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Dependency-based approaches to syntactic analysis assume that syntactic structure can be
analyzed in terms of binary asymmetric dependency relations holding between elementary
syntactic units. Computational models for dependency parsing almost universally assume that
an elementary syntactic unit is a word, while the influential theory of Lucien Tesnière instead
posits a more abstract notion of nucleus, which may be realized as one or more words. In this
article, we investigate the effect of enriching computational parsing models with a concept of
nucleus inspired by Tesnière. We begin by reviewing how the concept of nucleus can be defined
in the framework of Universal Dependencies, which has become the de facto standard for training
and evaluating supervised dependency parsers, and explaining how composition functions can
be used to make neural transition-based dependency parsers aware of the nuclei thus defined. We
then perform an extensive experimental study, using data from 20 languages to assess the impact

Action Editor: Carlos Gómez-Rodríguez. Submission received: 28 February 2022; revised version received:
10 June 2022; accepted for publication: 23 June 2022.

https://doi.org/10.1162/coli_a_00450

© 2022 Association for Computational Linguistics
Published under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
(CC BY-NC-ND 4.0) license

mailto:joakim.nivre@lingfil.uu.se
mailto:ali.basirat@liu.se
mailto:luise.durlich@ri.se
mailto:adam.moss@lingfil.uu.se
https://doi.org/10.1162/coli_a_00450


Computational Linguistics Volume 48, Number 4

of nucleus composition across languages with different typological characteristics, and utilizing a
variety of analytical tools including ablation, linear mixed-effects models, diagnostic classifiers,
and dimensionality reduction. The analysis reveals that nucleus composition gives small but
consistent improvements in parsing accuracy for most languages, and that the improvement
mainly concerns the analysis of main predicates, nominal dependents, clausal dependents, and
coordination structures. Significant factors explaining the rate of improvement across languages
include entropy in coordination structures and frequency of certain function words, in particular
determiners. Analysis using dimensionality reduction and diagnostic classifiers suggests that
nucleus composition increases the similarity of vectors representing nuclei of the same syntactic
type.

1. Introduction

A syntactic analysis in the form of a dependency tree consists of labeled directed arcs,
which represent grammatical relations like subject and object. These arcs connect a set
of nodes, which represent the basic syntactic units of a sentence. Standard models of
dependency parsing generally assume that the elementary units are tokens or word
forms, which are the output of a tokenizer or word segmenter. This assumption gives
rise to considerable variation in the shape and size of dependency trees across lan-
guages, because of different typological characteristics. Thus, morphologically rich lan-
guages typically have fewer elementary units and fewer relations than more analytical
languages, which to a larger extent rely on function words instead of morphological
inflection to encode grammatical information. This variation is illustrated in Figure 1,
which compares two equivalent sentences in English and Finnish, annotated with de-
pendency trees following the guidelines of Universal Dependencies (UD) (Nivre et al.
2016, 2020; de Marneffe et al. 2021), which assume word forms as elementary units.

However, it is not necessary to treat words as the elementary syntactic units of
dependency structures. In the theory of Tesnière (1959), dependency relations are as-
sumed to hold between slightly more complex units called nuclei. Nuclei are defined as
semantically independent units consisting of a content word together with its grammat-
ical markers, regardless of whether the latter are realized as morphological inflection or
as independent words. In practice, a nucleus will often correspond to a single word—
as in the English verb chased, where tense is realized solely through morphological
inflection—but it may also correspond to several words—as in the English verb group
has chased, where tense is realized by morphological inflection in combination with

the dog chased the cat from the room
DET NOUN VERB DET NOUN ADP DET NOUN

Case=Nom Case=Acc Case=Ela
NOUN VERB NOUN NOUN
koira jahtasi kissan huoneesta

det nsubj

nsubj

det

obj

obj

det

case

obl

obl

Figure 1
Word-based dependency trees for equivalent sentences from English (top) and Finnish (bottom).
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the dog chased the cat from the room

koira jahtasi kissan huoneesta

nsubj

nsubj

obj

obj

obl

obl

Figure 2
Nucleus-based dependency trees for equivalent sentences from English (top) and Finnish
(bottom).

an auxiliary verb. A nucleus consisting of several words is known as a dissociated
nucleus. It is easy to see that if we assume that the elementary syntactic units of a
dependency tree are nuclei instead of words, then the English and Finnish sentences
discussed above will be assigned identical dependency trees, visualized in Figure 2,
and will differ only in the realization of the nuclei involved. Thus, whereas all nuclei in
the Finnish sentence are simple nuclei, consisting of single words, all the nominal nuclei
in English are dissociated nuclei, involving nouns together with standalone articles and
the preposition from.

