through a dense layer applied to the original
tokens. A constant mask is applied to the tensor c
after it has been computed to avoid leakage after
the RollRight operation.

The algorithm presented above describes a
single-head unit. As with self-attention, this layer
can be split into a set of Dispatcher heads to im-
prove performance. The number of heads then
becomes another hyper-parameter to tune during
training. Finally, if the number of input embed-
dings is not a power of two, the loop stops when
the shift value is greater than the input length.

2.1 Dispatcher Dropout

A quick modification of Alg. 1 can introduce an
effective dropout by randomly skipping a shift and
sum step in training with a probability given by a
dropout value between 0 and 1. Notice that in this
procedure dropout makes the algorithm quicker,
albeit with the same computational complexity.

2.2 Computational complexity

The creation of the dispatching coefficients is lin-
ear in time, as a dense layer is a applied to every
input token. The main algorithm repeats log2N
times a weighted sum. If d is the dimension of
the embeddings, the computational complexity is
O(dN logN).

Figure 1: A representation of how information is passed
from the input tokens to the output within the Dispatcher
Layer. At every vertex of this directed graph the embed-
dings are summed together, each sum weighed by the
dispatching coefficients. These weights determine how
much of the message from the left needs to be passed
onto the right. For clarity the paths to the last output
item are painted in a darker color.

2.3 Memory complexity

The system computes the dispatching coeffi-
cients in every layer with a space complexity of
O(N logN). In addition, the algorithm uses at
every step a set of embeddings V with complex-
ity O(N × d). In a typical scenario d ≫ log2N ,
yielding an effective asymptotic linear memory con-
sumption O(N × d).

3 Evaluation

3.1 Datasets

The algorithm is evaluated on the following
datasets: PTB (Mikolov and Zweig, 2012), Wiki-
Text2 and WikiText103 (Merity et al., 2017), and
One Billion Word (Chelba et al., 2013). A simple
pre-processing step uses the special token <EOS>
to indicate the end of each sentence.

Among the sets, PTB and WikiText2 are the
smallest, with only 4.9MB and 11MB of text data
for training respectively. This is to be compared to
the 515MB training set of WikiText103 and 3.9GB
of 1BW. While the larger dataset, 1BW only mod-
els short-term dependency because the sentences
have been shuffled. An additional corpus called
OpenWebText (Cohen and Gokaslan, 2020) is used
to train the larger Dispatcher model. This set was
created as an open alternative to the one used when
training GPT-2 (Radford et al., 2019) and consists
of about 40 GB of text data.
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Figure 2: Average time in seconds for a single training
step on WikiText2 as a function of the number of input
tokens. Both models are trained on the same single-GPU
instance. The asymptotic behavior appears remarkably
different.

3.2 Training

At first, the Dispatcher algorithm is compared
against a masked self-attention model. Rather than
trying to optimize for the MSA and the Dispatcher
separately, we choose an identical set of hyper-
parameters (embedding size, number of heads, lay-
ers) and compare their perplexity. While this ap-
proach might not give the best results for each
model, it helps to show that the two algorithms
perform similarly under similar conditions.

Secondly, a slightly bigger Dispatcher model
(Sec. 3.4) is trained for one epoch only on the
OpenWebText corpus. The goal is not to achieve
state-of-the-art results, rather to prove that the pro-
posed architecture can reach comparable perplex-
ity to Transformer-based models. In the spirit of
simplicity, we use a single head for all the models,
which are trained on the same single-GPU machine.
All the models are implemented in PyTorch (Paszke
et al., 2019).

3.3 Masked self-attention (MSA) and Plain
Dispatcher

These models have embedding and inner dimension
size 512, 6 layers, and only 1 head. The training
batch size is 20 and dropout is set to 0.2, using
512 tokens. The only difference between the two
models is the self-attention/Dispatcher layer. To-
kenization is done using a pre-trained WordPiece
tokenizer made available by HuggingFace (Wolf
et al., 2020). On training and evaluation the vo-

cabulary is further restricted on each dataset to im-
prove performance, as a consequence the number
of parameters changes depending on the relevant
dataset’s vocabulary size.

3.4 Dispatcher after OpenWebText
This model has a single head, 480 embedding and
inner dimension size, and 12 layers with a mini-
batch size of 5 and no dropout. A BPE tokenizer -
pre-trained on OpenWebText - is used. The number
of tokens used for this model is 1024. First pre-
trained on OpenWebText, the model is then fine-
tuned onto the relevant sets.

3.5 Discussion
The MSA model and the Plain Dispatcher are eval-
uated against four different datasets, as shown in
the first two rows of Table 1. The results are quite
similar, with the Dispatcher architecture seen per-
forming better on the smaller sets PTB and Wiki-
Text2. This is arguably due to the model having
fewer parameters and being less prone to overfit-
ting. Conversely, the larger MSA model wins on
WikiText103. The Dispatcher overtaking MSA on
1BW is more challenging to explain in terms of
model size and seems to suggest its enhanced abil-
ity to model short-term dependencies, at least in
this one-headed configuration.

A striking difference between the MSA and the
Dispatcher is however shown in Fig. 2, which
plots the average time for a single training step as
a function of the number of input tokens. While
the recorded times are configuration-specific, the
asymptotic behavior looks radically different, sug-
gesting the Dispatcher architecture as a better can-
didate for longer sequences.

A single epoch of training onto the OpenWeb-
Text dataset boosts the Dispatcher performance into
competitive results for a model of this size, after
fine-tuning on the relevant corpus. This is shown in
the third row of Table 1, presenting our top results.

The rest of Table 1 is a showcase of the most
recent self-attention based models. Notably, our
results on PTB and WikiText2 are among the best
in the literature, surpassing the results in (Wang
et al., 2019) which are obtained by fine-tuning a
pre-trained BERT model. This is most likely due
to the OpenWebText corpus being a better set for
language generation than BookCorpus (used by
BERT), but it bodes well for the algorithm pre-
sented here that it can compete against models with
one order of magnitude more parameters. The last
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Model Type PTB WikiText2 WikiText103 1BW

Masked Self-Attention (18M / 30M / 39M / 41M) 40.58 55.05 22.56 66.52
Plain Dispatcher (17M / 27M / 36M / 38M) 35.40 50.23 24.39 53.32

Dispatcher after OpenWebText (59M) 18.95 22.74 20.38 36.76
(Fan et al., 2020) (44M) - - 22.4 -

(Wang et al., 2019) (395M) 31.34 34.11 20.42 -
(Tay et al., 2021) (100M) - - - 21.5

(Dai et al., 2019) (257M / 0.8B) - - 18.3 21.8
(Radford et al., 2019) (1.5B) 35.7 18.34 17.48 42.16
(Shoeybi et al., 2020) (355M) - - 19.31 -
(Shoeybi et al., 2020) (8.3B) - - 10.81 -

Table 1: Top: The Dispatcher architecture is evaluated concurrently with a masked self-attention model yielding
similar results. Bottom: The Dispatcher pre-trained on OpenWebText compared to some recent results achieved
using a variant of the Transformer architecture. All the results refer to the test perplexity.

three rows relate to zero-shot results. Omninet’s
impressive result (Tay et al., 2021) is achieved by
extending self-attention to all tokens in all the lay-
ers, while here the dispatcher layer is only aware
of the embeddings within a single layer.

4 Related works

The way information is funneled to higher layers
in Fig. 1 is reminiscent of convolutional neural
networks (CNN) (Liu et al., 2020; Gehring et al.,
2017). It is especially evocative of dilated convo-
lutions as presented in (van den Oord et al., 2018).
While similar, the method presented here is not
technically a convolution, which by definition re-
quires the same operator being translated over the
input elements. In this paper the dispatching coeffi-
cients are local to the tokens.

Another way to visualize the Dispatcher algo-
rithm is as a set of overlapping Recursive NN acting
on binary trees (Goller and Kuchler, 1996; Socher
et al., 2011) which share parameters where the trees
overlap. It is however important to keep in mind
that the shift and sum iteration only performs a
weighted sum of the input embeddings, achieving
competing performance only when repeated within
a multi-layer structure.

The computational cost of large models has be-
come a source of concern in terms of scalability as
well as energy consumption (Strubell et al., 2019).
For this reason, a growing number of approxima-
tions (Wang et al., 2020; Kitaev et al., 2020; Za-
heer et al., 2021; Choromanski et al., 2020; Zhai
et al., 2021) have appeared in the literature, suggest-
ing modifications to the main self-attention layer.

These approximations tend to leverage linear alge-
bra properties to speed up calculations, capturing
the essence of the Transformer architecture into
more efficient algorithms. In many cases the ap-
proximation makes the model irreducibly bidirec-
tional, thus hindering language generation tasks.

More recently, inductive biases alternative to
self-attention have been shown to achieve compa-
rable results on language tasks using the Fourier
Transform in place of the MSA layer (Lee-Thorp
et al., 2021) and on vision tasks by means of spatial
MLPs (Yu et al., 2021).

Finally, the concept of message passing is under-
stood to describe Graph Convolutional Networks
(Kipf and Welling, 2017; Geerts et al., 2020) and
by extension the self-attention mechanism in the
Transformer architecture. The Dispatcher algo-
rithm makes message passing explicit by keeping
the routing topology constant while relying on the
coefficients to distribute the message within a set
of binary trees.

5 Conclusions

A novel architecture dedicated to language mod-
elling is introduced and shown to achieve compara-
ble perplexity with self-attention based models, re-
quiring less computational and memory resources.
A larger number of tokens can allow for a wider
context window and more detailed grounding of
the model’s predictions.

Finally, low perplexity in the task of language
modelling is often predictive of high-quality text
generation. This intriguing possibility will be pur-
sued in a future work.
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Abstract

In this paper we examine different meaning
representations that are commonly used in dif-
ferent natural language applications today and
discuss their limits, both in terms of the as-
pects of the natural language meaning they are
modelling and in terms of the aspects of the
application for which they are used.

1 Introduction

A crucial component to produce a “successful”
NLP system is sufficiently expressive representa-
tions of meaning. We consider a sufficiently expres-
sive meaning representation to be one that allows
a system’s output to be considered acceptable to
native speakers given the task. In this paper we
present several features of meaning and discuss
how different methods of deriving meaning repre-
sentations capture these features. This list is by
no means exhaustive. It might be viewed as a first
attempt to discuss ways of establishing a general
methodology for evaluating meaning representa-
tions and characterising what kinds of applications
they might be useful for.

2 Formal meaning representations

The rigour of the work on semantics by Richard
Montague (Montague, 1973; Partee, 1976) inspired
early work on computational semantics (perhaps
the earliest was Friedman and Warren, 1978; Fried-
man et al., 1978). Two high-points of the literature
on computational semantics based on Montague
are Blackburn and Bos (2005), using logic pro-
gramming, and van Eijck and Unger (2010), us-
ing functional programming. Montague’s semantic
techniques have also played an important role in
semantic treatments using Combinatory Categorial
Grammar (CCG, Bos et al., 2004).

∗ All authors contributed equally.

One problem with Montague’s treatment of se-
mantics was that it was limited to the level of the
sentence. It could not, for example, deal with cross-
sentence anaphora such as A dogi barked. Iti was
upset by the intruder. This, among several other
things, led to the development of Discourse Rep-
resentation Theory (DRT, Kamp and Reyle, 1993;
Kamp et al., 2011) and other variants of dynamic
semantics such as Heim (1982) and Groenendijk
and Stokhof (1991). Here “dynamic” is meant in
the sense of treating semantic content as context
change potential in order, among other things, to be
able to pass referents from one sentence to a subse-
quent sentence in the discourse. This is a much less
radical notion of dynamic interpretation than we
discuss in Section 4, where the meaning associated
with a word or phrase may change as a dialogue
progresses. DRT has played an important role in
computational semantics from early work on the
Verbmobil project (Bos et al., 1996) to work by
Johan Bos and others on the Groningen Meaning
Bank1 and the Parallel Meaning Bank2.

One of the cornerstones of Montague’s approach
is compositionality, the ability to compute the
meaning of phrases on the basis of the meanings of
their immediate sub-constituents. Another central
feature in the Montague tradition is the ability to de-
rive conclusions based on logical inference, includ-
ing logical inferences based on the semantics of
logical constants such as and, not and logical quan-
tifiers, and the ability to characterise additional
axioms or “meaning postulates”. Defeasible rea-
soning has been added to this kind of framework
(e.g., Asher and Lascarides, 2003) and systems
have been connected to theorem provers and model
builders (Blackburn and Bos, 2005). The variants
of dynamic semantics discussed above gave us the

1https://gmb.let.rug.nl/
2https://pmb.let.rug.nl/
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ability to treat discourse phenomena. That is, phe-
nomena occurring in texts or utterances of more
than a single sentence, including cases of discourse
anaphora. Underspecified meaning representa-
tions are single representations which cover sev-
eral meanings in cases where there is systematic
ambiguity. While there is some work on underspec-
ification of meaning in the theoretical literature
(Reyle, 1993), the most interest has been devoted
to it in computational work based on formal seman-
tics (such as Alshawi, 1992; Bos, 1996; Copestake
et al., 2005). Model theory deals with representing
the relationship between language and the world,
in computational terms to database queries (Black-
burn and Bos, 2005; van Eijck and Unger, 2010).

What we have sketched above might be called
the classical canon of formal semantics as it relates
to computational semantics. One of the features
lacking in the classical canon includes dialogue.
The notion that language is actually used in in-
teraction between agents engaging in communi-
cation (and therefore going beyond the notion of
discourse in texts discussed earlier) came quite late
to formal semantics though there is now a signifi-
cant body of theoretical work. Notions of dialogue
semantics covering plan-based approaches to di-
alogue (Allen, 1988), questions under discussion
(Ginzburg, 1994, 2012) and communicative ground-
ing (Traum, 1994) became central in the literature
on formal approaches to dialogue. This gave rise
to the Information State Update approach to dia-
logue (Larsson and Traum, 2000; Larsson, 2002).
TTR (a theory of types with records, Cooper, 2005,
forthc) has played an important role in this. Simi-
larity of meaning is another feature. In addition to
meaning relations such as entailment there is a no-
tion of words, phrases and sentences having similar
meanings in various respects. In a formal meaning
representation this can be represented, for exam-
ple, by the use of record types in TTR. Yet another
feature is robust non-logical inference which is
represented, for example, in work on textual entail-
ment now commonly referred to as Natural Lan-
guage Inference (NLI). This is hard to square with
the logic-based inference discussed above. Rather
than representing something that follows logically,
it corresponds to what conclusions people might
draw from a given utterance or text. It is often re-
liant on background knowledge and is to a large
extent defeasible. The work on topoi by Breitholtz
(2020) and probabilistic TTR (Cooper et al., 2015)

is suggestive of a computational approach to this.
Finally, while model theory purports to relate lan-
guage and the world it tells us little about how we
relate our perception of the world and action in
the world to the meaning of words and phrases
which is known as perceptual grounding. Such
issues become important, for example, if we want
to put natural language on board a robot. This has
become central to theories such as TTR (Cooper,
forthc; Larsson, 2013; Dobnik et al., 2013) and
Dynamic Syntax (Kempson et al., 2016). There
is important formal work on multimodal nature
of communication, for example (Lücking, 2016;
Pustejovsky and Krishnaswamy, 2020).

Above we have mentioned examples of formal
approaches which attempt to incorporate features
which are not present in the classical canon. An
alternative strategy is to try to incorporate features
from the classical canon in non-formal approaches
(e.g. Coecke et al., 2010) or to combine aspects
of non-formal and formal approaches in a single
framework (e.g. Erk and Herbelot, 2020).

3 Distributional meaning representations

Meaning as a function of its usage can be traced
back to Wittgenstein (1953), but were popularised
by Firth (1957). The idea at its core is that the
meaning of a word is given by its context. Wittgen-
stein (1953) primarily speaks about meaning in
relation to the world and real world activities while
Firth (1957) speaks about language in relation to
language. The second notion of meaning is the
basis for distributional semantics. The notion that
meaning in language can be found based on lan-
guage context is related to the observation that if
two words occur in the same context, their meaning
is likely related.

The two predominant approaches to construct-
ing distributional meaning representations today
is to use machine learning to construct distributed
and contextualised word representations (Sahlgren,
2006; Mikolov et al., 2013a; Peters et al., 2018).
In these approaches, the meaning of a word is en-
coded as a dense vector of real valued numbers.
The values of the vector are obtained by training
a neural network to perform some task, using a
(possibly annotated) corpus. The task then helps
guide the neural network to produce meaningful
representations. Distributed word representations
focus on building static representations of words
given a corpus. Popular techniques for obtaining
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these representations are BoW (Bag-of-Words) or
SGNS (Skip Gram with Negative Sampling), popu-
larised by (Mikolov et al., 2013a). The main trick
to BoW and SGNS is to construct a training schema
such that given a random meaning representation
for the word x, the representation is transformed so
it can be used to identify the word in a context3, or
can be used to to identify the context of the word.
The BoW or SGNS meaning representations can
then be used as a component in another system.
Contextualised representations on the other hand
build dynamic word representations, that is, a sin-
gle word will have different vector representations
in different contexts. These representations are
typically informed by the output from a language
model. Thus, to really exploit contextual repre-
sentations effectively a sentence is needed when
extracting the meaning representation. This is in
contrast to the BoW and SGNS representations
which are fixed after being constructed.

With distributed representations we may also
reason analogically about words and combinations
of concepts, e.g. ”Russia” + ”River” = ”Volga”
(Mikolov et al., 2013b). That is, we may construct
complex meaning by combining simpler parts. By
combining the representation for “Russia” and
“river” we obtain some vector z which contains in-
formation about the contexts of both “Russia” and
“river”. By querying the vector space for words
with a similar representation to that of z we find
other words with similar context. The success of
distributed meaning representations, both static and
contextualised, can in part be attributed to the abil-
ity of a model to predict similarity between units
of language. Because meaning is defined as the
context in which words occurs, two vector repre-
sentations can be compared and their similarity
measured. (Conneau and Kiela, 2018; Vulic et al.,
2020). This similarity can be explored in terms of
words (Hill et al., 2015; Artetxe et al., 2016) and
in term of sentences (Cer et al., 2017).

The ability to model similarity allows models to
discover relationships between units of language.
It allows models to transfer knowledge between
languages. For example, unsupervised word trans-
lation can be done by aligning monolingual vector
spaces. (Lample et al., 2018; Artetxe et al., 2018).
Transformer models (Vaswani et al., 2017) have
also enabled zero-shot and transfer learning, e.g. by
learning English word representations and evaluat-

3Context here is typically a n-gram containing x.

ing on a task in another language (Pires et al., 2019).
The simplicity of static and contextualised meaning
representations allows us to construct them for any
unit of language, be it words, sentences (Conneau
et al., 2018), documents (Lau and Baldwin, 2016)
or languages (Östling and Tiedemann, 2017).

However, a word or a sentence may mean dif-
ferent things depending also on a larger context.
For example a sentence in different domains will
express different meanings even if the words are
exactly the same. This presents a problem for dis-
tributed representations, as our observation of a
word or sentence in the real world includes addi-
tional context from what we have recorded in the
data. However, the effects of different domains may
be counteracted by domain adaptation techniques
(Jiang and Zhai, 2007).

Distributed representations enjoy success across
a wide variety of NLP tasks. However, a conse-
quence of automatically learning from a corpus
results in some inherent shortcomings. A corpus
is a snapshot of a subset of language and only cap-
tures language as it was used then and there. This
means that the resulting meaning representations
do not inherently capture language change (though
they can used to study it, see Section 4). Addi-
tionally, the meaning representations are generally
created from observing language in a corpora, not
from language use in the world. A consequence of
this is that distributional meaning representations
don’t capture the state-of-affairs in the world, i.e.
the context in which the language was used. In
practical terms this means that for tasks that de-
pend on the state-of-affairs in the world, such as
robot control, dialogue or image captioning, a sys-
tem must incorporate this information somehow
which is further explored in the remaining sections.