Can modern dependency parsers, based on neural network techniques and contin-
uous word representations, benefit from a concept of nucleus inspired by the theory of
Tesnière? This is a question that was first investigated in Basirat and Nivre (2021), where
we proposed two key ideas. The first is the idea that we can define syntactic nuclei in
UD representations, exploiting the fact that the UD guidelines prioritize dependency
relations between content words that are the cores of syntactic nuclei, which makes it
relatively straightforward to identify dissociated nuclei. In this way, we can gain access
to annotated resources for training and evaluation of parsers across a wide range of
languages. The second is the idea that transition-based parsers, as previously shown
by de Lhoneux, Stymne, and Nivre (2020), can relatively easily be extended to include
operations that create internal representations of syntactic nuclei. This gives us a vehicle
for studying their impact on parsing performance. Basirat and Nivre (2021) includes a
small experimental study, indicating that internal nucleus representations give small
but consistent improvements in parsing accuracy.

In this article, we begin by replicating these experiments on a larger sample of
languages, with a more detailed comparison of different models. We then try to analyze
in more detail why nucleus composition only gives relatively modest accuracy improve-
ments, which linguistic constructions benefit from these improvements, how we can
explain the different rates of improvement across languages, and what information is
encoded in the nucleus representations created through composition.

2. Related Work

Grammar and Annotation. Most dependency-based grammar formalisms and annotation
frameworks discard the nucleus as the basic syntactic unit in favor of the word, but
exceptions do exist. In the multi-stratal Functional Generative Description framework
(Sgall, Hajičová, and Panevová 1986), nucleus-like concepts are captured at the tec-
togrammatical level, a property that is inherited by the three-layered annotation scheme
of the Prague Dependency Treebank (Böhmová et al. 2003). Kahane (1997) introduces

851



Computational Linguistics Volume 48, Number 4

the notion of a bubble tree to be able to represent verbal and nominal nuclei, as well
as coordinate structures. Bārzdin, š et al. (2007) propose a syntactic analysis model for
Latvian based on the x-word concept, which has clear affinities with the nucleus con-
cept. In this approach, an x-word acts as a non-terminal symbol in a phrase structure
grammar and can appear as a head or dependent in a dependency tree. Nespore et al.
(2010) compare this model to the original dependency formalism of Tesnière (1959).
Finally, Sangati and Mazza (2009) develop an algorithm to convert English phrase
structure trees in Penn Treebank style to dependency trees that cover all of Tesnière’s key
concepts, including nuclei. More recently, we have shown in Basirat and Nivre (2021)
that syntactic nuclei can be distinguished in UD treebanks, without the need for formal
conversion.