4 Dynamic meaning representations

To see how meaning is context dependent in (at
least) two different ways we can make the dis-
tinction between meaning potential and situated
meaning (Norén and Linell, 2007). The situated
meaning of a word is its disambiguated and con-
textually enriched interpretation in a particular con-
text of use. Meaning potential (or lexical mean-
ing) is the system of affordances (Gibson, 1966;
Gregoromichelaki et al., 2020) that a word offers
for sense-making in a given context. In this con-
ception, situated meaning is context dependent by
construction, but we also claim that the meaning
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potential of a word depends on context of a certain
kind. In particular, it depends on what is com-
mon ground (Stalnaker, 2002) between a speaker
and their audience. At a linguistics conference, a
speaker might use words like token or modality—
words that would mean something completely dif-
ferent (or nothing at all) at a family dinner. The con-
ference speaker expects to be understood based on
their and their audience’s joint membership in the
computational linguistics community, where they
(rightly or wrongly) consider certain specialised
meanings to be common ground. The communities
that serve as a basis for semantic common ground
can be as broad as speakers of Spanish (grounding
the “standard” Spanish lexicon), or as small as a
nuclear family or close group of friends (ground-
ing specialised meanings particular to that group
of people) (Clark, 1996).

Recent work in NLP has demonstrated the value
of modelling context, including sentential (Sec-
tion 3) and multimodal context (Section 5) for rep-
resenting situated meanings. The dynamic repre-
sentations given by language models like BERT
depend on the local context in which the word ap-
pears, but don’t the context of the community or
individual speakers involved. Little work has been
done in NLP to explicitly incorporate social con-
text, which provides the basis for semantic common
ground. Recent work has shown that neural lan-
guage models can be used to detect and analyse
variation and change in post-hoc way (Del Tredici
et al., 2019a; Giulianelli et al., 2020). This suggests
that explicitly modelling social context may be a
fruitful way forward.

In the following, we identify three kinds of social
context that might be accounted for with dynamic
meaning representations
Variation As demonstrated in the conference ex-
ample, lexical meaning is community dependent.
This doesn’t necessarily mean that every NLP ap-
plication needs to mimic the human ability to tailor
our semantic representations to the different com-
munities we belong to, but some applications may
serve a broader set of users by doing so (Hovy,
2015). Consider, for example, an application that
serves both the general public and experts in some
domain. Even where variation is not explicitly
modelled, it is an important factor to consider on
a meta level. In practice, NLP models typically
target the most prestigious, hegemonic dialect of a
given language, due in part to biases in what train-

ing data is easily available on the internet (Bender
et al., 2021). This results in applications that favour
users who are more comfortable with the dominant
language variety. Furthermore, many applications
assume a single variety of a given language, when
in fact the training data of the models they rely on is
rather specific. The standard English BERT model,
for example, is trained on a corpus of unpublished
romance novels and encyclopedia articles, but is
applied as if it represents English written large.
Alignment Semantic common ground is not only
based on joint community membership—it can
also be built up between particular agents through
interaction. Experiments have shown that pairs
of speakers develop shorter lexicalised referring
expressions when they need to repeatedly iden-
tify a referent (Mills and Healey, 2008). Addi-
tions or modifications to existing common ground
can take place implicitly (through semantic accom-
modation) or meaning accommodation (Larsson,
2010) or explicitly, as in word meaning negotiation
(Myrendal, 2015).

There is some hope for developing models that
dynamically update their meaning representations
based on interaction with other agents. Larsson and
Myrendal (2017) suggest an inventory of semantic
update functions that could be applied to formal
meaning representations based on the results of an
explicit word meaning negotiation. Dynamic In-
terpretation Theory (Bunt, 2000) offers a way of
representing meaning as change to the conversa-
tional context, including social context, and has
been incorporated in the implementation of several
dialogue managers (Keizer et al., 2011; Malchanau,
2019). On the distributional side, one- or few-shot
learning may eventually allow models to generalise
from a small number of novel uses by drawing on
existing structure in the lexicon (Lake et al., 2019).
One question that remains unexplored in both these
cases is which updates to local (dialogue or partner-
specific) semantic ground should be propagated to
the agent’s representation of the communal com-
mon ground (and to which community). This natu-
rally bring up the issue of community-level seman-
tic change.
Change How words change in meaning has long
been an object of study for historical linguists (e.g.,
Paul, 1891; Blank, 1999). Historical change may
not seem like a particularly important thing for
NLP applications to model. After all, we can
accommodate for changes over decades or cen-
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turies by simply retraining models with more cur-
rent data, but significant semantic shift can also
take place over a much shorter timeline, espe-
cially in smaller speech communities (Eckert and
McConnell-Ginet, 1992). The issue of semantic
change also intersects with that of variation, since
coinages and shifts in meaning that take place
in one community can cause the lexical common
ground to diverge from another community. Con-
versely, variants in one community may come to
be adopted by another (possibly broader) commu-
nity. The recent widespread use of distributional
semantics to study semantic change suggests that
distributional representations are capable of captur-
ing change.4 Diachronic distributional representa-
tions have been used to study semantic change on
both a historic/language level (e.g., Dubossarsky
et al., 2015; Hamilton et al., 2016) and on a short-
term/community level (Rosenfeld and Erk, 2018;
Del Tredici et al., 2019b; Noble et al., 2021). While
social context is not often taken into account in
meaning representations, ongoing research on se-
mantic variation and change suggests that such dy-
namic representations are possible as extensions of
the formal and distributional paradigms.

5 Grounded meaning representations

The meaning of words is not merely in our head. It
is grounded in our surroundings and tied to our un-
derstanding of the world (Regier, 1996; Bender and
Koller, 2020), particularly through visual percep-
tion (Mooney, 2008). Mapping language and vision
to get multi-modal meaning representations im-
poses an important challenge for many real-world
NLP applications, e.g. conversational agents. Such
agents typically learn by finding statistical relations
and often lack causal reasoning about the world
(Agarwal et al., 2020) and common-sense knowl-
edge (Hwang et al., 2021). This section describes
how different modalities are typically integrated
to get a meaning representation for language-and-
vision (L&V) tasks and what is still missing in the
respective information fusion techniques.

Historically, modelling of situated language has
been influenced by ideas from language technology,
computer vision and robotics, where a combina-
tion of top-down rule-based language systems was
connected with Bayesian models or other kinds of
classifiers of action and perception (Kruijff et al.,

4See (Tahmasebi et al., 2018), (Tang, 2018), and (Kutuzov
et al., 2018) for recent surveys.

2007; Dobnik, 2009; Tellex et al., 2011; Mitchell
et al., 2012). In these approaches, most of the fo-
cus was on how to ground words or phrases in
representations of perception and action through
classification. Another reason for this hybrid ap-
proach has also been that such models are partially
interpretable. Therefore, they have been a preferred
choice in critical robotic applications where secu-
rity is an issue. The compositionality of semantic
representations in these systems is ensured by us-
ing semantic grammars, while perceptual represen-
tations such as SLAM maps (Dissanayake et al.,
2001) or detected visual features (Lowe, 1999) pro-
vide a model for interpreting linguistic semantic
representations. Deep learning, where linguistic
and perceptual features are learned in an interde-
pendent manner rather than engineered, has proven
to be greatly helpful for the task of image caption-
ing (Vinyals et al., 2015; Anderson et al., 2018a;
Bernardi et al., 2016) and referring expression gen-
eration (Kazemzadeh et al., 2014).

A more in-depth analysis of how meaning is rep-
resented in these models is required. Ghanimifard
and Dobnik (2017) show that a neural language
model can learn compositionality by grounding an
element in the spatial phrase in some perceptual
representation. In terms of methodology for un-
derstanding what type of meaning is captured by
the model, attention (Xu et al., 2015; Lu et al.,
2017) has been successfully used. Lu et al. (2016)
have shown that co-attending to image and question
leads to a better understanding of the regions and
words the model is focused on the most. Ilinykh
and Dobnik (2020) demonstrate that attention can
struggle with fusing multi-modal information into a
single meaning representation based on the human
evaluation of generated image paragraphs. This is
because the nature of visual and linguistic features
and the model’s structure significantly impact what
representations can be learned when using an atten-
tion mechanism. Examining attention shows that
attention can correctly attend to objects, but once
it is tasked to generate relations (such as preposi-
tional spatial relations and verbs), attention visually
disappears as these relations are non-identifiable
in the visual features utilised by the model. This
leads several researchers to include specifically ge-
ometric information in image captioning models
(Sadeghi et al., 2015; Ramisa et al., 2015). On
the other hand, it has also been shown that a lot
of meaning can be extracted solely from word dis-
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tributions. Choi (2020) demonstrates how linguis-
tic descriptions encode common-sense knowledge
which can be applied to several tasks while Dobnik
and Kelleher (2013); Dobnik et al. (2018) demon-
strate that word distributions are an important part
of the semantics of spatial relations.

Interactive set-ups such as visual question an-
swering (VQA) (Antol et al., 2015; de Vries et al.,
2017) or visual dialogue (Das et al., 2017) make
first attempts in modelling multi-modal meaning in
multi-turn interaction. However, such set-ups are
asymmetric in terms of each interlocutor’s roles,
which leads to homogeneous question-answer pairs
with rigid word meaning. Conversational games
have been proposed as set-ups in which the mean-
ing of utterances is agreed upon in a collaborative
setting (Dobnik and Storckenfeldt, 2018). These
settings allow for modelling meaning coordination
of grounded perceptual classifiers (Larsson, 2013)
and phenomena such as clarification requests. Sev-
eral corpora of perceptual dialogue exist where
conversational partners need to leverage dialogue
and visual information to achieve mutual under-
standing of a scene, for example MeetUp! (Ilinykh
et al., 2019), PhotoBook (Haber et al., 2019) and
Cups (Dobnik et al., 2020).

Examining L&V models and representations
they learn points to several significant and inter-
esting challenges. The first relates to the struc-
ture of both datasets and models. Many corpora
contain prototypical scenes where the model can
primarily optimise on the information from the lan-
guage model to generate an answer without even
looking at the image (Cadene et al., 2019). Sec-
ondly, information captured by a language model
is more compact and expressive than patterns of
visual and geometric features. Thirdly, common-
sense and visual information are not enough (Lake
et al., 2017; Bisk et al., 2020; Tenenbaum, 2020):
we also rely on mental simulation of the scene’s
physics to estimate, for example, from the appear-
ance and position of a person’s body that they are
making a jump on their skateboard rather than they
are falling over a fire hydrant. Such representa-
tions are necessary for modelling embodied agents
(Anderson et al., 2018b; Das et al., 2018; Kottur
et al., 2018). Fourthly, adding more modalities
and representations puts new requirements on in-
ference procedures and more sophisticated models
of attention (Lavie et al., 2004) that weighs to what
degree such features are relevant in a particular con-

text. In recent years we have seen work along these
lines implemented with a transformer architecture
(Lu et al., 2019; Su et al., 2020; Herdade et al.,
2019). However, the interpretability of how indi-
vidual parts (self-attentions) of large-scale models
process information from different modalities is
still an open question (Ilinykh and Dobnik, 2022).

6 Meaning expressed with our body

Meanings can result in bodily reactions and, con-
versely, they can be expressed with our bodies, for
example non-verbal vocalisations, gaze and ges-
tures.
Emotions Meanings perceived from the environ-
ment can change our emotional states and be ex-
pressed in bodily reactions: evaluating events as
intrinsically unpleasant may result in gaze aversion,
pupillary constriction and some of the other com-
ponents (Scherer, 2009). On the other hand, our
emotional states can be expressed and the expres-
sions can be adjusted by emotional components,
such as mood (Marsella et al., 2010).

Over the last years appraisal theories became
the leading theories of emotions (for overview, see
Oatley and Johnson-Laird, 2014). These theories
posit that emotion arises from a person’s interpre-
tation of their relationship with the environment
or appraisal. The key idea behind cognitive theo-
ries is that emotions not only reflect physical states
of the agents but also emotions are judgements,
depending on the current state of the affairs (de-
pending on a person, significance/urgency of the
event etc.). In our view, linguistic events can as
well enter the calculation of appraisal on the level
of information-state of the agent which can be mod-
elled by formal theories. For instance, following
Oatley and Johnson-Laird (2014) we can distin-
guish emotions as either free-floating or requiring
an object such as a linguistic entity, entity in the
environment or a part of agent’s information-state
(e.g., obstruction of the agent’s goal can lead to
anger or irritation, and, vice versa, agent’s sadness
can lead to the search for a new plan). Several at-
tempts implement emotional appraisal in text and
speech (e.g., Alm, 2012), and within the agent mod-
els (e.g., Marsella et al., 2010).
Non-verbal vocalisations Non-verbal vocalisa-
tions, such as laughter, are ubiquitous in our every-
day interactions. In the British National Corpus
laughter is a quite frequent signal regardless of
gender and age—the spoken dialogue part of the
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British National Corpus contains approximately
one laughter event every 14 utterances. In the
Switchboard Dialogue Act corpus non-verbally vo-
calised dialogue acts (whole utterances marked as
non-verbal) constitute 1.7% of all dialogue acts and
laughter tokens make up 0.5% of all the tokens that
occur in the corpus.

Despite a distinct bodily reaction (laughter
causes tensions and relaxations of our bodies), it
is believed that we laugh in a very different sense
from sneezing or coughing (Prusak, 2006). Many
scholars agree that laughter is not involuntary but
we laugh for a reason, about something and that
laughter perfomrs a social function (Mehu, 2011).
It is associated with senses of closeness and affili-
ation, establishing social bonding and smoothing
away discomfort. For example, tickling not only
requires the presence of the other but also it is more
likely if subjects have close relationships (Harris,
1999).

Therefore, the meaning of laughter ought to
be represented so that an artificial agent can un-
derstand it and react to it accordingly (Maraev
et al., 2018; Mazzocconi et al., 2021). Mazzoc-
coni (2019) presents a function-based taxonomy
of laughter, distinguishing functions such as indi-
cation of pleasant incongruity or smoothing the
discomfort in conversation. Ginzburg et al. (2020)
propose a formal account of laughter within the
information-state of dialogue participants which in-
cludes scaling up to non-verbal social signals such
as smiling, sighing, eye rolling and frowning.
Gaze Gaze has many functions. It can dictate
attention, intentions, and serves to give commu-
nicative cues in interaction (Somashekarappa et al.,
2021). Gaze following can infer objects that people
are looking at. While we scan a visual scene, our
brain stores fixation sequences in memory and reac-
tivates them when visualising the scene later in the
absence of any perceptual information (Brandt and
Stark, 1997). Scan-path theory illustrations indi-
cate that meaning representations on scanned areas
depend on the semantics of sentences (Bochyn-
ska and Laeng, 2015). Semantic eye fixations sup-
ports the view of mental imagery that is flexible
and creative. Being grounded in previous expe-
riences, by selecting a past episode we are able
to generalise the past information to novel images
that share features (Martarelli et al., 2017). Spatial
representations associated with different semantic
categories launch eye movements during retrieval

(Spivey et al., 2000).

For dialogue participants gaze patterns represent
resources to track their stances. Interlocutors en-
gage in mutual gaze while producing agreeing as-
sessments (Haddington, 2006). Gaze shifts follow
sequentially a problematic stance and are followed
by a divergent stance by the person who produced
the gaze shift. Gaze patterns are not meaningful per
se but acquire interpretation within their linguistic
and interactional contexts.

Eye movement patterns, EEG signals and brain
imaging are some of the techniques that have been
used to augment traditional qualitative text-based
features. Temporal course and flexibility of the
speaker’s eye gaze can be used to disambiguate re-
ferring expressions in spontaneous dialogue. Eye-
tracking data from reading experiments provide
structured information with fine-grained temporal
resolution which closely follows sequential struc-
ture of speech and is related to the cognitive work-
load of speech processing (Barrett and Hollenstein,
2020). Deep convolutional neural networks have
been used to classify text to gaze using eye move-
ments. Their performance has improved when hu-
man readers were tackling semantic challenges
(Mishra and Bhattacharyya, 2018). For multi-
modal and multi-party interaction in both social
and referential scenarios, (Somashekarappa et al.,
2020) calls for categorical representation of gaze
patterns.
Gestures Gestures are hand and body move-
ments that help to convey information (Kita and
Özyürek, 2003). The observational, experimen-
tal, behavioural and neuro-cognitive evidence in-
dicates that language and gestures are linked both
during comprehension and production (Wilkins,
2006; Willems et al., 2007). Speech and gestures
are semantically and temporally coordinated and
therefore involved in co-production of meaning.
Gestures convey meaning through iconicity and
spacial proximity providing information that is not
necessarily expressed in speech.

While shaping of gestures is related to concep-
tual and semantic aspects of the accompanying
speech, gestures cannot be unambiguously inter-
preted by naı̈ve listeners (Hadar and Pinchas-Zamir,
2004). However, Morett et al. (2020) showed that
the semantic relationship between representational
gestures vs their lexical affiliates and language is
evaluated similarly. Mentions of referents for the
first time in a discourse are often accompanied by

36



gestures. For example, Debreslioska and Gullberg
(2020) report that the “entity” gesture accompanies
referents expressed by indefinite nominals. As ref-
erents are introduced in clauses, inferable referents
referred to by definite nominals are identified by the
contrasting “action” gestures. Head movements are
produced to give feedback (Petukhova and Bunt,
2009) and it is possible to identify a specific pattern
for a specific movement and that movements can be
easily measured and their extent can be quantified
(Allwood and Cerrato, 2003).

Fixing gesture functions, integrating different
modalities and determining their composite mean-
ings is challenging. For artificial agents multi-
modal output planning is crucial and timing must
be explicitly represented. Lücking (2016) takes a
qualitative formal approach from a type-theoretic
perspective, representing iconic gestures in TTR
and linking them with linguistic predicates. (Puste-
jovsky and Krishnaswamy, 2020) take a hybrid
approach linking qualitative representations in
VoxML with machine learning classification.

7 Conclusions

We surveyed formal, distributional, interactive,
multi-modal and body-related representations of
meaning used in computational linguistics. They
are able to deal with compositionality, under-
specification, similarity of meaning, inference and
provide an interpretation of expressions but in very
different ways, capturing very different kinds of
meaning. These aspects can be broadly categorised
into (i) aspects that are related to the construction
of linguistic forms and (ii) aspects concerned with
the interpretations and understanding the world and
human activity in it.

Current mainstream computational linguistics
is a practical field which is not working toward
a uniform model of human language but focuses
on several sub-tasks which, although related, are
frequently considered in isolation. For example,
natural language understanding and natural lan-
guage generation frequently use entirely different
approaches and representations even when the lin-
guistic context is the same, for example texts or
image captions. Solutions are provided given the
practical goals and limitations of each task. Sec-
ondly, the solutions are also limited by what lin-
guistic information can be feasibly collected for
this task and by our understanding of human lan-
guage and behaviour (or its lack-of) as witnessed

by ongoing work in linguistics and psychology.

If our goal is to translate documents or answer
general fact-based questions then a reasonable per-
formance can be achieved even if the system is able
to ground representations only indirectly in linguis-
tic contexts over situations rather than situations
themselves. However, for a situated robot semantic
grounding in texts, although relevant, is not enough
as it has to connect language with its environment
that it accesses with its sensors and actuators. For
example, word embeddings for left and right will
tell us that they are similar relations but also that
they have slightly different selectional preferences
for objects that they relate.

Humans rely on different aspects of meaning for
different kinds of descriptions and contexts and it
may be perfectly fine for our task-specific computa-
tional models to only use some dimensions and in
an indirect way. What is wrong to claim, however,
is that any of these models have reached human-
like intelligence. Humans can re-evaluate linguistic
descriptions against different dimensions of mean-
ing and this is something that our systems are not
capable of. Work on the cognitive notion of atten-
tion informs us how aspects of meaning representa-
tions are selected to disambiguate under-specified
linguistic utterances by balancing information from
different modalities.

A stronger connection between representations
from different tasks is certainly desirable and im-
portant progress has been made for example in
integration of formal grammars in situated agent
systems or integration of vision and language rep-
resentations learned by neural networks. However,
the challenge remains precisely because “linguis-
tic experiences” of our systems are limited by the
narrow tasks and domains that they are specialised
on. Transferring models across contexts of lan-
guage use and aligning their representations is by
no means straightforward as there may be very
little overlap. At the same time we also expect
that models learn generalisations that apply across
contexts. In line with this we suggest that future
work should focus on developing benchmarks that
test different representations in different contexts.
For this we need datasets of instances requiring
some type of linguistic inference where instances
are labelled by the context type and the type(s)
of modality required for successful inference. We
hope that this paper points to some of the aspects of
representations that need to be taken into account.
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Abstract
Many successful methods for fusing language
with information from the visual modality have
recently been proposed and the topic of mul-
timodal training is ever evolving. However,
it is still largely not known what makes dif-
ferent vision-and-language models successful.
Investigations into this are made difficult by the
large sizes of the models used, requiring large
training datasets and causing long train and
compute times. Therefore, we propose the idea
of studying multimodal fusion methods in a
smaller setting with small models and datasets.
In this setting, we can experiment with different
approaches for fusing multimodal information
with language in a controlled fashion, while
allowing for fast experimentation. We illustrate
this idea with the math arithmetics sandbox.
This is a setting in which we fuse language
with information from the math modality and
strive to replicate some fusion methods from
the vision-and-language domain. We find that
some results for fusion methods from the larger
domain translate to the math arithmetics sand-
box, indicating a promising future avenue for
multimodal model prototyping.

1 Introduction

Having models learn language from text alone has
been criticised based on several aspects, from fun-
damental arguments about how language works
(Bender and Koller, 2020; Bisk et al., 2020) to find-
ings on certain information lacking in text (Gordon
and Van Durme, 2013; Paik et al., 2021). Conse-
quently, there is much interest in creating models
that learn from more than text, i.e. “multimodal
models”. Many different multimodal models that
fuse different types of information with text have
been developed, ranging from vision-and-language
models (VL models) (Zhang et al., 2020) to lan-
guage models fused with knowledge graphs (Yu
et al., 2022). In this work, we mainly focus on the
vision-and-language domain, while our results may
generalize to other multimodal domains as well.

Figure 1: An overview of the vision-and-language fu-
sion method and our proposed math-language fusion
method. The image model and the math model are back-
bones.

A standard approach for fusing information from
images with language is firstly to use a backbone, a
large neural network that has been trained to create
good representations of images. One such model is
ResNet trained on Visual Genome (Anderson et al.,
2018; Krishna et al., 2016). The training data in
this standard approach typically consists of image
samples paired with linguistic information, such as
MS COCO (Lin et al., 2014). Multimodal fusion is
then achieved by generating representations of im-
age samples using the backbone and feeding those
together with paired linguistic samples to a large
language model pre-trained on text. The language
model is then expected to learn to leverage the vi-
sual information for its linguistic usage if trained
on a sufficient amount of image-text pairs. We
illustrate this approach in Figure 1.

Significant success on several multimodal vision-
and-language tasks has been achieved with this ap-
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proach (Chen et al., 2020; Li et al., 2019, 2020; Tan
and Bansal, 2019). However, it has seldom been in-
vestigated from a methodological perspective, and
existing methodological investigations indicate that
performance on different vision-and-language tasks
may not originate from what we would expect. For
example, differences in performance for different
VL models have previously been ascribed to dif-
ferent model architectures, while Bugliarello et al.
(2021) recently showed that training data and em-
bedding layers matter more than e.g. if the model
is dual- or single-stream. Hessel and Lee (2020)
also showed that performance improvements for
some VL models on image-text classification tasks
mainly originate from unimodal signals, and not
cross-modal interactions. Additionally, Frank et al.
(2021) found that VL models are not necessarily
symmetrical in their cross-modal interactions.

Additionally, the standard approach for fusing
information from images with language does not
necessarily encourage experiments with different
methods for multimodal fusion, mainly since the
associated compute power is substantial, as a conse-
quence of large models and data sizes. For example,
the size of the Faster R-CNN visual features used
by Bugliarello et al. (2021) is approximately 1.6
TB, significantly larger than e.g. the 20.3 GB for
English Wikipedia1.

In this work, we hypothesize that methods for
multimodal fusion can be developed in a smaller
domain for more efficient investigations. We exper-
iment with a sandboxed experimental setting for
investigating different multimodal fusion methods.
It is based on synthetic multimodal data, in a very
constrained math-and-language domain consisting
of simple arithmetic math statements, as illustrated
in Figure 1. Using this setup, we are free to investi-
gate different multimodal fusion methods like the
one seen in Figure 1 in silico, using models that are
easier to work with, with faster training times and
full control of the data since we can synthetically
generate it. The sandbox is described in Section 2
and we release the corresponding code to enable
other researchers to build on it.2

We reason that results in the math-and-language
domain could generalize to more complex domains,
such as the vision-and-language domain (Section 2)
and provide empirical support for this with a few

1Provided by Huggingface via https://
huggingface.co/datasets/wikipedia

2Available at https://github.com/lovhag/
small-math-language-multimodal-fusion

experiments (Section 3).
To summarize, our contributions are two, 1) pro-

posal of idea in using smaller domains for easier
investigations of vision-and-language fusion meth-
ods, and 2) demonstration of idea in the math arith-
metics sandbox set in the math-and-language do-
main. We couple this demonstration with validating
experiments that compare against recent results in
the vision-and-language domain.

2 The math arithmetics sandbox

Similarly to how images are described with pixel
values over some grid, equations can be described
with numerical values over potential positions in
an equation. Also similarly to how we use image
specific models to generate representations of im-
ages for language fusion, we can use math specific
models to generate representations of equations for
language fusion, illustrated in Figure 1.

In the math arithmetics sandbox we limit our-
selves to two-digit numbers and equations describ-
ing sums of these numbers. An example of a data
sample in the math modality of the sandbox is
then 54 + 21 = 75, with the corresponding string
“fifty-four plus twenty-one is equal to seventy-five”.
We can work with a total of 104 = 10, 000 dif-
ferent such math-language pairs in our sandbox.
This number of possible samples is much smaller
than e.g. the corresponding number for image data,
for which the size of the support is (V 3)32×32 for
32 × 32-pixel images with V possible values for
each RGB channel, with underlying probability
distributions of the pixel values.

An example of a potential task in the math arith-
metics sandbox is to predict the continuation of the
string “fifty-four plus twenty-one is equal to” given
the math information 54 + 21 = 75. This task can
be compared to the task of visual question answer-
ing in the vision-and-language domain, for which
a question could be “What is the color of the fruit?”
provided with an image of a yellow lemon. The
underlying format of the two tasks is essentially
the same, a text prompt is provided together with
information from another modality that encodes
the information necessary to answer the prompt.

We hypothesize that results from experiments in
the math arithmetics sandbox can give intuitions
about the vision-and-language domain, since the
difference between the math arithmetics sandbox
and more complex multimodal domains mainly lies
in the size of the support, while the underlying for-
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mat for the multimodal tasks are similar. Thus, it
is interesting to investigate whether we can acquire
valuable knowledge in the math arithmetics sand-
box and exploit it in more complex multimodal
domains, such as the vision-and-language domain.

3 Experiments

To investigate whether insights gained in the math
arithmetics sandbox are comparable to other multi-
modal domains, we perform a set of experiments.

3.1 Setup
We validate our math arithmetics sandbox by com-
paring findings from Huang et al. (2021) and
Bugliarello et al. (2021) with findings we obtain on
the same, but sandboxed, cases. The findings we
investigate and aim to reproduce are:

1. Adding information to a model from a modal-
ity with a sufficient amount of train sam-
ples improves on the performance of a model
(Huang et al., 2021).

2. Training with an additional modality with
too few training samples weakens the perfor-
mance of a model compared to not adding the
extra modality (Huang et al., 2021).

3. The design of the embedding layers matters
for VL models (Bugliarello et al., 2021).

4. Dual- and single-stream VL model architec-
tures perform on par (Bugliarello et al., 2021).

Task The task of the validating experiments is
to accurately predict the answer to a text version
of a sum equation xT , given the corresponding
complete math equation xM . An input example for
this task is xT = “one plus two is equal to”, xM =
1+2=3 and with the correct answer y = “three”.

During validation, the multimodal model is to
generate the continuation of an incomplete string
equation given the corresponding complete math
equation. For simplicity, we use a greedy decoding
scheme and measure the k = 1 accuracy.

Models As illustrated in Figure 1 our problem
setup firstly consists of a math model MM that gen-
erates a representation MM (xM ) of a math input
xM . This representation is then given to a language
model ML together with the incomplete text input
xT to get a prediction y′ = ML(xT ,MM (xM )).

We model MM with a small version of GPT23

3Embedding dimension of 64, 4 Transformer layers, inner
dimension of 256 and 8 attention heads.

Name Embedding Stream Backb
GPT2text
VisualBERT VisualBERT Single 99%
UNITER UNITER Single 99%
LXMERTs LXMERT Single 99%
LXMERTd LXMERT Dual 99%
LXMERTb LXMERT Single 5%

Table 1: Backb denotes the backbone, which was trained
on either 99% or 5% of the math data. GPT2text is a
standard unimodal GPT2 model only taking text input,
serving as a unimodal baseline.

(Radford et al., 2019) with a vocabulary restricted
to only include the tokens in the math equations.
The output of MM (xM ) is then a set of vector
representations, one for each token in xM .

ML is also modelled with a model similar to
GPT2. The difference here is that we need to adapt
the model to accept a multimodal input (xT and
MM (xM )). For this, we design a special embed-
ding layer and choose between a single- or dual-
stream architecture for the model.

Since one goal of this article is to investigate
the effect of different embedding layer designs and
dual- versus single-stream model architectures, we
create and evaluate four different model variations,
seen in Table 1. The embedding designs essentially
determine how the multimodal model input xT and
MM (xM ) is processed before being passed to the
encoder of ML. The dual- or single-stream archi-
tectures essentially determine how early linguistic
information and visual information is fused while
being processed in ML. We name the model vari-
ations after their embedding design, stream type
and amount of training data for the math model
(backbone). The embedding designs are named af-
ter the VL model that incorporates the same design.
Detailed descriptions of how we create the model
variations can be found in Appendix A.

Data The data we have available are the 10,000
math-language pairs. We train the math model
MM on 9,900 (99%) of the pure math equations
samples such that it attains a validation accuracy
of 0.99, to ensure that the model is able to gener-
ate information-rich math features. We then train
the language model ML on math-text pairs. We
experiment with different sizes of training data and
evaluate on the remaining data samples, to inves-
tigate the effect of having access to many or few
text samples. We train the models until they have
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Figure 2: The validation accuracies for the different sandboxed models trained on 100, 500, 1000 and 2000 math-text
samples respectively. The validation task was to predict the answer to a string version of a sum equation. Each
configuration was trained 5 times.

converged in performance on the validation set and
report their accuracy score on the same set.

We also train a math model on only 500 samples
(5%) of the pure math equations to a validation ac-
curacy of 0.67. We use this backbone to investigate
2) the effect of training with too few samples for
the additional modality and train a single-stream
model with LXMERT embeddings with this back-
bone, denoted ‘LXMERTb‘.

3.2 Results

The results from the validating experiments are
shown in Figure 2.

Does adding multimodal information improve
model representations? Yes, for all cases in
which the language data is more scarce (<2000
samples), adding multimodal information leads to
a better model performance than only using text.

Does training with insufficient data for the ad-
ditional modality weaken model performance?
Predominantly yes, when there is more text data
(500< samples) adding information from the “bad”
math backbone has a deteriorating impact on the
model performance and the multimodal model even
performs worse than the unimodal version. When
there is less paired math-text data, additional in-
formation from the backbone trained on little data
leads to a better performance than in the pure-text
case. Potentially, this is due to the pure text case
also having too little data, such that additional in-
formation, despite bad quality, still is helpful.

Do embeddings matter for our models? No,
we do not observe significantly different perfor-

mances for the models with different embedding
layers. Potentially, this is due to the features from
the math modality being so simple that the embed-
ding does not really matter, compared to the case
of e.g. features from an object detector that also
encode locations of bounding boxes.

Do dual- and single-stream architectures per-
form on par? Yes, despite the fact that the sand-
boxed dual-stream model is larger than the single-
stream models, the model performs on par with the
single-stream models. This is in agreement with
results found on the vision-and-language domain.

4 Conclusions

We propose the idea of studying vision-and-
language fusion methods from a smaller domain.
We reason that it would be easier and less resource
demanding to develop performant multimodal fu-
sion methods if we could investigate them using
small models and domains. We exemplify this with
the math arithmetics sandbox and get promising
results. However, more experiments on other small
domains are necessary to evaluate the potential of
our proposed idea. It would also be beneficial to
investigate small domains that are more similar to
e.g. the vision-and-language domain.
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A Language Model variations

To investigate the effect of different vision-and-
language fusion methods, we implement versions
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of these in the model ML in the math-and-language
domain.

A.1 Design of embedding layers
We wish to investigate the effect of different em-
bedding layer designs for text xT and math fea-
tures MM (xM ). The embedding designs essen-
tially determine how the multimodal model input
xT and MM (xM ) is processed before being passed
to the encoder of ML. Similarly to the work by
Bugliarello et al. (2021), we switch between differ-
ent embedding designs, for which we test designs
similar to those used in VisualBERT, UNITER and
LXMERT (Li et al., 2019; Chen et al., 2020; Tan
and Bansal, 2019). The embedding designs we
use mainly differ in how layer normalization and
dropout are applied to the xT and MM (xM ) inputs.

In the vision-and-language domain the embed-
ding designs are more differentiated since they pro-
cess positional information differently. As a conse-
quence of not having any extra positional informa-
tion in the math-and-language domain we cannot
imitate this positional embedding design difference
in the math arithmetics sandbox.

A.2 Dual- and single-stream models
We also wish to investigate dual- and single-stream
multimodal models. The single-stream model is
already provided by the standard GPT2 architecture
in the sense that we give it the concatenation of the
math and linguistic features of an math-text pair as
input, to allow for information fusion from the start.
This design is similar to that of the single-stream
VisualBERT model.

The dual-stream architecture we use is based on
the dual-stream LXMERT architecture, in which
we switch BERT specific layers for the correspond-
ing GPT2 layers, such that the math and linguistic
features are first processed by two independent
stacks of Transformer layers before they are fed
into cross-modal Transformer layers. Dual-stream
models are typically larger, where e.g. LXMERT
with 228M trainable parameters is two times larger
than the 110M parameters of single-stream Visual-
BERT. For our sandboxed dual-stream model, we
go by the same principle and set the number of
linguistic Transformer layers to three, the number
of relational layers to two and the number of cross-
attention layers to two, such that we get a sand-
boxed dual-stream model that is approximately two
times larger than the sandboxed single-stream mod-
els, corresponding to the size difference between

VisualBERT and LXMERT.
The number of trainable parameters for the sand-

boxed single-stream models is approximately 211K.
For the sandboxed dual-stream model the number
of trainable parameters is 495K.
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Abstract
Shared physical space is an important resource
for face-to-face interaction. People use the po-
sition and orientation of their bodies—relative
to each other and relative to the physical
environment—to determine who is part of a
conversation, to manage conversational roles
(e.g. speaker, addressee, side-participant) and
to help co-ordinate turn-taking. These embod-
ied uses of shared space also extend to more
fine-grained aspects of interaction, such as ges-
tures and body movements, to support topic
management, orchestration of turns and ground-
ing. This paper explores the role of embodied
resources in (mis)communication in a corpus
of mental health consultations. We illustrate
some of the specific ways in which clinicians
and patients can exploit embodiment and the
position of objects in shared space to diagnose
and manage moments of misunderstanding.

1 Background

Non-verbal signals are integral to natural human in-
teraction. The best known are the facial expressions
of emotion (e.g. anger, fear, sadness, surprise, hap-
piness) (Ekman, 1979; Chovil, 1991b). However,
there are also a range of non-verbal signals that
are specific to conversation (Bavelas et al., 1995;
Chovil, 1991a; Kaulard et al., 2012). These include
large-scale configurations of body position and ori-
entation that can tell us e.g., who is participating
in a conversation, what their role is (e.g. speaker,
addressee, listener or bystander) and their relative
levels of interest and engagement (Scheflen, 1973;
Kendon, 2010; Bull, 2016). There are also a range
of small-scale conversational gestures. For exam-
ple, the use of hand gestures to hold or yield a
turn, to enlist help with finding a word—or expres-
sion and the use of facial gestures such as raised
eyebrows to emphasise particular words or to dis-
play “thinking” (Bavelas et al., 1995; Ekman, 1979;
Chovil, 1991a).

Embodied signals can be produced in paral-
lel with verbal contributions by both the speaker
and by other participants (Bavelas, 2007; Bavelas
et al., 1995; Deppermann et al., 2021). This facili-
tates real-time, incremental checking and feedback.
Speakers can produce gestures that complement
or augment their speech and listeners can simul-
taneously display their reactions through concur-
rent backchannel signals (Chovil, 1991b,a). These
concurrent signals shape a speaker’s turn in real-
time and—if problems are apparent—can cause
a speaker to rephrase, change direction or cut-off
their turn (Goodwin, 1979).

Some non-verbal signals are associated with po-
tential problems with shared understanding. A
frown and briefly averted gaze before a turn can
suggest that a speaker is about to say something
potentially problematic (Kaukomaa et al., 2014)
and gaze aversion by an addressee following a
turn can prompt the speaker to rephrase what they
said (Kendrick and Holler, 2017). Some facial ges-
tures, such as raised eyebrows and widening of the
eyes, can act as stand-alone clarification requests
(Kendrick, 2015; Seo and Koshik, 2010). Simi-
larly, temporary suspension of hand movements
described as non-verbal ’holds’ or ‘freezes’ can
provide signals of ongoing repairs (Seo and Koshik,
2010; Floyd et al., 2016; Bavelas et al., 1995).
Quantitative data from motion captured conversa-
tions shows that the velocity and height of head
and hand movements changes during both self-
repairs/disfluencies and other-repairs—and that
these changes are different for speakers and listen-
ers (Healey et al., 2013, 2015; Özkan et al., 2021).

2 Communication in Healthcare

Communication in healthcare settings is critical to
the quality of patient-clinician relationships, affect-
ing outcomes such as patient satisfaction and treat-
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ment adherence. It is arguably even more important
in mental healthcare settings, since talk is the pri-
mary means of diagnosis and treatment (McCabe
and Healey, 2018; Mahmoodi et al., 2020; McCabe
et al., 2013; McVittie et al., 2020; Wu, 2020). How-
ever, difficulties in balancing good communication
practices with work pressures have often been re-
ported in the NHS (NHS Improvement, 2018).