Syntactic Parsing. Järvinen and Tapanainen (1998) propose Functional Dependency
Parsing as an adaptation of Tesnière’s dependency grammar for computational pro-
cessing. They argue that the nucleus concept is crucial to establish cross-linguistically
valid criteria for headedness and that it is not only a syntactic primitive but also the
smallest semantic unit in a lexicographical description. While the approach of Järvinen
and Tapanainen (1998) is based on linguistic rules, built on top of a constraint grammar
system, Samuelsson (2000) instead defines a generative statistical model for nucleus-
based dependency parsing, which however has never been implemented and tested.
More broadly speaking, the nucleus concept has affinities with the chunk concept found
in many approaches to parsing, starting with Abney (1991), who proposed to first find
chunks and then dependencies between chunks, an idea that was generalized into
cascaded parsing by Buchholz, Veenstra, and Daelemans (1999), among others. It is also
clearly related to the vibhakti level in the Paninian computation grammar framework
(Bharati and Sangal 1993; Bharati et al. 2009). In a similar vein, Kudo and Matsumoto
(2002) use cascaded chunking for dependency parsing of Japanese with strictly head-
final structures, a technique that was generalized to arbitrary (projective) dependency
trees by Yamada and Matsumoto (2003). In a more recent study, de Lhoneux, Stymne,
and Nivre (2020) investigate whether the hidden representations of a neural transition-
based dependency parser encode information about syntactic nuclei, with special ref-
erence to auxiliary verb constructions. They find some evidence that this is the case,
especially if the parser is equipped with a mechanism for recursive subtree composition
of the type first proposed by Stenetorp (2013) and later developed by Dyer et al. (2015)
and de Lhoneux, Ballesteros, and Nivre (2019). The idea is to use a composition oper-
ator that recursively combines information from subtrees connected by a dependency
relation into a representation of the new larger subtree. In Basirat and Nivre (2021),
we exploit this idea in combination with the UD-based definition of nuclei mentioned
above, thus overcoming one of the major bottlenecks in earlier explorations of nucleus-
based parsing, namely, the lack of annotated resources that can be coupled with an
appropriate parsing model. This article is devoted to the further exploration of this
approach.

3. Syntactic Nuclei in UD

Universal Dependencies (UD)1 (Nivre et al. 2016, 2020; de Marneffe et al. 2021) is an
open community effort aiming to provide cross-linguistically consistent morphosyn-

1 https://universaldependencies.org.
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Figure 3
Syntactic UD representation with functional relations drawn below the sentence. Dissociated
nuclei are grayed, with a darker shade for the discontiguous nucleus.

tactic annotation for as many languages as possible. The latest release from May 2022
(v2.10) features 228 annotated corpora, representing 130 languages from 22 language
families. In this section, we review the proposal of Basirat and Nivre (2021) for how to
define syntactic nuclei given the UD formalism.

The syntactic annotation in UD is based on dependency relations and the elemen-
tary syntactic units are assumed to be words, but the style of the annotation makes
it relatively straightforward to identify substructures corresponding to (dissociated)
nuclei. More precisely, UD prioritizes direct dependency relations between content
words, as opposed to relations being mediated by function words, which has two
consequences. First, incoming dependencies always go to the lexical core of a nucleus.2

Second, function words are normally leaves of the dependency tree, attached to the
lexical core with special dependency relations, which we refer to as functional relations.3

Figure 3 illustrates these properties of UD representations by showing the depen-
dency tree for the English sentence This killing of a respected cleric will be causing us trouble
for years to come. For perspicuity, functional relations are drawn below the sentence and
other relations above it. Given this type of representation, we can define a nucleus as
a subtree where all internal dependencies are functional relations, as indicated by the
ovals in Figure 3. The nuclei can be divided into single-word nuclei (whitened) and
dissociated nuclei (grayed). The latter can be contiguous or discontiguous, as shown by
the nucleus of a cleric, which consists of the two parts colored with a darker shade.

This definition of nucleus in turn depends on what we define to be functional
relations. For this study, we assume that the following 7 UD relations4 belong to this
class:

• Determiner (det): the relation between a determiner, mostly an article or
demonstrative, and a noun. Especially for articles, there is considerable
cross-linguistic variation. For example, definiteness is expressed by an
independent function word in English (the girl), by a morphological
inflection in Swedish (flicka-n), and not at all in Finnish.

2 Except in some cases of ellipsis, like she did, where the auxiliary verb did is “promoted” to form a nucleus
on its own.

3 Again, there are a few well-defined exceptions to the rule that function words are leaves, including
ellipsis, coordination, and fixed multiword expressions.

4 A more detailed description of the relations is available in the UD documentation at
https://universaldependencies.org.
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• Case marker (case): the relation between a noun and a case marker when
it is a separate syntactic word and not an affix. UD takes a radical
approach to adpositions and treats them all as case markers. Thus, in
Figure 1, we see that the English adposition from corresponds to the
Finnish elative case inflection.

• Classifier (clf ): the relation between a classifier, a counting unit used for
conceptual classification of nouns, and a noun. This relation is seen in
languages that have a classification system, such as Chinese. For
example, English three students corresponds to Chinese 三个学生,
literally ‘three [human-classifier] student’.

• Auxiliary (aux): the relation between an auxiliary verb or nonverbal
marker of tense, aspect, mood, or evidentality and a verbal predicate.
An example is the English verb group will be causing in Figure 3, which
alternates with finite main verbs like causes and caused.

• Copula (cop): the relation between a verbal or nonverbal copula and a
nonverbal predicate. For example, in English Ivan is the best dancer, the
copula is links the predicate the best dancer to Ivan, but it has no
counterpart in Russian Ivan lucšı̌j tancor, literally ‘Ivan best dancer’.

• Subordination marker (mark): the relation between a subordinator and
the predicate of a subordinate clause. This is exemplified by the infinitive
marker to in Figure 3. Other examples are subordinating conjunctions
like if, because, and that, the function of which may be encoded
morphologically or through word order in other languages.

• Coordinating conjunction (cc): the relation between a coordinator and a
conjunct (typically the last one) in a coordination. Thus, in apples, bananas,
and oranges, UD treats and as a dependent of oranges. This linking function
may be missing or expressed morphologically in other languages.

The inclusion of the cc relation among the nucleus-internal relations is the most con-
troversial decision, given that Tesnière treated coordination (including coordinating
conjunctions) as a third type of grammatical relation—junction (fr. jonction)—distinct
from both dependency relations and nucleus-internal relations. However, our goal in
this paper is not to arrive at a faithful implementation of Tesnière’s theory, but rather to
explore how his concept of nucleus can be used as an inspiration in cross-linguistic
investigations of dependency parsing. We therefore think coordinating conjunctions
have enough in common with other function words to be included in this preliminary
study and leave further division into finer categories for future work.5

Given the definition of nucleus in terms of functional UD relations, it would be
straightforward to convert the UD representations to dependency trees where the ele-
mentary syntactic units are nuclei rather than words. However, as argued in Basirat and
Nivre (2021), the usefulness of such a resource would currently be limited, given that it
would require parsers that can deal with nucleus recognition, either in a preprocessing
step or integrated with the construction of dependency trees, and such parsers are

5 In addition to separating the cc relation from the rest, such a division might include distinguishing
nominal nucleus relations (det, case, and clf ) from predicate nucleus relations (aux, cop, and mark).
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not (yet) available. Moreover, evaluation results would not be comparable to previous
research. We therefore exploit the nucleus concept in UD in two more indirect ways:6

• Evaluation: Even if a parser outputs a word-based dependency tree in
UD format, we can evaluate its accuracy on nucleus-based parsing by
simply not scoring the functional relations. This is equivalent to the
Content Labeled Attachment Score (CLAS) previously proposed by Nivre
and Fang (2017), and we will use this score as a complement to the
standard Labeled Attachment Score (LAS) in our experiments.7

• Nucleus Composition: Given our definition of nucleus-internal relations,
we can make parsers aware of the nucleus concept by differentiating the
way they predict and represent dissociated nuclei and dependency
structures, respectively. More precisely, we will make use of composition
operations to create internal representations of (dissociated) nuclei, as
discussed in detail in Section 4.

4. Syntactic Nuclei in Transition-Based Dependency Parsing

As explained in Basirat and Nivre (2021), the transition-based approach to dependency
parsing (Yamada and Matsumoto 2003; Nivre 2003, 2004, 2008) is particularly well
suited for integrating nucleus representations because of its incremental processing.
A transition-based dependency parser constructs a dependency tree incrementally by
applying transitions, or parsing actions, to configurations consisting of a stack S of
partially processed words, a buffer B of remaining input words, and a set of depen-
dency arcs A representing the partially constructed dependency tree. The process of
parsing starts from an initial configuration and ends when the parser reaches a terminal
configuration. The transitions between configurations are predicted by a history-based
model that combines information from S, B, and A.