This has prompted an interest in developing pro-
tocols and tools to help healthcare professionals
organise their thoughts and structure consultations.
However, overly rigid protocols can have a prob-
lematic impact on the naturalness of healthcare
professional’s interaction, limiting their ability to
adapt to individual patient’s needs, concerns or
understanding (NHS Improvement, 2018). At its
worst, the artificial structure imposed by the pro-
tocol disrupts the flow of conversation and can be-
come counterproductive for clinical interactions
(NHS Improvement, 2018).

Here we examine these issues in the context of a
tablet application (DIALOG+) designed to promote
communication in face-to-face mental health con-
sultations. We focus on a detailed qualitative analy-
sis of the moments where misunderstandings arise—
and the combination of verbal and non-verbal re-
sources that are used to address such problems. Our
analysis shows how the position of the physical de-
vice and people’s orientation toward it plays a role
in both causing and mitigating misunderstandings.

2.1 DIALOG+

The DIALOG+ protocol is designed to support and
structure conversations in routine community men-
tal healthcare consultations for patients suffering
from psychosis (Priebe et al., 2015, 2017). This
intervention applies principles of solution-focused
therapy to promote assessment of all relevant as-
pects of patients’ lives. It also uses this information
to help patients initiate change and improve their
situations. The overall aim is to improve the thera-
peutic benefits of the consultation process (Priebe
et al., 2015, 2017).

The DIALOG+ application is a tablet-based sys-
tem, built around a central screen with a sequence
of eleven quality of life questions (items) that cover
various aspects of patients’ mental and physical
health, job situation, relationships, medication and
practical help received. Clients and clinicians work
through the list together—and as the users select
each item, a slider appears, so that clients can pro-

Figure 1: Screenshot of the DIALOG+ Application User
Interface

vide their current satisfaction rating for each item.
After performing the ratings, a structured, itera-
tive 4-step process is followed of (1) choosing
items that the patients would like to discuss, (2)
understanding what determines the ratings, (3) con-
sidering options for what can be done to improve
their satisfaction with these items and (4) agreeing
on some next steps and action plans that can be
adopted by the clients, or with assistance from the
clinician, family members and/or support workers,
to get to potential solutions.

Clinical trials suggest the intervention is effec-
tive, with patients reporting fewer general psy-
chopathological symptoms, fewer unaddressed
needs, higher levels of treatment satisfaction and
better objectively measured social outcomes—such
as in terms of housing situations and employment
status—at one-year follow ups (Priebe et al., 2015,
2017). The DIALOG+ app has been translated into
over 15 languages and has been implemented and
tested in various studies in more than 10 countries.
Nevertheless, little is understood about how the
intervention is actually incorporated into interac-
tional practices within consultations. This is im-
portant for refining clinician communication skills
and also because new versions of the application
are being developed, including for remote use.

Since the COVID-19 pandemic, many consul-
tation services in healthcare have moved online,
at least temporarily (Liberati et al., 2021; Khan
et al., 2021). In mental healthcare settings, this has
led to reported difficulties in the establishment or
maintenance of meaningful trust and rapport be-
tween clients and clinicians (Liberati et al., 2021;
Olwill et al., 2021; Khan et al., 2021). The use
of standardised tools in mediated communication
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is a potential concern, given the complexities of
balancing flexibility with system-driven structures
of service delivery (Drew et al., 2021). In this con-
text, it is important to understand the interactional
features of DIALOG+ and how this may impact on
its delivery online. To gain a more granular per-
spective, we explore the details of the DIALOG+
consultations to observe what exactly happens in
these interactions.

3 The current study

The data for this study comes from video record-
ings of mental health consultations. Extracts from
these interactions are described below using con-
versation analysis (CA) techniques. CA involves
detailed qualitative analysis of conversations in nat-
urally occurring circumstances—and the material
for such analyses is recorded and/or transcribed
talk (Sacks et al., 1978; Sacks, 1992; Silverman,
1998). The focus of the analysis is on the organisa-
tion of fine-grained features of interaction such as
timing, pauses, repetitions, restarts and the details
of concurrent non-verbal signals such as gaze and
gesture.

The examples considered below are se-
lected to illustrate the types and trajectories of
(mis)communication observed in this corpus, how
they are affected by the presence of DIALOG+
application, and how this affects the management
of shared understanding. The two overarching re-
search questions in this study are:

1. Where and how does shared understanding
break down in the DIALOG+ interactions?

2. What role does embodiment play in detecting
and dealing with these breakdowns?

4 Methods

Design. The DIALOG+ trials are described else-
where (Priebe et al., 2017). Our dataset consists
of 40 video recordings of 32 clinical consultations;
16 are from a control group receiving treatment-
as-usual and 17 from an intervention group using
DIALOG+. The average length of the recordings
is 30.12 minutes in the control group and 39.68
minutes in the intervention group.

Participants and Ethics. Participants who con-
sented to join the original DIALOG+ trials pro-
vided informed consent to be video-taped or audio-
taped on at least one session for use in future stud-
ies on potential improvements to the DIALOG+

procedure and technology. The study protocol, in-
cluding data collection and storage procedures, was
audited by the National Research Ethics Service
(NRES) London, Stanmore (12/LO/1145). All per-
sonal data has been removed from the extracts and
faces have been blurred.

Procedure and data analysis. The authors fa-
miliarised themselves with the data by watching
and listening to the recordings repeatedly, making
brief notes about the general form of the conver-
sations and any features that appeared striking. A
second pass then focused on selecting particular
episodes with overt evidence of misunderstanding.
The clearest of these were transcribed in detail us-
ing Jefferson’s orthography which includes features
like pauses, overlap and intonation (Sacks et al.,
1978; Ekberg, 2021). Embodied conduct that is
relevant to the interaction—such as nods, gestures
and postures shifts—were are also included in the
transcriptions.

5 Results

5.1 Overview

The recorded conversations were mostly follow-
up sessions to previous consultations. Although
DIALOG+ is designed to encourage input by both
parties to the interaction in practice, the clinicians
typically took the initiative and controlled all input
to the device. Patients only rarely touched the tablet
or laptop—and the devices were often positioned in
ways that obscured the patients’ view of the screen
(although see Figure 2).

The full DIALOG+ protocol is not strictly fol-
lowed in the consultations. All participating clini-
cians were trained in the use of the protocol—and
the application in front of them is also structured
according to the protocol and contains prompts.
However, steps are sometimes skipped, merged or
discussed in varying orders. These deviations typi-
cally arise as adaptations to the immediate conver-
sational context, particularly where clinicians’ and
patients’ expectations or interpretations are mis-
aligned. In general, this merging and skipping was
designed to prioritise the flow of the conversation
over the protocol.

A specific structural problem arises where pa-
tients mention a concern early in a consultation
and then this same concern is reintroduced later in
the conversation by the DIALOG+ protocol. The
creates a sequential problem in the conversation—
and the pragmatic effect of these repetitions is to
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imply that either the patient’s original description
was somehow inadequate, or that the clinician had
not been listening (see also below).

Another recurring issue is understanding the rel-
evance of patients’ responses to questions about
particular items. There are often natural intercon-
nections between, for example, people’s accommo-
dation situation and their family situation (see e.g.,
Excerpt 1 and Excerpt 2). The protocol questions
imply a level of conceptual independence between
different quality of life domains, but this may be
misaligned with the concerns and practical circum-
stances of individual patients.

A third common source of trouble is clinicians’
concurrent typing or note-taking, which was inter-
spersed throughout discussions. These activities
disrupt the flow of conversation and sometimes
cause a misalignment on what should come next in
the conversation.

In the control group, clinicians usually make
notes throughout the consultations, but spend less
time on this than clinicians in the intervention
group (partly because typing on the tablet keyboard
is a slow process). Similar issues in the patients’
lives are explored—but more rapidly and lightly
in conversation. This sometimes led to sessions
with no action plans agreed upon. In other ses-
sions, time is spent actually taking action on and
resolving a particular issue the patient is facing (e.g.
making calls; filling out forms). There are cases
of clinicians finding out that pressing issues in the
patient’s life have been missed from previous con-
sultations, simply because a particular topic never
came up. Additionally, there are fewer opportuni-
ties to review or make conclusions about what has
been discussed during the sessions, contributing to
consultations that appear even less structured.

5.2 Understanding and Misunderstanding

As noted, the standardised format of the protocol
questions can be a source of trouble. One prob-
lem arises from differences in the interpretation
of apparently simple phrases. For example, the
interpretation of ”practical help” was a source of
difficulty in more than one consultation. Each pa-
tient’s personal circumstances are different and can
involve problems that are partly or wholly outside
the practical, ethical and institutional competence
of the clinicians. Patients typically recognise that
these limits exist but they do not have the context to
be able to decide what ”practical help” they can rea-

sonably seek. In addition, different clinicians place
different boundaries around what they consider to
be practically possible. These multiple sources
of indeterminacy lead to clinicians to paraphrase
and extend these key phrases (see e.g. below) or
list possible examples of what they consider might
constitute ”practical help”.

In CA terms, many of the problems created by
the protocol relate to sequential appropriateness.
For example, a clinician and patient are discussing
the latter’s physical health, specifically the pain in
his leg that had been troubling him for a while. The
patient mentions that he had been taking ibuprofen
to help relieve the pain, but the medication has not
been very effective. He also mentions that he is
going to see his General Practitioner. The clinician
then asks the patient what he thinks the ”best case
scenario” would be. The patient has already talked
about the steps he is taking to improve the situation
and finds it difficult to interpret the question in con-
text. He pauses and eventually explicitly says he
does not understand the question. In response, the
clinician tries to reformulate ”best case scenario”
as something that the patient would ”look forward
to” or see as being ”more satisfying” for his phys-
ical health. In response, the patient tuts, sits back
and repeats that the pain in his leg has been ”hold-
ing [him] back” from his daily activities; he wants
to get rid of it. The timing of the responses, the
repetition and the posture changes convey his sense
of frustration at the apparently irrelevant question.

5.3 Typing, Distraction and Repetition

Points of potential miscommunication are often
associated with clinicians dividing their attention
between typing on the tablet and engaging with the
patients’ conversations. The notes are often only
partially visible, in the sense that the patient can
see that the clinician is typing, but often not what
they are typing. Although the patients pay atten-
tion to the concurrent activity and usually suspend
speaking, they do still sometimes make follow-up
comments—but this may or may not tie into what
the clinician is typing. Clinicians sometimes try
to compensate, e.g. using concurrent outlouds of
what is being written (Heath and Luff, 1992) to
mitigate this. The concurrent activities place signif-
icant cognitive demands on the clinician and make
it more difficult for them to track what is said. In
the example immediately above and in Extracts 1
and 2 below, the clinician hears the patient but has
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trouble integrating what they are saying with the
current step in the protocol, one that is often not
visible to the patient.

Repetition of questions can be especially prob-
lematic. In one case, a patient had complained, sev-
eral times, that her medication is causing her a lot
of physical symptoms—including vomiting—and
that she needs to change her medication. However,
the clinician is following the protocol and only not-
ing responses relevant to the current item. When
the clinician then asks about the vomiting problem
and what could she do about it, the patient becomes
visibly frustrated; she tosses her hands up in the air,
says ”I don’t know” and sighs.

The preceding examples illustrate some common
sources of trouble in the consultations and also
the integration of verbal and non-verbal resources
used in response to them. An important feature of
the way misunderstandings are addressed in these
interactions is the way they make use of the shared
space.

5.4 The Tablet as a Resource for Coordination

The layout of chairs and tables in the consultation
rooms has a direct influence on how the partici-
pants orient to each other (Kendon, 2010). Direct
face-to-face positioning is rare. The typical ar-
rangement is an l-shape with two chairs arranged
at a 45-60 degree angle and a table in-between (see
Figure 2). The tablet is typically placed on the
table and angled towards the clinician. The im-
portance of its position in-between the participants
and the influence of this on the management of the
conversations is significant in all the intervention
videos.

Changes in posture, reflecting shifts in orienta-
tion between the tablet and the other person present,
help to mark important changes in participants’ fo-
cus and level of engagement (Bull, 2016). One
example is the way clinicians start a new question
by simultaneously displaying a shift of attention
from the tablet to the patient by sitting back and
turning their head toward the patient. Similarly,
gestures to the tablet and gestures placed between
the tablet and the other participant are used to pro-
pose or reintroduce items on the tablet screen as
relevant to the ongoing discussion, e.g. as a prompt
to shift from complaints to the possible solutions
that need to be entered in a dialogue box (see Fig-
ure 2 and 3).

The significance of gestures is also illustrated by

examples of how misunderstandings occur when
the tablet is not used effectively for reference co-
ordination. At discussion stages, some clinicians
review the action plans agreed on with their patients
for each item, before moving on to discuss the next
item. They usually wrap things up by asking pa-
tients if there is anything else they want to add,
while gesturing towards that item on the tablet. In
the absence of such gestures, patients can interpret
the question more widely. For example, a clinician
and patient were discussing action plans for the
latter’s job situation when the clinician asks, while
typing, if the patient thought there was anything she
could do for him. The patient starts describing how
she could possibly get in touch with the housing
association in charge of his case; something that
the patient had mentioned earlier during the consul-
tation because he wanted to speed up his relocation
(with his wife and child) to permanent housing. At
this point, however, the clinician points to the item
on the tablet that is specific to job situation to help
reinterpret their original question—in CA terms a
form of third-position repair.

In another example, the wrap-up discussion is
on physical health, when the clinician asks—again
while typing—if there is anything else the patient
wants to tell her. The clinician glances up briefly
after asking this question and notices the patient
looking down at the tablet. She then adds a more
explicit statement about the item she was referring
to. This coincides with the patient’s request for clar-
ification. As such, these examples illustrate how
the tablet display not only has a role in managing
ambiguity, but also what people are engaged with,
as a means of diagnosing potential trouble sources.

5.5 Embodied Resources for Managing
Misunderstanding

The complex configuration of bodies and artefacts
in shared space during misunderstandings can be
illustrated by considering two extracts from one
consultation.

In Excerpt 1, C reorients from the screen to P
and asks about P’s family situation, to which she
responds with a comment about accommodation.
C fails to understand the relevance of the response,
partly because they have just talked about a dif-
ferent aspect of accommodation and he initiates a
repair in line 3 by quickly pointing to the screen
whilst still looking at his notes (2) on the first “its”
before verbally repeating the topic. P tries again
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Figure 2: C Points to Screen with Left Hand

in overlap on line 4 and when she gets the floor in
line 5—and reformulates her point about accom-
modation preceded by a small gesture for empha-
sis. C nods twice towards P to acknowledge the
importance of P’s reformulation which contains a
significant complaint about being denied access to
her possessions but then queries who “they” are,
possibly thinking this could be a reference to fam-
ily, which P answers in overlap (“housing”). At
this point C is unable to integrate P’s turns into his
understanding of what is going on. He switches
to a generic clarification question at line 8. In line
9, P repeats that she was locked out and after the
truncated question in line 10 C clearly orients to P.
P’s gestures then become more emphatic, peaking
at “things” and then reducing as C turns back to his
notes.

Excerpt 1: Discussion of Relationships and Fam-
ily (Key: C = Clinician, P = Patient, Underlining
= emhpasis, ↑ = rising intonation, :: = lengthened
sound, // = onset of overlapping speech, [] = non-
verbal action, (.) = short pause).
1 C: [selects item] looking at
[sits back, looks at P] what
makes you dissatisfied with your
family situation [moves forward
to pick up pen]
2 P: its it was originally to do
with my accommodation (pause)
3 C: well no it’s to [points at
screen] // it’s to do with your
family yeah ↑
4 P: // but when when it
5 P: when they um:: [raises
hands slightly] when they didn’t
let me get my things and the
power of attorney was lost [C

nods twice] (.)
6 C: when your say they they
wouldn’t let you get // your
things
7 P: // the housing
8 C: [head down] explain to me
what you mean
9 P: // was locked out of my
hostel
10 C: // is this to do with your
quest-
11 P: I was locked out of my
hostel [hands raised] and all my
things [hands wide apart] were
in there clothes [C’s head goes
back to notes, P’s hands come
back together] I lost everything
[extra gesture then hands drop to
lap]

Excerpt 2 comes from the same session approx-
imately four minutes later. In the intervening in-
teraction, C has focused on how P might retrieve
her belongings. However, C is still having trou-
ble understanding why P is raising the issue about
personal belongings and power of attorney, given
the protocol item (Friends and Family) currently in
front of them. C tries to reintroduce this item using
a flat hand gesture towards the screen on “family”.
P sits forward and directly reformulates this, using
a particularly direct form of other-initiated other-
repair, accompanied with an emphatic hand gesture.
C quickly acknowledges this with a nod and verbal
acceptance, but is still showing signs of trouble. He
asks a question about an address shared previously,
which P answers, partly by taking hold of her bag
where she has kept it, but this still doesn’t resolve
the issue.

At line 7, C gestures to the screen and then pro-
duces a finger pointing up ‘hold’ gesture positioned
between them 3. He then produces some filled
pauses, makes a small flick of the pointing ges-
ture and explains he needs to remind himself while
looking at the screen. At this point, P sits back
simultaneously with C dropping his finger point to
gesture back to the screen. C’s Line 8 is formatted
as reasoning out loud, but the truncated um: and
long pause invites a possible response from P. In
line 9, C then directly asks why P wants power of
attorney. At this point the connection to Family and
Friends finally becomes clear. P needs the missing
power of attorney so she can attend to her (living)
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Figure 3: C Points Up ‘Hold’ Gesture, Right Hand

grandmother’s financial affairs.

Excerpt 2: Continued Discussion of Actions
Around Relationships and Family.
1 C: now this is don’t forget
this is all to do with family
[gesture at screen, P sits
forward] // umm
2 P: //it’s to do with power of
attorney [hands apart gesture]
that I was gettin to =
3 C: = [nods] yeah and its all
to do with power of attorney
[hand moves to screen] umm
because do you remember I give
an address didn’ I [ short eye
contact]
4 P: yeah [P reaches to bag, C
looks down touches box] I’ve got
that here.
5 C: and did you ever do
anything with ↑ that
6 P: no that’s what we were
gonna discuss today [pause]
7 C: so:: [3.0s pause while
gestures to screen than puts
finger up in the air] cus right
oka:y let me just remind myself
now [C point back to screen, P
sits back] um:: agreeing on
actions [hand hovers over screen
pause] um:: [pause]
8 C: cos if you had power of
attorney then you’d be able to:
um:: [4.0s pause]
9 C: what is it that you need
power of attorney [P sits
forward] to achieve now =

10 P: = to sort our my
grandmother’s affairs

6 Discussion

The examples presented above raise a number of
basic points about the organisation of face-to-face
interaction and the use of embodiment in shared
space as a resource for communication.

The data presented highlight the tension between
the use of the protocol as a standardised assessment
instrument and its function as a tool to promote
effective conversation. Ideally, quantitative assess-
ments of quality of life should be consistent across
different participants and different contexts. In
practice, the meaning of the different assessment
items and even the meaning of the numbers on
the assessment scale varies across consultations.
Patients and clinicians routinely engage in active,
collaborative re-interpretation of the protocol in or-
der to complete the assessment. Standard phrases
such as best case scenario and practical help take
on specific meanings depending on individual cir-
cumstances. What is ostensibly the same question
means different things to different people and can
also mean different things to the same people in
different sequential contexts.

The observations show the process of detecting
and dealing with differences in interpretation is fun-
damental to effective communication (Healey et al.,
2018). Although this recurrent interpretive work
means the application of the DIALOG+ protocol is
not strictly standardised, it is part of normal inter-
action and arguably central to the therapeutic effec-
tiveness of the intervention. The assessment items
provide prompts that encourage a wider ranging
conversation and greater continuity across sessions
than observed in the control groups. The more
strictly the protocol is applied, the more friction it
would cause to the conversation (Drew et al., 2021;
NHS Improvement, 2018). The work people do to
bridge the gap between the protocol and the details
of individual’s lives can play an important role in
uncovering the different combinations of practical
circumstances and constraints that influence long
term outcomes.