Like Basirat and Nivre (2021), we use a version of the arc-hybrid transition system
initially proposed by Kuhlmann, Gómez-Rodríguez, and Satta (2011), where the initial
configuration has all words w1, . . . , wn plus an artificial root node r in B, while S and A
are empty.8 There are four transitions: Shift, Left-Arc, Right-Arc, and Swap. Shift pushes
the first word b0 in B onto S (and is not permissible if b0 = r). Left-Arc attaches the top
word s0 in S to b0 and removes s0 from S, while Right-Arc attaches s0 to the next word
s1 in S and removes s0 from S. Swap, finally, moves s1 back to B in order to allow the
construction of non-projective dependencies.9

Our implementation of this transition-based parsing model is based on the influen-
tial architecture of Kiperwasser and Goldberg (2016), which takes as input a sequence
of vectors x1, . . . , xn representing the input words w1, . . . , wn and feeds these vectors

6 Basirat and Nivre (2021) in addition implemented an oracle parsing model by simulating perfect nucleus
recognition. Because the insights gained from these experiments were limited, we refrain from replicating
them in this article.

7 Our use of CLAS differs only in that we include punctuation in the evaluation, whereas Nivre and Fang
(2017) excluded it.

8 Positioning the artificial root node at the end of the buffer is a modification of the original system by
Kiperwasser and Goldberg (2016), inspired by the results reported in Ballesteros and Nivre (2013).

9 This extension of the arc-hybrid system was proposed by de Lhoneux, Stymne, and Nivre (2017), inspired
by the corresponding extension of the arc-standard system by Nivre (2009).
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through a BiLSTM that outputs contextualized word vectors v1, . . . , vn, which are stored
in the buffer B. Parsing is then performed by iteratively applying the transition pre-
dicted by a multilayer perceptron (MLP), taking as input a small number of contextual-
ized word vectors from the stack S and the buffer B. More precisely, in the experiments
reported in this article, the predictions are based on the two top items s0 and s1 in S and
the first item b0 in B. In a historical perspective, this may seem like an overly simplistic
prediction model, but recent work has shown that more complex feature vectors are
largely superfluous thanks to the BiLSTM encoder (Shi, Huang, and Lee 2017; Falenska
and Kuhn 2019).

The baseline transition-based parser does not provide any mechanism for modeling
the nucleus concept. It is a purely word-based model, where any more complex syntac-
tic structure is represented internally by the contextualized vector of its head word.
Specifically, when two substructures h and d are combined in a Left-Arc or Right-Arc
transition, only the vector ~h representing the syntactic head is retained in S or B, while
the vector ~d representing the syntactic dependent is removed from S. In order to make
the parser sensitive to (dissociated) nuclei in its internal representations, Basirat and
Nivre (2021) follow de Lhoneux, Ballesteros, and Nivre (2019) and augment the Right-
Arc and Left-Arc actions with a composition operation. The idea is that, whenever the
substructures h and d are combined with functional relation label l, the representation of
the new nucleus is obtained by adding to the vector ~h the output of a learned function
g(~h, ~d,~l). We refer to g(~h, ~d,~l) as the composition vector, and the addition of this vector to
~h can be understood as a way of modifying the head representation to reflect properties
of the entire nucleus.

Of the different composition models explored by Basirat and Nivre (2021), we con-
centrate on the most successful one, where the composition vector g(~h, ~d,~l) is the output
of a (single-layered) perceptron with sigmoid activation applied to the concatenation of
~h, ~d and~l:10

g(~h, ~d,~l) = σ(W(~h� ~d�~l) + b) (1)

where � is the vector concatenation operator.
We refer to the parsing model that applies composition only to syntactic nuclei as

defined in the previous section as the nucleus composition model.11 For the purpose of
analysis, we also experiment with two additional models: the non-nucleus composition
model, which applies composition to all constructions that are not nuclei, and the gener-
alized composition model, which applies composition to all constructions. Using f (h, d, l)
for the representation of a construction produced by attaching d to h with relation label
l and F for the set of functional relations, we define the models in (2–4).

Nucleus Composition.

f (h, d, l) =

{
~h + g(~h, ~d,~l) if l ∈ F
~h otherwise

(2)

10 This operation was found to work as well as or better than a number of more complex functions in the
experiments of Basirat and Nivre (2021).

11 This model was called soft composition in Basirat and Nivre (2021) for reasons that are no longer relevant.
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Non-Nucleus Composition.

f (h, d, l) =

{
~h + g(~h, ~d,~l) if l /∈ F
~h otherwise

(3)

Generalized Composition.

f (h, d, l) = ~h + g(~h, ~d,~l) (4)

For the purpose of analysis, we also explore variants of all three models where the
BiLSTM encoder has been ablated, which means that the vectors representing words are
the non-contextualized representations of the input words consisting of a randomly ini-
tialized word embedding concatenated with the output of a character-level BiLSTM.12

5. Experiments

In the previous sections, we have described the concept of a syntactic nucleus, discussed
how nuclei can be identified in UD annotation, and shown how we can make transition-
based parsers aware of them by using nucleus composition. In the following, we present
a series of experiments designed to study the effect of nucleus composition across a
diverse sample of languages and in relation to complementary models of composition.
In this section, we describe the data selection, the experimental settings, and the main
parsing results. In the following section, we analyze the results in further detail and test
a number of hypotheses about the impact of nucleus composition across languages.

5.1 Data Selection

We select a sample of 20 treebanks from UD 2.8 (Zeman et al. 2021) with the goal
of increasing the coverage of non-Indo-European languages compared to Basirat and
Nivre (2021) and avoiding multiple languages from the same branch of a language
family. Our initial selection criteria also included a minimum treebank size of 50,000
tokens. However, to make sure that Indo-European languages do not make up more
than half the sample, we loosen the size constraint to include Vietnamese and Wolof
treebanks with just over 40,000 tokens and include two languages from the Semitic
branch of the Afro-Asiatic family: Arabic and Hebrew.

Table 1 gives an overview of the chosen treebanks in terms of family and genus,
overall size, and frequency of the functional relations we are interested in. While case
and det are on average the most frequent functional relations, their usage and frequency
varies greatly across languages—from Japanese or Hindi, where on average about every
fifth relation is a case relation, to Finnish, where case and det relations are the least
frequent of the functional relations (ignoring the clf relation) and only about 2 of each
occur in every 100 relations. In terms of functional relations in general, Italian and
Greek emerge as the languages with the highest relative frequency, whereas functional
relations are quite rare in Korean and Turkish with less than 10 percent of all relations
belonging to that group.

12 For more information about the technical details of the baseline parser, see de Lhoneux et al. (2017).
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Table 1
Selected treebanks, their family, genus, and size (in words) as well as relative frequencies of
different types of functional relations and all functional relations combined.

Language Treebank Family Genus Size aux case cc clf cop det mark Func
Arabic PADT Afro-Asiatic Semitic 242K 0.60 14.29 5.11 0.00 0.16 0.76 2.71 23.63
Armenian ArmTDP Indo-European Armenian 52K 5.04 3.03 4.10 0.00 2.01 3.46 1.67 19.30
Basque BDT Basque Basque 121K 8.54 1.56 3.85 0.00 2.02 2.50 0.18 18.65
Chinese GSD Sino-Tibetan Chinese 121K 1.83 6.31 1.42 1.82 1.45 1.35 5.75 19.93
Finnish TDT Uralic-Finnic Finnish 202K 3.26 1.48 4.13 0.00 2.72 1.72 1.95 15.27
Greek GDT Indo-European Greek 62K 3.81 8.47 3.19 0.00 0.94 19.12 1.83 37.37
Hebrew HTB Afro-Asiatic Semitic 116K 0.45 16.26 2.93 0.00 0.69 11.55 3.32 35.19
Hindi HDTB Indo-European Indic 352K 6.41 19.27 1.87 0.00 1.00 2.05 4.11 34.70
Indonesian GSD Austronesian Malayo-Sumbawan 121K 0.00 9.87 2.96 0.00 0.87 3.71 1.31 18.72
Irish IDT Indo-European Celtic 116K 0.00 13.44 3.14 0.00 1.32 8.15 5.79 31.84
Italian ISDT Indo-European Romance 278K 2.77 14.01 2.73 0.00 1.15 16.30 2.11 39.08
Japanese GSD Japanese Japanese 194K 8.90 21.34 0.42 0.00 1.26 0.49 4.06 36.47
Korean GSD Korean Korean 80K 0.08 2.03 0.28 0.00 0.13 3.83 0.46 6.81
Latvian LVTB Indo-European Baltic 252K 1.26 4.68 4.01 0.00 1.39 2.63 1.91 15.87
Persian PerDT Indo-European Iranian 494K 2.73 14.17 4.24 0.00 1.27 2.05 2.39 26.85
Russian Taiga Indo-European Slavic 197K 0.30 8.56 4.12 0.00 0.41 2.49 1.63 17.51
Swedish Talbanken Indo-European Germanic 97K 2.65 10.02 3.70 0.00 1.77 5.08 4.01 27.23
Turkish Kenet Turkic Southwestern 179K 0.49 2.11 1.68 0.01 0.00 4.33 0.35 8.97
Vietnamese VTB Austro-Asiatic Viet-Muong 44K 1.34 5.35 3.80 0.00 0.95 3.60 0.49 15.52
Wolof WTB Niger-Congo Northern-Atlantic 43K 7.46 5.46 3.09 0.00 1.36 7.09 4.14 28.59
Average 168K 2.90 9.08 3.04 0.09 1.14 5.11 2.51 23.88