Moving to remote delivery directly alters the
configuration of resources available to participants
in the interaction. One effect will be to change the
visibility and control of actions in the application.
As noted, input is currently led by clinicians and
often not directly visible to the patient. If the ap-
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plication is running in a shared window all updates
will be immediately visible to both participants—
and control of input by one person will not auto-
matically restrict input by the other. This should
mitigate, for example, problems with coordinating
when a concurrent action (typing notes) starts and
finishes—and also what item is currently under
discussion. However, the work of (re)interpreting
items and actions would still be required. Other
possible advantages of remote interaction are the
savings in cost and time, as well as the potential
for improved access for some patients.

Nonetheless, some important features will be
removed by remote interaction. One is the use of
the embodiment of the protocol itself as a shared
screen positioned in space between the participants.
There are two ways in which this matters. First,
changes in people’s overall physical orientation,
through head movements or posture shifts signal
important changes in their focus of attention and
engagement. This is especially true of the clini-
cians, who often use posture changes to and from
the device and to and from the patient to mark
changes in engagement e.g. to introduce a direct
question to the patient (see e.g. the first line of
Excerpt 1). Secondly, clinicians (and occasionally
patients) have the ability to point at a question and,
for example, gesture from the question to a person.
These movements, in effect, use the shared space
to provide a useful spatial map for the embodied
coordination of topics (Deppermann et al., 2021;
Guxholli et al., 2021; Kitzinger, 2012).

It is also noticeable from the preceding examples
that where a gesture is specifically placed in space
is significant. The pointing gestures in Figures 2
and 3 have the same form, but their different speed
of execution, orientation and placement give them
a different interpretation. In an example from the
same session not included in the Extracts, there
is a rapid shift by the clinician from a short two
figure point at the screen to a two finger point at
the patient. The form and speed of the gesture is
very similar but its significance is different for the
participants because of where it is placed, a phe-
nomenon also noted in other face-to-face contexts
(Battersby and Healey, 2009; Özyürek, 2002). It
also illustrates the ways in which people can use
contrasting head and hand orientation as a means
of concurrent triangulation of different reference
points (e.g. people and objects) to help coordinate
understanding (Battersby and Healey, 2010).

These examples also illustrate how these addi-
tional, embodied resources seem to become espe-
cially significant at the points where shared under-
standing is threatened (Healey et al., 2013, 2015;
Özkan et al., 2021). The space between participants
becomes an important extra resource for detecting
and dealing with these misunderstandings.

Remote video-mediated interactions flatten the
three-dimensional world of face-to-face interaction
in shared space into a two-dimensional window
(Mlynář et al., 2018). A shared application and
a video window impede the forms of interaction
highlighted above. Working out what someone is
orienting to requires more effort—and although
posture shifts and gestures may be visible on cam-
era, they are attenuated and cannot take advantage
of relative position in a shared space. People are
able to compensate in these situations and it is an
open question what the cost of adapting could be.
Shared applications that enable people to see each
other’s cursors can partially replicate a sense of the
current focus of attention. This may help with the
redirection of attention, but provides a significantly
reduced set of cues.

One way in which remote interaction can give
greater access is to allow asynchronous updates.
For example, allowing patients to add notes or mod-
ify ratings in response to events outside the clinical
context. This could give patients the opportunity to
understand the protocol and application better and
also feel that they are on a more equal footing with
clinicians. It could also provide clinicians with po-
tentially useful additional context updates for use
in the face-to-face sessions. This shift in the distri-
bution of control over the tool might impact on the
dynamics of clinical interaction and careful design
would be needed to avoid it becoming overused as
a communication channel.

There are some qualifications to the findings.
The observations are selective and are based on
a specific population of patients with a diagnosis
of psychosis. Although we think the general prin-
ciples should apply in other contexts, different is-
sues will be encountered with other communica-
tion tools and/or other client groups e.g. telephone
delivery (Drew et al., 2021). Nevertheless, this
study has shed light on some of the concerns and
challenges related to designing health communica-
tion protocols and some specific issues for remote
settings. In the wake of the pandemic, while re-
mote consultations are unlikely to fully replace
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face-to-face consultations, it will no doubt become
a feature increasingly integrated into current health
systems and used alongside conventional practice
(Khan et al., 2021). Care needs to be taken to en-
sure that developments surrounding technologies
like DIALOG+ are balanced with appropriate flexi-
bility, as every nuance in communication between
patients and clinicians can have a role to play in
influencing the quality of therapeutic relationships
and the effectiveness of clinical encounters.

7 Conclusion

Structured protocols are increasingly used in com-
munity mental healthcare consultations. Detailed
analysis of the interactions using one of these pro-
tocols (DIALOG+) and its associated tablet appli-
cation shows some of the advantages and pitfalls
of the approach. The application provides a useful
tool to support engagement in the consultations, but
in practice, deviations from the protocol play an im-
portant role in the success of the consultations. The
interactions are characterised by collaborative work
done to (re)interpret the assessment items in the
context of each client’s and each clinician’s practi-
cal circumstances. Participants use embodiment in
shared space as an important, flexible interactional
resource in doing this. With remote consultations
increasingly integrated into healthcare settings, our
findings provide a starting point for thinking about
how software like the DIALOG+ application can
be redesigned for these environments.
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2021. Safeguarding the therapeutic alliance: Man-
aging disaffiliation in the course of work with psy-
chotherapeutic projects. Frontiers in Psychology,
page 3905.

Patrick G T Healey, Jan P De Ruiter, and Gregory J
Mills. 2018. Editors’ introduction: Miscommunica-
tion. Topics in Cognitive Science, 10(2):264–278.

Patrick G T Healey, Mary Lavelle, Christine Howes, Stu-
art Battersby, and Rosemarie McCabe. 2013. How
listeners respond to speaker’s troubles. In Proceed-
ings of the annual meeting of the cognitive science
society, volume 35.

59



Patrick G T Healey, Nicola Jane Plant, Christine Howes,
and Mary Lavelle. 2015. When words fail: Collab-
orative gestures during clarification dialogues. In
2015 AAAI Spring Symposium Series.

Christian Heath and Paul Luff. 1992. Collaboration and
controlcrisis management and multimedia technology
in london underground line control rooms. Computer
Supported Cooperative Work (CSCW), 1(1):69–94.

Timo Kaukomaa, Anssi Peräkylä, and Johanna Ru-
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Abstract

The striking recent advances in eliciting seem-
ingly meaningful language behaviour from
language-only machine learning models have
only made more apparent, through the surfac-
ing of clear limitations, the need to go beyond
the language-only mode and to ground these
models “in the world”. Proposals for doing
so vary in the details, but what unites them
is that the solution is sought in the addition
of non-linguistic data types such as images or
video streams, while largely keeping the mode
of learning constant. I propose a different, and
more wide-ranging conception of how ground-
ing should be understood: What grounds lan-
guage is its normative nature. There are stan-
dards for doing things right, these standards
are public and authoritative, while at the same
time acceptance of authority can and must be
disputed and negotiated. What grounds lan-
guage, then, is the determined use that lan-
guage users make of it, and what it is grounded
in is the community of language users. I
sketch this idea, and draw some conclusions
for work on computational modelling of mean-
ingful language use.

1 Introduction

You fire up the lastest language model—a machine
learning model induced by guessing words in a very
large body of text—and “ask” it: “How would you
describe the colour green?”. After a short pause,
the following text appears: “The colour green is
refreshing and vibrant. It is often associated with
nature and growth.”. You: “How would you de-
scribe the colour red?” – “The colour red is exciting
and full of energy. It is often associated with pas-
sion and power.”. Not bad. You hold two objects
up in front of the computer screen: “Which of these
is green?”. The reply suddenly is less than satisfy-
ing (and also old news in this conversation): “The
colour green is refreshing and vibrant. It is often

associated with nature and growth.”1

This of course is a profoundly unfair test. The
model has no connection to you other than through
what you type, and so can’t observe what “these”
refers to, and moreover, it never had access to any-
thing other than language data. The question then
arises what the consequences of this limitation are.
Is it just that those models (unsurprisingly) can’t
tell one visually presented object from another, or
is there something fundamentally off about their
grasp of language?

In an influential recent paper, Bender and Koller
(2020) argue that indeed something is off, in that
a model that only has access to form cannot learn
to connect that form to meaning, which they tie
to communicative intention, which in turn can be
about the world. They also suggest that perhaps
giving access to more than linguistic form might
make it possible to learn this connection. In this
their argument meets with more mainstream views
that don’t deny meaning status to language-only
(or “internet world scope”) models, but see them
as deficient until augmented with additional forms
of data (Bisk et al., 2020).

Here, I will argue that just connecting language
with non-language data still misses fundamental
properties of language use, along two dimensions.
First, the connection between world states and lan-
guage is only one among several types of connec-
tions that must be gotten right (the others being
intra-language connections, and connections be-
tween language and actions). Secondly, the con-
nections themselves need to be understood as nor-
mative ones, which again has two kinds of con-
sequences: They effect commitments and entitle-
ments, but they also are non-necessary and their
applicability must be argued for (and can be argued
against). Just getting things right occasionally, or
even very often, is not enough. The getting it right

1Output by the GPT-3 model (text-davinci-002) by
openAI (Brown et al., 2020), retrieved on 2022-05-18.
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must come from an orientation towards the relevant
standards of getting things right. This “orientation
towards” shows in the ability to appeal to these
standards when challenged, either directly or in
the repair of understanding problems, and it forms
the difference between what I will call “norm con-
formance” (which is what AI models are trained
for), and “norm participation” (which is what what
grounds language use). In short, there are interac-
tive capabilities that need to underwrite meaningful
language use, rendering agents that do not have
them deficient language users. As I will argue, this
has consequences for the use of NLP systems that
can falsely appear as having these capabilities, and
it also opens up interesting research directions.

Let us start by looking at simple observational
statements, and use this to draw a schematic picture
of meaning making in language use.

2 “There is a tiger.”

“There is a tiger”, you say, facing your friend but
looking past them at a location behind their back.
Leaving aside what these news should do to your
friend, let’s think a bit about what I, an overhearer,
am justified to think may have been done to you
to make you say that, and how that allows me to
assign meaning to what you said.

So, why did you say that? There are many possi-
ble types of answers to this question, a central class
among which (namely those that not also insinuate
malicious intent to deceive on your side) will men-
tion in some form the state of affairs of there being
a tiger, and your stating this as a fact. That is, there
is an assumed connection between your expression
e or more generally your action a (of uttering e)
and a state of affairs c. You said “there is a tiger”
in part because there is a tiger.

But let’s say you were wrong, and it was just
Tibby, my oversized tabby cat which can look, at
least for a split second and when she is very hungry,
like a (still very small though) tiger. We can’t say
anymore that you said “there is a tiger” because
there was a tiger, as there was none. But we can
fix the description by giving you a—potentially
misguided—inner life: you said “there is a tiger”,
because you believed there to be a tiger, and you
believed there to be a tiger, because you misper-
ceived Tibby as one. The chain now goes from c,
the state of affairs (which in the modified example
does not hold, i.e. turns out not to be a fact), to b,
the belief, to a, the action.

This chain can also be used to reconstruct un-
derstanding.2 How can I get from observing a to
forming my own belief about c? To reverse this
chain, I need to see a as representative of a type
of action A, and I need to know something about
this type’s connection to a type of belief C ′, and its
connection to a type of states of affairs C—and I
need to assume that you expected your addressees
to know this and to be able to use this knowledge
to reason back to the best explanation.3

Let us write out these connections in the form “if
C, then ___ A”, where the underscore shall work
as a placeholder for a predicate describing the force
of the connection, to be explored presently. If we
take the step of seeing the forming of beliefs as an
action as well, then this schema covers both parts
of the chain described above: “if you are looking at
a tiger (and your eyes are open, and you are sighted,
etc.), then you ___ form the belief that there is a
tiger”, and “if you hold the belief that there is a
tiger and you want to inform me of it, then you ___
say (something to the effect of) ‘there is a tiger’ ”.

Looked at from a different perspective, your say-
ing “there is a tiger” has committed you to believing
that there is a tiger (insofar as that this is the best
explanation for why you said that), and to having a
good justification for that belief, where the best jus-
tification would be there indeed being a tiger (and
you having the right kind of epistemic standing).
Having this belief further commits you to having
other beliefs as well, such as “there is a mammal”
or “there is a four-legged animal”, “there is a cat-
like creature”, “there is a living entity”, etc.; these
are just consequences (material inferences, to be
precise) that we can see as being contained in hav-
ing this belief, or, in other words, as contributing
to individuating this belief as the one that it is.

To collect what we have before we move on:
This analysis assumes that there are connections
between ways the world is and beliefs about it, be-
tween beliefs and other beliefs, and between beliefs
(and other mental states, such as intentions) and

2Note that the following does not describe a process model.
It may very well be that in actual interpretation, shortcuts can
be applied that identify the verbal action as part of a larger
action type. What matters for the rational reconstruction here
is that the constructs described here (beliefs, intentions) are
available in reasons you can give for your actions, after the
fact.

3 The knowledge has to be about types, since a, the actual
physical event, has happened only now and never before and
will never happen again, I cannot previously have known
anything about it, other than what I know or learn about the
type of which it is a token.
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actions. (We leave aside here whether in an ulti-
mate analysis, these beliefs could not be explained
away as dispositions to act in a proscribed way.)
These connections can figure both in explanations
of why you do something (you do A, because you
are in C) and in abductions about states (as you did
A, the state most likely is C). What is open is the
exact nature of these connections, which is what
we will turn to next.4

3 Norm Conformance and Norm
Participation

Our task now is to further specify the “if C, then
___ A” schemas. We want to achieve that they
can figure in reasoning about why a speaker said
what they said, and, equally importantly, can be
offered by the speakers themselves as reasons for
why they said what they said. As we will see, these
are related, but separate aims: Things can happen
for a reason in different ways.

To make the discussion more concrete, let us
instantiate the C and A in this schema, as follows:

(1) “if presented with visual features of this
kindR[picture of tiger], then you ___
say ‘there is a tiger’”

Could this conditional feature in reasoning about
the behaviour of a human speaker? We would prob-
ably hesitate to allow such a description, wanting
to qualify the antecedent with something like “and
you want to inform your interlocutor about what
you see, using the English language”, for otherwise
there are many ways in which you could react to
the stimulus. Also, there is still the question of how
to fill the placeholder, and it seems that it should
indeed be filled somehow, as a conditional of the
form “if C, then you say E” seems too strong as
description of human linguistic behaviour; even
wanting to do something does not unconditionally
lead to doing it.

Before we come to that, however, we can observe
that something like (1), without any qualification
about wanting to inform, is not a bad description
of what the training set and learning objective of
an image captioning model (e.g., Mitchell et al.

4 What I’ve tried to convey in this short section is my
take on some Sellarsian themes (Sellars, 1954, 1969; DeVries,
2005), especially with the three main moves of language-entry,
intra-language movement, and language-exit (Sellars, 1954),
and a conceptual-role semantics for propositional attitudes
(Harman, 1987). This will need to be expanded on in more
detail elsewhere.

(2012); Vinyals et al. (2015)) realises: To the extent
that the model works (as measured by accuracy, or
some other metric that measures agreement with
a reference), it conforms to the norm described by
(1). To the extent that this type of description fails
to characterise the human language use situation,
these models remain ungrounded.

What (1) misses, however, is that these regulari-
ties, these norms, can feature in self-explanations,
and exert a stronger force on language users, which,
I propose, is better expressed by making it an ele-
ment of the norm: one ought to behave in this way,
given that the conditions are met; and, in reverse,
one is committed to them being met, if one behaved
in this way. This opens up two possible points of
contention in the application of such a norm: First,
do the conditions indeed hold, that is, can it be
applied? Second, is it even a norm, the authority of
which I should accept? (“Says who?” as a possible
reply.) These are issues that can be, and not rarely
are, raised in interaction (not in the artificial situa-
tions created by the language use of function-type
models such as the aforementioned caption mod-
els). To distinguish this kind of actively following
norms from just picking up regularities, I will use
the label norm participation for it.

Before we turn to the ways that this participation
process plays out in interactive language use, let
us unpack this proposal a bit more. Filling the
placeholder and bringing in the intermediate belief
state turns (1) into the following:

(2) a. “if presented with visual features of
this kindR[picture of tiger], then
you ought to believe that there is a
tiger”

b. “if you believe that there is a tiger,
you ought to believe that there is a
four-legged animal, and that there is
a mammal, and that there is a living
thing, and . . . ”

c. “if you believe that there is a tiger, and
you want to inform your interlocutor
about this, using English, you ought
to say ‘there is a tiger’”

To anticipate the discussion in the next section, the
idea behind stressing the normative force of the
connection is to explain why there is a pressure
to correct disagreements, even if communicative
success may have already been reached. In a very
real sense, if you don’t seem to be following these
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norms, then to me it seems that there is something
wrong with you, at least as a participant in my
system of norms; or, potentially, there is something
wrong with my system.

Let us start with a simple disagreement. Imagine
you had pronounced tiger as in German (/"ti:g@/); I
can recognise which norm you were aiming for, but
can point out to you that the correct form contains
/"taIgÄ/, which one ought to use. Or let us assume
that I think that what is present is a leopard rather
than a tiger; this allows me to spot that there is
a deficiency in your belief/belief norm (and your
perceptual one), at least compared to how I have
it, which I can address by saying something like
“they look similar, but have a different coat: tigers
have stripes, while leopards have spots”. (As we
will discuss presently, I cannot force you to take
this on; I can just try to make my claim of authority
plausible to you.) Note that this limits the possi-
ble misunderstandings— “this is not a tiger, it’s a
gazelle” is already odd; “this is not a tiger, it’s a
refrigerator” is far too odd, as the belief revision it
indicates is too extreme to be plausible.

Lastly, an analysis of this form could also go
some ways towards explaining why word uses can
be so contentious, even if communicative success is
not at issue: Each use makes the implicit claim that
this is how one ought to talk, and that it makes the
right kinds of distinctions, a claim that addressees
may want to disagree with. An analysis of slurs and
linguistic interventions (McConnell-Ginet, 2020;
Cappelen and Dever, 2019) along these lines might
be possible, but is left for future work here.

Again, let us take stock before we move on.
I have argued that the right way to connect an-
tecedent and consequent in constructs like (1) is
to make direct appeal to their normative status: it
is not just that if C is the case, one normally or
conventionally does A, rather one ought to do this,
and does something wrong or at least something
inviting correction when one does not do it. Doing
things of these type then commits one in certain
ways, and makes one suffer the consequences if
these ways turn out to be not warranted. The anal-
ysis further has brought out a distinction between
(mere) norm conformance, which is acting in ac-
cordance with a set of norms (for example, as they
were realised in a data set of labelled examples)
and norm participation, which involves treating the
norms as possible reasons for acting, which can be
offered, requested, and challenged. The interactive

processes in which this is done and which justify
the label “participation” will be our topic next.