Two observations concerning the treebank statistics are relevant for the analysis
later on. The first observation concerns Japanese and Korean, which are structurally
quite similar languages but nevertheless exhibit very different statistics concerning
functional relations, especially the aux and case relations. The explanation is that the
developers of the respective treebanks have opted for different approaches to word
segmentation, as discussed in Han et al. (2020). The Japanese GSD treebank adopts
the Short Unit Word standard for Japanese, which is essentially a morpheme-level
segmentation. By contrast, the Korean GSD treebank essentially relies on whitespace
for segmentation, meaning that segments correspond to eojeol units, which consist of
content words together with some function words. As a result, the frequency of (some)
functional relations is likely to be over-estimated in Japanese and under-estimated in
Korean. The second observation concerns the clf relation, which is found as expected in
the Chinese GSD treebank but is conspicuously absent in the Vietnamese VTB treebank,
despite the fact that Vietnamese is one of the prototypical classifier languages. We
hypothesize that this is the result of an imperfect annotation conversion. In addition,
there are 19 unexpected instances of the clf relation in the Turkish Kenet treebank, which
we assume to be annotation errors. Given that the clf relation only (reliably) occurs in
one of the 20 languages in our sample, we will omit it from some of the subsequent
analysis.

The texts in the different treebanks are not parallel and come from a range of dif-
ferent genres and domains. The most common genre is newstext, which is found in the
treebanks for all languages except Turkish and Wolof, and five treebanks consist solely
of newstext (Arabic, Basque, Hebrew, Hindi, and Vietnamese). Other common genres
are Wikipedia and blogs, found in six treebanks each. The lack of homogeneity with
respect to genre and domain is a potential confound for our analysis, given that these
factors have an impact on syntactic complexity as well as lexical variation. However,
because information about genre is only available at the treebank level, it has not been
possible to take these factors into account in the analysis.
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5.2 Experimental Settings

Following the approach in Basirat and Nivre (2021), we use UUParser (de Lhoneux
et al. 2017; Smith et al. 2018), a greedy transition-based dependency parser based on
Kiperwasser and Goldberg (2016) and the extended arc-hybrid transition system by
de Lhoneux, Stymne, and Nivre (2017). The parser predicts transitions between parser
configurations with an MLP with a single hidden layer. The configurations consist of
vectors for the two items on top of the stack S and the first item in the buffer B. As
previously stated, in the baseline parser that does not apply composition, these vectors
are simply contextualized word representations obtained by the BiLSTM over word
and character vectors.

We refrain from using any kind of pre-trained representations, neither pre-trained
word embeddings nor a full pre-trained language model that can be fine-tuned for the
task. It is clear that such representations would improve parsing accuracy across the
board, but our goal in this article is not to improve the state of the art but to analyze
the impact of nucleus composition across typologically different languages. From this
perspective, using pre-trained models would add a potential confound for the analysis,
since the quality of available pre-trained models, whether monolingual or multilingual,
varies considerably across languages. For the same reason, we stick to the well-studied
architecture using a BiLSTM encoder, rather than a Transformer-based one, since the
available evidence indicates that the performance difference is negligible when pre-
trained representations are not used (Mohammadshahi and Henderson 2020).