4 Norm Participation as Interactive
Process and Achievement

The idea of the approach sketched here is that the
question of which norms hold and how they are
to be applied is never fully settled, and can be-
come the overt topic of a conversation. That is, the
fact that the connection is via an appeal to what
one ought to do has practical consequences, which
I will briefly trace in three related domains: lan-
guage acquisition, conversational grounding, and
conceptual disputes. More specifically, it shows in
what in the field of conversational analysis is called
repair, and is rightly assigned a central place in
the study of conversation (Schegloff et al., 1977;
Hayashi et al., 2013; Jefferson, 2018).5

First Language Acquisition Children start out
without knowledge of the norms of the language
community in which they were born. Hence, they
need to rely on the competent speakers around them
to initiate them into these norms. The way they do
this is by making attempts and observing reactions,
which quite frequently involve repair. For example,
Golinkoff (1986) found that about 50% of attempts
by small infants (in their first verbal phase, from
1 to 1.5 years old) resulted in repair. In the light
of the schema proposed here, we can understand
this as attempts at using a norm, being recognised
as such, and then getting demonstrated how the act
ought to be performed. As the examples collected
by Clark (2020) show, this process can target both
the form (that is, schemata of the type of (2-c))
as well as conceptual ones (as in (2-a) and (2-b));
indeed, these levels might often be addressed si-
multaneously. We can take away from this short
review that an orientation towards shared norms
seems to play a role already in the acquisition of
language abilities.

Conversational Grounding According to
H. Clark’s (1996) well-known proposal, it is
a constant task in conversation to ensure that
common ground is reached, sufficiently for the
purposes at hand. We can recognise the stages of

5A recent cross-linguistic study by Dingemanse et al.
(2015) found repair attempts on average about once per 1.4
minutes; studies of task-oriented dialogue found between 4
and 5.8% of turns in the respective corpora to contain clarifi-
cation requests (Purver et al., 2001; Rodríguez and Schlangen,
2004).
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this process (presenting & identifying behaviour
and signal; signalling & recognising propositional
state; proposing & considering joint project)
in the schema in (2). More directly related are
the consequences of successful conversational
grounding, as discussed by Brennan and Clark
(1996) under the label “conceptual pacts”. In the
analysis proposed here, these can be understood
as “local” norms that are not yet generalised, that
is, ways the participants in an interaction mutually
have come to think they ought to act with each
other.6

Meaning Disputes The status of these norms as
reasons for acting shows most clearly in those rarer
cases where they need to be overtly discussed. Very
occasionally, this can even become positive law:
In (Nix v. Hedden, 149 U.S. 304, 1893), the US
Supreme Court judged that for the purposes of tax-
ation, tomatos are vegetables, despite biologically
better fitting under the label fruit. In our framework,
this can be understood as an adjudication between
a norm that better fits to one type of belief/belief
system (tomatos as fruit, for biological reasons) vs.
one that better accords to actual usage (tomatos
as vegetables, for similarity in properties to other
vegetables). Further examples are discussed by
Ludlow (2014), and more recently, under the label
word meaning negotiation, by Larsson and Myren-
dal (2017) and Myrendal (2019), who also provide
the beginnings of a formalisation of the dialogue
moves that structure this process.

We can take from this very brief review that what
is called norm participation here makes up a sub-
stantial amount of overt conversational moves, and
is something that participants in verbal interactions
actively engage in.

5 Some Conclusions for Computational
Modelling of Language Use

I contrasted above norm conformance from norm
participation, claiming that current natural lan-
guage processing systems are only capable of the
former, being optimised for accuracy and not for
systematic engagement in the processes reviewed
in the previous section. A possible objection now is
to reject that there is a problem—if accuracy can be
raised sufficiently high, there would be no need for

6A computational model of how such local conventions
can reach whole populations has recently been offered by
Hawkins et al. (2021).

repair, and norm conformance would be indistin-
guishable from norm participation. This however
presupposes that there is only one set of correct
norms, and that this can in principle be found in
the source datasets against which accuracy is mea-
sured. This is, however, is unlikely to be the case,
once one moves outside of the very few domains
with authoritative taxonomies (like an outsider may
imagine Biology to work; Dupré (2021))—imagine
a category like “weed / pest plant”. The “myth of
the gold label” is increasingly being noticed as a
problem in NLP as well (Basile et al., 2021; Pavlick
and Kwiatkowski, 2019).

If the story sketched above is on the right track, it
provides a way to understand some ethical issues in
the use of NLP systems.7 Consumers of computer
speech acts will assume that, just like with human
speakers, something like the chain in (2) is in place
in a captioning system for example, even if in real-
ity there is a more direct and simpler link between
visual input and language. A disagreement with a
labelling decision or apparent category will need to
find an addressee, which the system cannot provide.
Organisations deploying such systems will need to
take the responsibility for the “commitments” made
by the system, as the system cannot do so – as it
cannot “suffer the consequences”. Secondly, in the
framework sketched above, as discussed, every use
of language implicitly contains the claim “this is
how one does this”; again, on the principle that
the system provider will need to pick up “commit-
ments” made by the system, this is something that
seems to argue against the deployment of language
generation systems that are wont to reproduce un-
desirable material (Bender et al., 2021).

As a final example along these lines, consider
the application of question answering. In the dis-
cussion above, I briefly mentioned the condition
of needing to possess the right kind of epistemic
standing to form beliefs (discussed in more de-
tail by Goldberg (2015)). This epistemic standing
can be “inherited” in knowledge through testimony
(Gelfert, 2014). Current search engines indirectly
honour these mechanisms, by framing their job
only as surfacing source material that provides its
own reputational claims towards such epistemic
standing. Recent attempts at treating large lan-
guage models as knowledge bases for question an-
swering (surveyed by AlKhamissi et al. (2022)),

7 These will be expanded in a separate paper, which will
need to more thoroughly connect to the ongoing discussion in
the nascent field of “responsible AI”.
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however, break these links without providing oth-
ers, which renders the status of their replies prob-
lematic (a similar point is made by Shah and Ben-
der (2022) and Potthast et al. (2020)).

With these caveats in mind, some potentially
productive lines of work can also be motivated
from within the framework explored here. A lan-
guage generating system that is able to maintain a
coherent system of norms as described here, can
use them to offer self-explanations, and can react
to corrections, would go some way towards more
grounded, and hence more meaningful, language
use. Components of this are already being explored
separately. Zhou et al. (2022) show that it is possi-
ble to explicate implicit commonsense knowledge
from large language models (corresponding to the
middle step (2-b)); Kassner et al. (2021) show that
a neuro-symbolic system can keep track of correc-
tions to “beliefs” extracted from such models. It
seems that combining these approaches in an inter-
active fashion, adding moves such as discussed by
Larsson and Myrendal (2017), would at least go
some ways towards systems with more understand-
able meaning norms.

6 Related Work

The inspiration from the work of Sellars for the
ideas explored here has already been mentioned.
Beyond the work cited above, the role that giving
and asking for reasons plays has been noted by
Sellars (1956) and explanded upon by Brandom
(1998).8 The varieties of rule following of course
are an important topos from Wittgenstein (1984
[1953]) (see Baker and Hacker (2009); Kripke
(1982)), as is the necessarily public nature of judge-
ments on the applicability of norms (on this see also
Hegel (1807)). The notion of “orienting towards”
is central in the field of Conversation Analysis.9

On the computational side, Schlangen (2016)
makes some related points, although not yet un-
der the normative framework explored here. De-
Vault et al. (2006) made a similar point, and much

8“[I]n characterizing an episode or a state as that of know-
ing, we are not giving an empirical description of that episode
or state; we are placing it in the logical space of reasons, of
justifying and being able to justify what one says” (Sellars,
1956, §36)

9“CA’s guiding principle is that interaction exhibits ‘or-
der at all points’ [. . . ] This orderliness is normative—–it is
produced and maintained by the participants themselves in
their orientations to social rules or expectations” (Hoey and
Kendrick, 2017, p.2)

more carefully (but also more restricted in scope).
The forming of conceptual pacts is investigated
with modern computational means by Takmaz et al.
(2022). Work that could be enlisted for going to-
wards norm participating has already been cited in
the previous section.

7 Conclusions

In this paper I have sketched a view of language
as the purposeful use of norms for acting (where
acting includes the forming of beliefs), where these
norms can serve as reasons, can be negotiated, chal-
lenged, modified, and locally formed. I have spec-
ulated about the consequences of such a view on
computational modelling of language use.

No one could mistake this offering here for more
than a sketch. To develop this into a fuller pro-
posal, an enormous amount of work remains to be
done. How exactly language lends itself to figure in
such norms, and how these are composed (note that
all examples used full sentences) is an open ques-
tion (and compositionality is notoriously a problem
for conceptual role semantics (Whiting, 2022)), to
mention just one technical challenge.

Nevertheless, what I hope to have offered is a
potentially productive way to think about how lan-
guage is grounded, not just in some link to percep-
tual information, but in the collective uses made of
it, which are actively constructed and maintained to
be collectively useful. It is my hope that this more
interactive perspective on symbol grounding can be
informative for computational work on simulating
language use.
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Abstract

In this paper, we present an approach toward
grounding linguistic positional and directional
labels directly to human motions in a disori-
ented balancing task in a multi-axis rotational
device. We use deep neural models to predict
human subjects’ joystick motions and profi-
ciency in the task. We combine these with
BERT embeddings for annotated positional and
directional labels into an embodied direction
classifier. Combining contextualized BERT
embeddings with embeddings representing hu-
man motion and proficiency can successfully
predict the direction a hypothetical human par-
ticipant should move to achieve better balance.
Our accuracy is comparable to a moderately-
proficient human subject, and we find that our
combined embodied model may actually make
objectively better decisions than some humans.

1 Introduction
Much of the recent success in AI can be attributed
to the meteoric rise of large language models
(LLMs), such as BERT (Devlin et al., 2019) and the
GPT family (Radford et al., 2019). These language
models facilitate coherent, grammatical text gen-
eration using high-dimensional representations of
words, sentences, and more, that preserve similarity
relations across dimensions. Although pretrained
on a enormous amount of text, there are many ways
in which they fail to demonstrate “understanding”
as commonly defined. As argued by, e.g., Bender
and Koller (2020), these models lack knowledge of
the current situational context, because that context
comes from non-textual modalities. Certain multi-
modal language models, e.g., multimodal BART-
large (Lewis et al., 2020) appear to perform bet-
ter according to certain benchmarks (Moon et al.,
2020; Kottur et al., 2021), but there remain many
important domains which for the moment appear
to be out of reach for state of the art AI.

Consider the problem of human spatial disorien-
tation. During extreme conditions, such as pilot-
ing a spacecraft, even expert humans are subject to
gravitational transitions where they may not be able
to rely on gravitational cues sensed by the vestibu-
lar system, leading to fatal accidents (Shelhamer,
2015; Cowings et al., 2018). Even on Earth, the
leading cause of fatal aircraft accidents in military
pilots is spatial disorientation (Gibb et al., 2011).

Numerical AI models, however, with direct ac-
cess to quantitative information about position and
movement, can potentially determine when a hu-
man appears to be losing control and intervene,
such as by telling the human what to do in order
to right themselves. A successful AI partner that
counteracts human disorientation to enhance task
performance in real time would need to predict the
intent of the human’s motions, make decisions with
incomplete information or under environmental un-
certainty (Weber, 1987; Talamadupula et al., 2010)
and, perhaps most importantly, foster trust in the
human (Hengstler et al., 2016).

These are not requirements that even the impres-
sive benchmark performance of modern LLMs can
meet. Successful guidance of a human through
language requires that the AI “embody” relations
between linguistic terms and the human’s situation.

In this paper we combine disambiguated and
contextualized linguistic embeddings (Wiedemann
et al., 2019) from BERT, with embeddings ex-
tracted from numerical AI models that are trained
to predict control movements and human perfor-
mance in a spaceflight-analog disoriented balanc-
ing task. Unlike the BERT embeddings, these latter
embeddings are “situated,” in that they come from
models that are trained to embody a human par-
ticipant’s position in a phase space parameterized
by angular position and velocity in the balancing
task. This combined model is trained to predict
the direction the human should move towards for
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better balance given BERT embeddings that repre-
sent “thought vectors” about position relative to the
balance point, and performance and motion control
features extracted from the numerical models. We
show that predictions made by our model “agree”
on average with those made by a human with a
moderate level of proficiency in the balancing task,
and a deeper dive into misclassifications suggest
that the model may actually be performing better
in this task than the raw numerical results indicate.

2 Related Work
This paper brings together research in two distinct
and to date largely disjunct areas: multimodal lan-
guage grounding through human-AI collaboration,
and mitigating the effects of spatial disorientation.
This section discusses relevant work in these two
domains and our goals in synthesizing them.

The Collaborative Research Center’s Situated
Artificial Communicator project was a significant
early attempt to model the integration of language
and sensorimotor skills in a situated context (Rick-
heit and Wachsmuth, 2006). Recent work in multi-
modal conversational modeling has continued sim-
ilar lines of research with multimodal Transformer
architectures (Chen et al., 2020; Hu et al., 2020).
Other relatively recent work attempts to integrate
neurally-encoded robotic arm control with guid-
ance and instruction through dialogue (She et al.,
2014; She and Chai, 2017).

Alomari et al. (2017a) use unsupervised learning
for concepts such as colors, names and activities
by an autonomous robot. Alomari et al. (2017b)
combine PCFG trees and visual feature clustering
to ground video depictions of actions to linguistic
labels. Ilinykh and Dobnik (2022) find that lan-
guage models in a multimodal task setting learn
different semantic information about objects and
relations crossmodally and unimodally (text-only).

Importantly, though, these lines of research sub-
sume all grounding and multimodality under com-
binations of language and vision, to the exclusion
of other channels, and where AI and humans inter-
act, the interaction focuses on humans guiding AI,
not AI assisting humans. Our work brings in modal
channels directly related to human motion in a sit-
uated environment, to train an AI that ultimately
assists humans to mitigate spatial disorientation.

While there is a wide and varied body of research
from the neuroscience and biomechanics communi-
ties on other modal information channels, such as
human spatial awareness, AI has largely not been

applied here.
Rupert (2000) presents a tactile stimulation sys-

tem that provides intuitive orientation information
to aircrew and operators of remote platforms and
is compatible with a pilot’s natural sensory system.
Intelligent control of such a system could help pro-
vide pilots with appropriate cues in disorienting
situations, but only if human proclivites in such
situations are well-understood and modeled.

Vimal et al. (2016) use a multi-axis rotation sys-
tem (MARS) device programmed with inverted
pendulum dynamics to investigate learning in a
dynamic balancing task about an unstable equilib-
rium point. Subjects attempt to remain balanced
by applying joystick deflections to control the mo-
tion of the device, and the authors find that sub-
jects improve their performance by making fewer
destabilizing joystick movements, and more persis-
tent short-term joystick movements intermittently.
Later, they further investigate learning about dif-
ferent roll planes (vertical, horizontal) that dis-
rupt the natural orientational capabilities of hu-
mans, combined with the role of gravitationally-
dependent otolith and somatosensory cues in the
learning of the balancing task (Vimal, 2017; Vi-
mal et al., 2017, 2018, 2019, 2022). They find
that absence of gravitationally-dependent otolith
and somatosensory cues degrades balancing per-
formance. However, their findings also indicate
that balance control can be enhanced in situations
lacking gravitationally dependent position cues as
in weightlessness, when initial training occurs with
such cues present. They also observe that some
participants re-learn how to balance themselves in
the disorienting condition, demonstrating learning,
while others do not. Data from this line of research
is used in this paper.

Recent work in this line of research has begun
to use machine learning and AI techniques, pro-
viding a path forward to integrate the two afore-
mentioned broad areas. Vimal et al. (2020) group
subjects performing the balancing task in the hori-
zontal roll plane (HRP), without any gravitational
cues, into performance proficiency categories using
a Bayesian Gaussian Mixture model. Wang et al.
(2022) use the same data to train a stacked gated re-
current unit (GRU) model to predict the occurrence
of crashes (where crash boundaries are set to ±60°
from the balance point) 800ms in advance. Our
work extends this line of research toward modeling
human behavior in the balancing task so that AI
can predict and counteract disorientation.
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Figure 1: The multi-axis rotation system (MARS), pro-
grammed with inverted pendulum dynamics, in the ver-
tical roll axis (left) and the horizontal roll axis (right).
Straight grey arrows represent the direction of balance
(DOB). Placing participants in the horizontal roll plane
disrupts normal gravitational cues, making the balancing
task disoriented (figure courtesy of Vimal et al. (2020)).

3 Dataset
We use data and performance proficiency labels
from Vimal et al. (2020) which are further ex-
plained below. Additionally, we further annotate
the data with grounded positional annotations and
directional labels for training an embodied AI clas-
sifier that predicts optimal direction of movement.

3.1 MARS Data
The data is collected from 34 consenting healthy
adult participants (18 females and 16 males, µ ≈
20.4 years old, σ ≈ 2.0 years) with no prior experi-
ence in the Multi-Axis Rotation System (MARS).

The MARS was programmed with inverted pen-
dulum dynamics about a horizontal roll axis as
shown in Fig. 1 and controlled by a joystick.
MARS dynamics were governed by the equation,
θ̈ = kP sinθ, where θ is the angular deviation from
the direction of balance (DOB) in degrees, and kP
is the pendulum constant. Here, a pendulum con-
stant of 600◦ · s−2 (≈ 0.52Hz) was used. Crash
limits restricted the angular range of the MARS to
± 60◦ from the DOB. Angular velocity was lim-
ited to ± 300◦ · s−1, and angular acceleration to ±
180◦ ·s−2. Every∼ 0.02s, a velocity increment pro-
portional to the joystick deflection was added to the
MARS velocity and computed by a Runge-Kutta
RK4 solver to calculate the new MARS angular po-
sition and velocity. The latency between a joystick
deflection and a change in MARS angular velocity
was 30ms over the observed range of MARS spec-
tral power of 0 to ∼0.75Hz (further experimental
details in Vimal et al. (2020)).

Fig. 2 shows a segment of trial data from a rep-
resentative participant showing changes in angular
position (blue), angular velocity (red) and joystick
deflection (green). We can see that this participant

Figure 2: A segment of trial data from a medium profi-
ciency participant showing angular position (blue), an-
gular velocity (red) and joystick deflection (green). The
participant just barely prevents a crash as the MARS
angular increases to +50◦ from DOB.

was able to just barely avert a crash as the MARS
angular position reached +50◦, or 10◦ from the
crash boundary.
3.2 Proficiency Labels
Vimal et al. (2020) clusters participants based on
their balancing performance using various engi-
neered features, such as:

• Crash frequency equals the number of
crashes in a trial divided by the trial duration.
Higher values correlated with poorer balanc-
ing performance. Proficient participants had
a mean crash frequency of 0.002Hz and not
proficient participants had a mean crash fre-
quency of 0.11Hz.

• Anticipatory joystick deflections are those
that removed energy from the MARS by de-
celerating it as it was moving toward the DOB.
Anticipatory joystick deflections can help sta-
bilize the MARS; they are often used when
poor control leads to high velocities near the
balance point. As participants learn to sta-
bilize the MARS the percentage of anticipa-
tory joystick deflections decreases. 0.2% of
proficient participants’ deflections were clas-
sified as anticipatory while not proficient par-
ticipants used this strategy 14% of the time.

• Destabilizing joystick deflections accelerate
the MARS away from the DOB. Proficient par-
ticipants made destabilizing deflections on av-
erage 0.0005% of the time and non-proficient
participants made them 4.8% of the time.

Vimal et al. (2020) trained a Bayesian Gaussian
Mixture model using these features that clustered
participants into three distinct groups Proficient (or
“Good”), Somewhat Proficient (or “Medium”), and
Not Proficient (or “Bad”) based on their balanc-
ing performance. Participants were clustered based
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on their performance after 2 days of trials, mean-
ing that some proficient participants demonstrated
substantial learning in the task over the successive
trials, and occasionally some non-proficient partic-
ipants’ performance actually became worse with
repetition. These are the same per-participant pro-
ficiency labels we use here.
3.3 Positional & Direction Labels
To ground the situated numerical features from the
MARS to a linguistic representation, we annotate
the numerical features with sentences that represent
position relative to the DOB, or simply put, with
possible answers to the question “where am I?”
given the numerical features. For example, if they
are far off to the right of the DOB, a human may
think “I have drifted more towards the right” or
if they think they are balanced near the DOB the
equivalent thought may be “I think I am somewhere
in the center”. These sentence annotations were
generated by third-party annotators for each of the
three regions; left (< −20◦ from the DOB), right
(> +20◦ from the DOB), and center (within ±20◦
of the DOB), within a total possible range of ±60◦.

For the direction labels, representing the direc-
tion towards which the human should move the
MARS (or deflect the joystick) for better balance
about the DOB or “where should I go?”, we again
divide it into three categories; left: deflect the
joystick with such amplitude that it prompts the
MARS to the left, right: deflect the joystick with
such amplitude that it prompts the MARS to the
right, and center: deflect the joystick with as lit-
tle amplitude as possible such that there is little
to no change in the position of the MARS. These
are discrete, one-hot vectors depicting the “where I
should be going” grounded label, and are assigned
using the joystick deflection made after the look-
ahead time. The direction labels are defined as left:
< −0.2, right: > +0.2, and center: between −0.2
and +0.2. +1 and -1 represent full deflection.

4 Methodology
Our goal is to combine representations of motion
and performance proficiency, which are learned
from data directly capturing human embodiment
during the MARS balancing task, with linguistic
representations of the position and directional con-
cepts involved. A successful model is one which
can predict the label for the best direction of motion
given the current circumstances by learning corre-
lations between motion, proficiency, and linguistic
representation.

Figure 3: Overview of the embodied model architecture.

The model architecture, shown in Fig. 3, can
be divided into five parts: (1) data preprocess-
ing; (2) a joystick-deflection predictor of imme-
diate future action; (3) a performance proficiency
classifier, which provides a high-level view of the
subject’s task performance; (4) BERT annotation
embeddings, which provide real-valued semantic
representations that the outputs of previous two
modules are correlated to, and (5) the combined
model, or embodied direction classifier (EDC).
4.1 Data Preprocessing
For each trial in the data, we use a fixed sliding
window technique to extract segments of joystick
deflections, angular velocity and position where
the user was in control and no crashes occurred for
the given look-ahead time y seconds in the future.

For each viable window extracted, we assign a
random sentence annotation for the region corre-
sponding to the user’s average position in the win-
dow, e.g., “I think I am somewhere in the center”
or “I have drifted more towards the right.”

The processed data has two parts for each sam-
ple, (1) the MARS machine features i.e. joy-
stick deflections, position and velocity and (2) the
grounded position annotations.
4.2 Joystick-Deflection Prediction Model
Using the processed data on angular position, an-
gular velocity and joystick deflections, we train a
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deep feedforward neural network model (see Sec. 5
for hyperparameters) to predict how much the joy-
stick should be deflected to keep the user balanced.
Inputs are the 1000ms segments of joystick deflec-
tions, positions and velocities, and target values
are the joystick deflections made 400ms in the fu-
ture. Essentially, once operationalized, this model
should tell how a user should deflect their joystick
to balance themselves1.
4.3 Performance Proficiency Classifier
To account for how well a user is performing the
balancing task, we build a neural performance clas-
sifier that is able to tell us the user’s ability to dis-
cern and gauge where they are in terms of position
and where they should go. The proficiency labels
are obtained from Vimal et al. (2020) (described in
Sec. 3.2). We train a deep feedforward neural net-
work model (see Sec. 5 for hyperparameters) using
the same inputs as those to the Joystick-Deflection
Prediction Model (Sec. 4.2). However, here the tar-
get labels are discrete proficiency labels of the par-
ticipant for each sample in turn; Proficient, Some-
what Proficient, and Not Proficient. This model
should output a proficiency label for each segment,
reflecting how proficient the participant is behav-
ing at that time. The final pre-classification layer
of this model outputs embeddings that are situated
within the task phase space of the task by preserv-
ing high-dimensional similarity relations between
actual direction and velocity values and task profi-
ciency.
4.4 BERT Sentence Embeddings
We use pretrained BERT to produce the pooled
sentence embedding (the embedding of the [CLS]
token) for the the position annotations for each sam-
ple. This natural language representation serves as
a rather literal “thought vector,” representing the
“where am I?” grounded positional label input to
our embodied directional classifier.
4.5 Embodied Direction Classifier
Our task is now to take the numerical models
learned from embodied human performance, and
the linguistic representations from BERT, and train
a model, the embodied direction classifier, that
grounds the linguistic representation to circum-
stances described by the numerical data.

We combine the three aforementioned models
and build a classification model that has essentially

1400ms is slightly below the reaction time of average hu-
mans (Nagler and Nagler, 1973) and well above the reaction
time of trained pilots (Binias et al., 2020).

embodied the operational physics of the disorient-
ing balancing task through human performance
data, and has grounding annotations of positional
language (“where am I?”). This classifier takes
these inputs to predict the grounded directional la-
bel, “where should I go?” for better balance.

Input to the EDC is three-fold. Joystick-
Deflection Embeddings are extracted for each
sample from the penultimate layer of the Joystick-
Deflection Prediction Model. These vector embed-
dings represent how much and in which direction
the user should deflect their joystick to maintain
balance. Performance Embeddings are also ex-
tracted from the pre-softmax layer of the Perfor-
mance Proficiency Classifier to represent how well
the user can gauge their position and direction. Fi-
nally, the BERT Sentence Embeddings for the
positional thought vectors are extracted. For each
sample, these three vector embeddings are concate-
nated and passed to the model.

The EDC is trained to predict the grounded di-
rectional labels, i.e., left, right, and center, which
represent the “where should I go?” aspect in the
balancing task. In operation, this would be a cue
to a guide a human participant through linguistic
instruction to either deflect to the left, deflect to
the right, or do nothing with the joystick. Here we
simply assess the performance of the model and
how it compares to humans.

5 Evaluation
We randomly selected 12 participants from the
dataset—4 participants of each proficiency. We
use 38 of each participant’s 40 trials for the train
set and 2 for the test set. As described in Sec. 4.1,
we use a sliding window of 1000ms and a look-
ahead time of 400ms. After data processing, we
end up with about 1.7 million training samples and
80,000 testing samples, for a ∼95:5 train-test split.

All neural networks have 3 layers (100 units
each, tanh activation), and are trained with Adam
optimization for 50,000 epochs. The Joystick-
Deflection Prediction Model was trained with MSE
Loss and both the Performance Proficiency Clas-
sifier and EDC were trained with Cross Entropy
Loss and a final softmax layer. To evaluate the
performance/competence of the EDC we examine:

1. How well the model performs on average and
for each proficiency group.

2. Misclassified samples where the model “dis-
agrees” with the apparent ground truth, or the
decision the human participant had made.
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(a) Overall (b) Bad

(c) Medium (d) Good

Figure 4: (a) represents the confusion matrix for the full
test set of the EDC. (b), (c), and (d) are broken down by
proficiency group over the same test set.

6 Results
Table 1 illustrates the performance of the EDC
overall and for each of the three proficiency groups.
We also show the EDC’s precision, recall, and F1
for the three target labels, i.e., left, right, and center.
Here a “correct” answer is one where the human
participant made the correct movement choice with
respect to their angular position and velocity, and
the model predicted the same movement choice.

Overall Bad Medium Good

Prec.
LEFT 73 69 76 77

RIGHT 71 73 67 74
CENTER 85 65 84 91

Rec.
LEFT 76 73 76 80

RIGHT 73 72 74 73
CENTER 84 62 81 91

F1
LEFT 75 71 76 78

RIGHT 72 73 70 73
CENTER 85 63 82 91

Acc. 80 69 78 87

Table 1: EDC performance as %.

7 Discussion
7.1 Proficiency Breakdown
In Table 1, we can see that the EDC’s performance
increases as the proficiency of the participant in-
creases. We see that the Bad proficiency group
shows lower performance on correctly grounding
the center label, i.e., these participants think they
are in the center region, but the model thinks oth-
erwise. They do appear to have a better under-
standing of whether they are in the left or right
region and balance themselves accordingly. The
Medium & Good proficiency groups have a better

Figure 5: Misclassified test samples from each profi-
ciency group (following conventions from Fig. 2). Top:
Bad participant in the right region, truth label center,
predicted label left. Middle: Medium participant drift-
ing toward left region, truth label of center, predicted
label right. Bottom: Good participant in the left region,
truth label center, predicted label right.

Figure 6: Misclassified test samples where the ground
truth labels were center but predicted as left (top) and
right (bottom), showing the spread of actual joystick
deflection vs. sample average position when the EDC
“disagrees” with the participant’s movement.
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understanding of where they are in the problem
space than the Bad group, especially when the par-
ticipants think they are in the center region. For
the Good proficiency group, we see that the EDC
had an F1 score of 91% for the center label, which
means that the model agrees with their decision
to do nothing drastic when they are in the center
region roughly 91% of the time. This is likely due
in part to the fact that many Good (or proficient)
participants are able to remain balanced within the
center region for most of their trials.

Fig. 4 provides a deeper insight into the what
kinds of samples are commonly confused with each
other by the EDC. Regardless of proficiency group,
the center labels is more often misclassified as left
or right than the reverse. This is likely due in part
to there being more center labels in the dataset
overall (due to Medium and especially Good partic-
ipants successfully keeping themselves balanced),
however the confusion matrices further validate
the performance of the model for each of the three
proficiency groups: the Bad group has the most
confusions and the Good group has the least. The
EDC is able to combine the embodied numerical
and language representation channels and deter-
mine that when a person is in the central region,
they should not attempt to move out of it.

Bad participants, meanwhile, are all over the
place, and spend ∼72% of the time moving either
left or right (for the correctly classified samples)
whereas Medium and Good participants spend an
average of 42% and 25% of their time, respectively,
moving left or right. The rest of the time is spent
making slight, intermittent movements to remain in
the center. They do better at avoiding destabilizing
deflections, which the EDC picks up and outputs as
directional labels that describe doing just that. Our
model, which is trained on data from all proficiency
groups, makes decisions that align, in aggregate,
with those of a Somewhat Proficient participant.

7.2 Analysis of Misclassified Labels
While the overall metrics for the EDC’s perfor-
mance are promising, and it performs particularly
strongly on Good participants, those numbers do
not tell the whole story. Fig. 5 shows one sample
from each proficiency group that have a ground
truth label of center but are predicted as left or
right by the model. Fig. 5 (top) shows a participant
from the Bad proficiency group positioned in the
right region, closer to the crash boundary, velocity
increasing as they deflect the joystick to the right

as well (a destabilizing joystick deflection). The
truth label here is center as the participant does not
move the joystick for 400ms after the end of this
sample, but the model predicts that the participant
should deflect to the left, which appears to be ob-
jectively more correct than the “ground truth” label
is. Therefore the training data itself may actually
include noise introduced by subpar participants’
suboptimal movements, but the EDC is actually
able to learn better intuitive representations from
the combination of embodied data and language
data from better participants. Fig. 5 (middle and
bottom) shows that participants from the Medium
and Good proficiency groups respectively, are also
occasionally prone to the same situations faced by
the participant in top sample, and sometimes make
mistakes. Here, the Medium and Good participants
are both either in or moving closer to the left region
and classifier predicts that the participant should
deflect to the right, despite a ground truth label of
center. This shows that the EDC does learn a better
model of both disoriented balancing task perfor-
mance and in-the-moment guidance through lan-
guage by learning from multiple participants. If the
model were reevaluated against expert/common-
sense judgments of optimal human actions, the
metrics in Table 1 could rise substantially. In addi-
tion, by accurately predicting subpar actions, the
EDC may be used to guard against them.

Fig. 6 shows samples labeled center where the
human does not move the joystick but the classifier
predicted an optimal movement to the left (top plot)
or right (bottom plot). The graphs themselves show
the joystick deflection on the Y-axis vs. sample
average position on the X-axis. In Fig. 6 (top),
many samples are clustered just right of center with
joystick deflection to the left (bottom part of the
plot). The opposite is true for the bottom plot, with
deflections clustered right of center while average
position is just left of the DOB.

If we examine these plots by participant pro-
ficiency, the Proficient and Somewhat Proficient
samples remain mostly in the center region, close
to the DOB. These participants make slight joystick
deflections to remain within 20◦ of the DOB, but
the model predicts that the best move is a stronger
deflection in one direction. These may be cases
where the participant is technically within the cen-
ter region but perhaps close to a left/right boundary.
The Not Proficient participants have a much wider
spread of average positions where they make close
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to no deflection of the joystick. The EDC disagrees
with them, demonstrating both the noise in the data
when non-proficient participants’ actions are taken
as ground truth, and the ability of the EDC, despite
this, to make objectively “good” decisions in the
context of this task. The numerical performance
of the model (Table 1) goes up as participant pro-
ficiency goes up, but in fact this reveals that the
model is already able to make objectively good
decisions, and as human performance improves
and participants get better at balancing and become
more likely to remain in the center region or re-
cover from drifts, the human decisions are more
likely to match these. This suggests that a com-
bined embodied-linguistic method as demonstrated
here may be suitable for guiding humans in such
a task in real time. The EDC appears to actually
display some understanding of the correlation be-
tween position and velocity in the problem space,
and discrete directional labels.

8 Conclusion
The ultimate goal of this work is to train an AI
model that can give guiding cues to a human partic-
ipant in real time to improve their performance in
an embodied task such as the MARS balancing or
similar. Successful guidance of a human through
language requires that the AI “embody” the relation
between linguistic terms and the situation inhabited
by the human. Here we have presented evidence
that an AI model can be trained to ground direc-
tional labels to embedding-level representations of
angular position and velocity, and can do so in a
way that is sensitive to the proficiency level of a
participant in this task, if that information is pro-
vided as input. These grounded labels can serve
as cues to a human participant, as the AI considers
the situation and answers “where am I?” with an
answer to “where should I go?” (e.g., “I am drifting
to the left. I should deflect more to the right.”).

Our model, EDC, trained on data from partic-
ipants of all proficiencies, displays apparent per-
formance on par with a Somewhat Proficient par-
ticipant, but a deeper dive into misclassifications
reveals that even though the training data itself is
noisy, as the ground truth is taken to be the ac-
tual actions of the participants, even non-proficient
ones, our model’s apparent mislabels may actually
be better decisions than those of study participants.

8.1 Future Work
Given the nature of the task and the need for imme-
diate response by humans, is a linguistic cue really

the best cue to use in this case? While disoriented,
humans may not respond as quickly to language
cues; perhaps visual or vibrotactile cues are more
apt for prompting faster responses. Further experi-
ments need to be carried out in real time human-AI
collaboration in this task (e.g., what kind of AI cues
help humans perform better?). Nonetheless, the
language input seems to be important to the model
for predicting directional guidance, regardless of
how that guidance is ultimately expressed. Another
feature that could improve our situated embodied
model is speed of the MARS, i.e., adding thought
vectors representing things like “too fast” or “in
control” to positional thought vectors could bolster
the combined model’s effectiveness as a counter-
measure to disorientation by factoring in gradations
for things like speed or amount of deflection, which
would be important for actually guiding humans in
the MARS task where continuous joystick deflec-
ton is being applied.

In future work, we plan ablation studies to quan-
tify the effect of each type of embedding, in par-
ticular the precise role of language. By taking the
existing sentence annotations and automatically
transforming them into alternate phrasings (e.g.,
“I think I am somewhere in the center” → “I am
somewhere in the center”), we can quantify the
differences in sentence and contextualized word
embeddings, and the resultant predictive power of
the EDC. We are also adapting the virtual inverted
pendulum environment of Vimal et al. (2020) to
facilitate additional high-throughput studies where
we can experiment further with language, e.g., by
having subjects call out their perceived direction
in real time, or having other trained humans give a
subject real-time linguistic guidance. The interme-
diate models themselves—the joystick-deflection
predictor and proficiency classifier—can be im-
proved using techniques like LSTMs and GRUs
to pick up on time-series patterns. Furthermore, to
be an effective partner for an average human, our
models would need to be trained to predict direc-
tions for lookahead times greater than 400ms to
account for different human reaction times.
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Abstract

Abstract concepts, notwithstanding their lack
of physical referents in real world, are
grounded in sensorimotor experience. In fact,
images depicting concrete entities may be as-
sociated to abstract concepts, both via direct
and indirect grounding processes. However,
what are the links connecting the concrete con-
cepts represented by images and abstract ones
is still unclear. To investigate these links, we
conducted a preliminary study collecting word
association data and image-abstract word pair
ratings, to identify whether the associations be-
tween visual and verbal systems rely on the
same conceptual mappings. The goal of this
research is to understand to what extent linguis-
tic associations could be confirmed with visual
stimuli, in order to have a starting point for
multimodal analysis of abstract and concrete
concepts.

1 Introduction

In the last years, the debate over abstract and con-
crete conceptual representations has gained more
attention from a cognitive, psycholinguisitc and,
recently, from a computational point of view too.
Explaining the nature of abstract and concrete con-
cepts is very challenging, and a generally agreed
definition is still lacking. We can refer to them as a
internal mental representations (Paivio, 1990), or
as units of information and relationships (Payne
et al., 2007), or as unit of knowledge for specific
categories (Barsalou et al., 2003). Recently, dif-
ferences between concrete and abstract concepts
have been studied in relation to concreteness rat-
ings (Brysbaert et al., 2014; Connell and Lynott,
2012; Ferreira et al., 2015), underling that a di-
chotomic distinction does not take into account
existing relationships among them.

In the context of grounded theories of cogni-
tion, the general assumption is that our conceptual
representations are strictly linked to our sensori-
motor experience. This assumption seems to be
fairly explanatory for concrete concepts (e.g., dog,

church, car), but when it comes to analyse abstract
concepts (e.g., freedom or knowledge), we have
prima face no references in the real and physical
world that could activate any kind of sensorimo-
tor experience. It is in the process called multi-
modal simulation (Barsalou et al., 2003) that situ-
ated conceptualizations for a given concept arise.
One of the open question in the debate, is how a
concept could exploit grounding if no direct sen-
sorimotor experience is available. Many studies
have been conducted to explore the issue (Kousta
et al., 2011; Lakoff and Johnson, 1980; Wilson-
Mendenhall et al.). Guenther et al. (2020), for
example, assume that through visual experience
our cognitive system infers meaning from the lin-
guistic experience, transferring it in a perceptual
experience thanks to language-to-vision relations.
This means that an abstract concept such as knowl-
edge could be linguistically associated to a concrete
referent book or university, or the concept idea
could be metaphorically conceptualized as a light-
bulb. This process is called indirect grounding.
In fact, in the symbol interdependency hypothesis
Louwerse (2011, 2018) highlights that language
comprehension is symbolic and mediated by inter-
dependencies of amodal linguistic symbols and it
is indirectly embodied through linguistic symbols
to perceptual representations. In other words, if
concrete concepts exploit direct grounding in per-
ceptual representations, abstract concepts anchor
their meaning to different referents mediated both
by linguistic associations and figurative, metaphor-
ical and analogical associations.

The aim of this study is to investigate what are
the mechanisms involved in the indirect ground-
ing of abstract concepts, both in their visual and
linguistic anchoring. Furthermore, we are also in-
terested in exploring the figurative interpretation
mechanism of concrete images. In particular, our
research questions are:
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Q1 What kind of linguistic associations emerge
between abstract and concrete concepts, accord-
ingly also to the degree of concreteness?

Q2 Are these associations grounded in sensori-
motor experience?

Q3 These associations are confirmed also when
the stimulus proposed is an image picturing the
concrete concept?

Q4 If these associations could be confirmed also
in image-abstract noun pairs associations, could
we learn something about visual features that con-
tribute to the indirect grounding processes?

In the exploratory study we propose, we con-
ducted five psycholinguistic tests via crowdsourc-
ing – the first three with linguistic data, and the
others with multimodal data – to investigate the
link between abstract and concrete concepts and
images. We selected 130 abstract nouns that we
used as stimuli in our tests. In the linguistics tests,
we collected word associations with three different
elicitation methods. Subjects have been instructed
to provide respectively only concrete nouns in re-
sponse to abstract stimuli (test 1), both concrete
and abstract nouns in response to abstract stimuli
(test 2), the mental mental images in response to
abstract stimuli (test 3). Results of linguistic tests
show an interesting response pattern in the three
tests, with respect to the concreteness degree of the
answers and the elicitation methods.

In the multimodal association tests, we pre-
sented image and abstract nouns pairs, and we
asked subjects to rate the strongest image-nouns
association (test 4). Finally, we replaced the im-
ages with the concrete nouns they represent, and we
asked to rate the strongest concrete-abstract nouns
association (test 5). In many cases, results confirm
the associations of the word association tasks, but
other interesting issues emerge, since the contex-
tual features of images impact on the multimodal
associations.

2 Related work

A large body of studies have been conducted to dis-
cuss the relation that interconnects language, non-
linguistic meaning, and perception (Siskind, 2001).
Abstract concepts have been always at the centre of
debate. Due to the high degree of interdependency
between concreteness and abstractness, scholars
debated about the best method to classify these two
semantic macrocategories (Casasanto and Borodit-
sky, 2008). The aim of this research line is to define

how meaning arises, considering the large variety
of internal and external stimuli that humans use to
create conceptual associations to understand the
world.
Among the most promising approaches to address
the problem of abstract vs. concrete concepts is to
consider them as forming a conceptual continuum,
rather than a dichotomic relation. In the experi-
ment conducted by Brysbaert et al. (2014), in fact,
abstractness and concreteness are evaluated like a
scale, providing evidences about the perception of
different degrees of concreteness of 40,000 English
words. These data confirm, to some extent, the
idea that concrete and abstract concepts rely on dif-
ferent information (Crutch and Warrington, 2005,
2007, 2010). However, despite the fact that ab-
stract and concrete concepts form distinct cognitive
domains, when it comes to explore the interconnec-
tion among different dimensions and modalities, it
is unclear what features emerge and contribute to
meaning formation and comprehension. Abstract
concepts, in fact, are characterised by an intrinsic
complexity related to events, situations, physical
and mental states, and they are much more vari-
able in their realization of intra and extra-linguistic
meaning (Villani, 2018). Moreover, abstract con-
cepts are also directly connected to metaphorical
thinking, events, and affective states (Borghi et al.,
2017). Lexico-semantic theories underlines the
contribution that language brings to the meaning
formation, with the respect to the context (Louw-
erse, 2011). For example, according to the Context
Availability Theory (Schwanenflugel et al., 1988;
Schwanenflugel, 1992), concrete concepts are as-
sociated to more specific contexts, compared to the
ones of abstract concepts. The Dual Coding Theory
(Paivio, 1990), instead, assumes that all concepts
are rooted in the verbal system, while only concrete
concepts have a direct connection with images.
Multimodal approaches gained more and more in-
terest both in linguistics, cognitive science, neuro-
science and computational studies, and new seman-
tic models combining linguistic and visual informa-
tion have been proposed. Computational models
of semantics make use of linguistic and perceptual
information, to obtain complementary data to ex-
plore our conceptual system (Andrews et al., 2014).
There have been several studies aiming to address
the multimodal mechanisms of abstract/concrete
grounding (Bruni et al., 2014; Berger et al., 2022).
Recently Zablocki et al. (2017) proposed a multi-
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modal context-based approach to learn word em-
beddings, observing that visual surroundings of ob-
jects are informative and could be exploited to build
word representations, jointly with the visual appear-
ance of the object themselves. Interesting attempt
to model abstractness and concreteness with the re-
spect to figurative language and multimodality can
be found in Su et al. (2021). While abstractness has
mostly been modeled at word-level without pay-
ing attention to contextualization, Su et al. (2021)
explore the dynamics of meaning interchange be-
tween texts and images for visual metaphors, by
using different degrees of concreteness.

3 Word association

Data selection We collected 130 English nouns
and we divided them as low abstract, medium ab-
stract and high abstract (1).

Abstract Noun Level Concreteness
rating

belief High 1,19
democracy High 1,78
love Medium 2,07
anxiety Medium 2,21
sight Low 3,21
speed Low 3,62

Table 1: examples of abstract stimulus and concrete-
ness ratings

Since our aim was to explore the interconnection
between abstract nouns and images, we performed
preliminary investigation to control the availabil-
ity of images related to our stimuli. We used Un-
splash.com as a reference website to collect images,
firstly because we want to make sure to use roy-
alty free pictures, and secondly because this portal
offers a large variety of User Generated Content
labelled with tags chosen directly by users. Then
we use the concreteness rating data contained in
Brysbaert et al. (2014) to perform a more precise
division based on the concreteness ratings. We ob-
tained 47 low abstract nouns, 42 medium abstract
nouns, 38 high abstract nouns.

3.1 Word association task
As associative relations are particularly important
to organize abstract concepts (Crutch and Warring-
ton, 2005, 2007, 2010), the 130 nouns have been
used as stimuli in 3 word association tasks. We
exploited this assumption to evaluate what are the

most frequent linguistic associations, given a spe-
cific abstract noun. To collect word associations we
explored 3 methods. We administred three differ-
ent tests to 120 native English speakers via Prolific.
Stimuli were divided in 6 tests and each test was
administred to groups of 20 subjects. Each subject
was asked to provide up to three associations for
each stimulus. For the three tests we collected re-
spectively 9, 032 associations in test 1, 6, 626 in
test 2, and 5, 212 in test 3. Tests were designed as
follow:

Test 1 (C) Subjects were explicitly asked to pro-
duce concrete nouns as associations.

Test 2 (ND) Subjects were simply asked to pro-
duce the first noun that came to their mind, inde-
pendently of its concreteness.

Test 3 (IMAGERY) Subjects were asked to an-
swer the question “What image comes to mind?”.
For each abstract stimulus, participants were in-
structed to provide mental images of objects, set-
tings or animate beings. In this process they had
to simulate the experience of visually perceiving
some object, event, or scene.

Analysis For the three tests we calculated the fre-
quency of the answers to obtain data about the most
prototypical associations for each of the 130 nouns.
Then we selected the word associations with a pro-
duction frequency � 2 to obtain the subset of data
with the strongest prototypical associations. Then,
we classified each associate noun in the subset as
abstract or concrete, to investigate the distribution
of the data in C, ND and IMAGERY.

In this step we were interested in exploring
whether the elicitation method affects the type
of response and more importantly to understand
whether the degree of abstractness of the stimuli
affects the type of response in the 3 different elicita-
tion conditions. For each test we performed a Chi-
squared test to evaluate the significance of distri-
bution of concrete and abstract associations among
the three levels of concreteness (low, medium,
high). We obtained a significant (p-value < 0.001)
in test 2 (ND)). Test 1 and 3 do not show significant
differences (p-value > 0.05), but a predominance
of concrete nouns in the low level can be observed.
(Figures 3.1).

Then, for each level (low, medium, high) we per-
formed a Chi-squared test in order to examine the
distribution of abstract and concrete associations
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Figure 3.1: Distribution of abstract vs. concrete associates divided by level in test 1 “C”, test 2 “ND”,
test 3 “IMAGERY”
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crete according to the degree of concreteness of the
stimulus: High level

among the three tests (C, ND, IMAGERY). For
all the three levels, we observed a p-value < 0.001
(Figures 3.2, 3.3 3.4). Results show that abstract
stimuli produced more abstract associations in ND
test, while concrete associations are more common
in IMAGERY test, with respect to test C.

In both analysis what emerges is that if no
grounded constrains are given to form the associa-
tion (meaning the instruction to provide a concrete
or imaginable situation in the elicitation method),
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Figure 3.3: Distribution per test of abstract VS con-
crete according to the degree of concreteness of the
stimulus: Medium level

subjects do not seem to express a preference for a
direct or indirect grounding. Moreover, when we
analyse the distribution of abstract-concrete asso-
ciations considering the level of concreteness, we
observed that high abstract stimuli struggle more
in finding concrete referents.

4 Image abstract associations

Data collection The next step of the work was
dedicated to the multimodal association collection.
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Figure 3.4: Distribution per test of abstract VS con-
crete according to the degree of concreteness of the
stimulus: Low level

We identified the most frequent concrete nouns
appearing in C, ND and IMAGERY and we se-
lected 44 concrete nouns appearing at least in 2
tests. Each of these concrete nouns was paired with
5 abstract nouns, selected among the most frequent
abstract nouns associated to each of 44 concrete
nouns. Then, we used Unsplash.com to collect 4
images for each concrete noun.

Concrete noun/ Image Associated abstracts

BOOK

Knowledge
information
learning
originality
explanation

CAR

speed
asset
future
risk
advance

CAT

curiosity
affection
instict
flexibility
luck

Table 2: Concrete nouns/image and their most fre-
quent abstract associations.

Image-Abstract nouns rating task We admin-
istered to 30 native English speakers a rating test
(Test 4 “IMG”) in which participants were asked
to rate the strongest image – abstract nouns associ-
ation on a scale from 1 to 5, choosing from a set of
5 abstract nouns. For each image-stimulus we pre-
sented 4 different pictures. Participants rated 180
image-noun pairs in total. Only the images were

shown and not the concrete noun they represent, as
we wanted to avoid that the human judgments were
biased by the linguistic clues.

A second test (Test 5 “WRD”) was designed in
which participants were asked to rate the strongest
concrete – abstract nouns association a scale from
1 to 5, choosing from a set of 5 abstract nouns. In
this test, the images of Test 4 were replaced by the
corresponding concrete noun.

Analysis We computed the rating means for the
image-noun pairs and for the concrete-abstract
noun pairs and the standard deviation for the im-
ages in test 4. The image - abstract nouns and
the word abstract nouns ratings show a very high
correlation (Spearman ⇢ = 0.77).

We then computed the correlation between the
mean ratings obtained by the test 4 (e.g., mean
rating given to speed in relation to the 4 images
selected for car) and the mean frequencies of the
abstract-concrete noun associations (e.g., the value
of frequency for the association speed - car in test
1, 2 and 3) (see table 3). The result was a correla-
tion of ⇢ = 0.47.

The same correlation was calculated between
the mean frequencies of the abstract-concrete noun
associations and the rating means obtained in the
test 5 (e.g., mean rating given to speed in relation
to the linguistic stimulus of CAR). In this case, the
correlation of ⇢ = 0.55 shows that associations like
speed-car and back (car - speed) are quite solid
in both directions. The results reveal an higher
correlation for the linguistic associations, but still
a good correlation within the image-noun pairs.

In order to evaluate if the prototypical associ-
ations highlighted by word associations testing
phase were confirmed also when images were pro-
posed, we calculated the correlation between the
rating means in the test 4 and the highest frequency
value of abstract-concrete association test (e.g., the
association knowledge-book obtained a maximum
frequency value of 11 in word associations tests,
see table 3). The result was a quite good positive
correlation (⇢ = 0.45, with Spearman method).
We repeated the correlation analysis for the proto-
typicality with test 5. In this case the correlation
between the highest frequency value of abstract-
concrete association tests and the rating means in
the test 5 was ⇢ = 0.52 (Spearman method).
This suggests that even considering the maximum
prototypicality values, linguistic associations show
an higher correlation, compared to the image-noun
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Figure 4.5: Examples of image stimuli in the image-abstract nouns rating task.

IMG\ WRD

Concrete Noun

IMG\ WRD

Association

IMG

Rating mean

WRD

Rating mean

Freq.mean

C, ND,

IMAGERY

Max freq

BOOK knowledge 4,38 4,66 7 11

BOOK Learning 4,41 4,4 7 9

CAR Speed 3,92 4,2 10 10

CAR Asset 3,65 3,06 3,33 7

FLOWER Apology 2,28 2,2 3,66 8

FLOWER Beauty 4,17 4,86 2 3

CHILD Honesty 3,48 3,53 3,33 6

CHILD Hope 3,68 3,93 1 3

Table 3: Examples of associations image/concrete nouns - abstract nouns and their rating means in tests 4
and 5 with respect to Freq. means among Test 1-3 and Max freq.

pairs maximum prototypicality values. However,
the data show a quite good correlation in image-
noun pairs.
Since we analysed the correlation values among the
three word association tests, we found that the fre-
quency values in IMAGERY test show the highest
correlation with the rating means both in test 4 and
5 (test 4 ⇢ = 0.40 and test 5 ⇢ = 0.47). This re-
sult may suggest that the multimodal and grounded
connection between abstract and concrete concepts
rely more in mental images associations rather than
in the mere abstract-concrete associations.

5 Discussion

In our exploratory study we were interested in un-
derstanding Q1 What kind of linguistic associa-
tions emerge between abstract and concrete, ac-
cordingly also to the degree of concreteness. Q2
Whether these associations are grounded in sen-
sorimotor experience. To answer this first two
questions, we conducted three word associations
tasks, by adopting three different elicitation meth-
ods. A1 We observed that interesting prototypi-
cal answers were provided by subjects, confirming
tendencies in association paths. These prototypi-
cal answers were mainly derived from processes
grounded in sensorimotor experiences (anxiety -
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Figure 4.6: Scatterplot rating means in test 4 and 5
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Figure 4.7: Scatterplot showing the rating means of
higher frequency means of the 44 images in (test 4
“IMG”)

sweat), metaphorical and conventionalized associ-
ation (idea - lightbulb), and also by cultural ref-
erences (freedom - America). Beside the proto-
typicality of answers we also observed that the
distribution of abstract and concrete linguistic as-
sociations vary based on the concreteness degree
and the elicitation methods. In fact, we can ob-
serve a variability in the typology of the responses:
if the elicitation method does not specify to pro-
vide concrete nouns/association or mental repre-
sentations to the abstract stimulus, subjects tend to
produce an abstract-to-abstract association, espe-
cially providing associations of similar linguistic
distribution (e.g., synonyms). On the other hand,
elicitation methods that clearly specify to produce
concrete association or mental images associations
provide concrete and grounded answers. Interest-
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Figure 4.8: Scatterplot showing the rating means of
higher frequency means of the 44 concrete nouns
(test 5 “WRD”)

ingly, we observed also that based on the degree
of concreteness of abstract stimuli, a low abstract-
ness is associated more with concrete concepts,
and high abstractness is associated more with ab-
stract concepts. A2 Since we observed that in Test
C and Imagery more concrete associations were
provided, we found a great variety of associations
referable to different situational context and senso-
rimotor experiences. (e.g., apology - flower; flow -
water; attention - eyes; consideration - nurse).

Once we obtained these data, we wanted to un-
derstand whether Q3 These associations are con-
firmed also when the stimulus proposed is an image
picturing the concrete concept; Q4 If these associ-
ations could be confirmed also in image-abstract
noun pairs associations, could we learn something
about visual features that contribute to the indirect
grounding processes? A3 In the image-abstract
association tasks we explored a reverse schema
of associations, and we found out that the proto-
typicality in general is confirmed also when the
stimulus is an image. Notwithstanding the predom-
inant prototypicality also with the visual stimuli,
some exceptions arise. There are cases in which the
strongest linguistic association is not confirmed in
the preference of image-abstract nouns (e.g., apol-
ogy is strongly associated to flower in the linguistic
tasks, and strongly associated to beauty in visual
tasks). This could be explained by the degree of
prototypicality of the associations: the mean as-
sociation of apology and flower (3.68) is weaker
than the mean association of book and learning
(7). A4 Since we showed 4 images for the same
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concrete concept, we observed that the semantic of
the visual scene have an effect on the preference of
the abstract concept associated. These results show
indeed a strong connection between visual context
and the scene interpretation. Grounding of the an-
choring mechanisms has to be found especially in
the situation depicted. If the visual context change
(e.g.: from a picture in which a car is moving to a
parked car) different conceptual features are taken
into account to define the strongest association be-
tween the abstract noun and the visual stimulus. In
fact, the correlation between frequency and rating
means in the linguistic associations is higher than
the correlation of image-abstract associations. This
result could be justified by the variety of the visual
stimuli proposed. Moreover, the highest correlation
values among linguistic and visual norming can be
found in IMAGERY test, demonstrating also that
contextual clues may help in finding better associ-
ations between abstract and concrete concepts, as
subjects are asked to imagine situations/events to
connect two conceptual domains.

6 Conclusions

The study we proposed aimed to explore the role
of linguistic associations in the mechanisms that
link them to images and abstract concepts. We
were particularly interested in studying the indi-
rect grounding processes that connect an abstract
concept such as speed to a concrete such as car,
and in the same way how car could lead to the
idea of speed. In order to gain data about these
indirect connections of indirect grounding, we col-
lected norming data of word-to-word associations
and image-to-word associations. In the word as-
sociation tasks, we exploited different elicitation
methods to first understand what kind of associa-
tions emerge if an abstract noun is provided as a
stimulus, considering also the degree of concrete-
ness. Our analysis reveals that the degree of con-
creteness of the abstract stimulus impacts on the
distribution of abstract vs. concrete concepts in the
three different elicitation methods. Furthermore,
the elicitation method also impacts on the kind of
the produced associations (abstract/concrete). To
some extent this confirms that conceptual systems
do not rely only on linguistic information, but con-
text plays an important role in defining the link
between concrete vs. abstract concepts (e.g., in
the IMAGERY test, where subjects were asked
to “imagine” the abstract stimuli, mostly concrete

association arise).
With regards to the image-abstract tasks, we
observed that when an image is provided, the
grounded anchoring offered by the visual scene
confirms similar linguistic associations with ab-
stract concepts. In general, our results show that lin-
guistic associations correlate with image-abstract
noun ratings. In this view, concepts such as speed
leads both via linguistic associations and visual as-
sociations to the concept car. However in the case
of image-abstract noun pairs we observed differ-
ences of preference in image-abstract pairs, con-
firming that even the visual content has an impor-
tant role in the construction of multimodal meaning
and the indirect, figurative grounding of images and
abstract concepts. For example, despite the associ-
ation car - speed is confirmed in verbal and visual
data, the association car - asset arises in one of the
4 images proposed to subjects. In this case the car
was parked and not moving on the road.
Since this work has been conducted as an ex-
ploratory study, we are interested in analysing more
in depth the semantic associations that arise from
both perspectives. In fact, we qualitatively ob-
served that situational semantic relations are the
most prominent in the prototypical associations
(McRae et al., 2012), but the degree of concrete-
ness. Furthermore, other information may have an
impact on the abstract-concrete association both in
visual and verbal systems. In the future we would
like to explore the differences arising from differ-
ent languages to detect cultural and linguistic in-
fluences in the grounding processes. If it is true
that convenzionalizations in linguistic associations
may occur in cases such as idea - lightbulb across
several languages, it is not clear whether associa-
tion such as curiosity - cat could be confirmed in
other languages, or if the connection that brings
together belief - church make use of cultural or
linguistic influences, both in word associations and
in image-abstract association.
Despite the explorative nature of our study, we
think that our results could bring new insights about
the many modes in which verbal and visual system
continuously interact. More studies are needed to
investigate this interconnection, due to the large
variety of information that our conceptual systems
uses to build meaning. This is particularly impor-
tant also for computational approaches aiming in
exploiting more features of multimodal data.
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