Table 2 details the hyperparameter settings adopted in our experiments. In addition
to parsers trained on these BiLSTM-generated features, we also train their counterparts
without these features, instead using only the input word representations consisting of
a concatenation of word and character embeddings trained along with the parser. This
is to observe to what extent nucleus composition improves parsing accuracy when the
parser is not supplied with any other contextual information to begin with.

Table 2
Hyperparameter settings for the parsing experiments.

Input representations
Word embedding dimensions 100
Character embedding dimensions 100
Character BiLSTM output dimensions 100
BiLSTM encoder
BiLSTM layers 2
BiLSTM dimensions (hidden/output) 125/125
Composition
Label vector dimensions 10
MLP for transition prediction
MLP hidden layers 1
MLP hidden dimensions 100
Dropout parameters
Word dropout 0.33
Character dropout 0.33
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Table 3
Parsing accuracy (LAS, CLAS) on 20 languages for 4 models (Base = baseline, NC = nucleus
composition, NNC = non-nucleus composition, GC = generalized composition). Statistical
significance for comparison of composition models to the baseline: ∗p < 0.05; ∗∗p < 0.01;
∗∗∗p < 0.001.

LAS CLAS
Language Base NC NNC GC Base NC NNC GC
Arabic 78.08 78.61∗∗ 78.56∗ 78.57 74.36 74.96∗∗ 74.96∗∗ 74.96
Armenian 74.85 75.44 75.69∗ 76.09∗∗ 71.73 72.47 72.64∗∗ 73.19∗∗
Basque 73.58 74.21∗∗∗ 74.42∗ 74.89∗∗∗ 71.00 71.63∗∗∗ 72.06∗∗∗ 72.55∗∗∗
Chinese 70.27 70.93∗∗ 71.59∗∗ 71.31∗∗ 68.43 69.02∗∗∗ 69.69∗∗∗ 69.41∗∗
Finnish 79.00 79.52∗∗ 80.23∗∗ 80.13 78.06 78.56∗∗ 79.32∗∗∗ 79.17
Greek 83.19 84.08∗∗ 84.08∗ 83.96∗ 76.78 78.11∗∗∗ 78.07∗ 77.88∗∗
Hebrew 82.80 83.29 83.18 83.26 76.14 76.95 76.82 76.97
Hindi 87.86 88.54 88.35 89.21∗∗∗ 83.83 84.68∗∗ 84.44 85.57∗∗∗
Indonesian 76.51 76.98∗∗∗ 76.87∗ 76.73 74.35 74.95∗∗∗ 74.82 74.76
Irish 78.03 78.44 78.29∗ 78.24 71.83 72.47 72.24∗∗ 72.23
Italian 87.59 87.98 87.85 88.02 81.64 82.27 82.18 82.38
Japanese 92.91 92.93 92.96 92.92 90.17 90.21 90.25 90.30
Korean 74.98 75.35 75.68 75.86 74.75 75.20 75.58 75.70
Latvian 79.60 80.16∗∗ 80.52∗∗∗ 80.44∗∗∗ 78.46 79.01∗∗ 79.43∗∗∗ 79.33∗∗∗
Persian 85.78 85.94 86.65∗∗∗ 86.88∗∗∗ 82.62 82.76 83.68∗∗∗ 83.97∗∗∗
Russian 65.55 65.89 66.19 66.20∗∗ 60.94 61.20 61.58 61.60∗∗
Swedish 77.05 77.77∗∗ 77.78∗ 78.15∗∗∗ 73.24 74.16∗ 74.26∗ 74.60∗∗
Turkish 70.39 70.79 70.26∗∗∗ 70.28∗∗∗ 69.44 69.87 69.42∗∗∗ 69.41∗∗∗
Vietnamese 56.95 57.56 58.17∗ 58.60∗∗ 54.74 55.69∗ 56.31∗∗∗ 56.67∗∗∗
Wolof 73.17 74.21∗∗∗ 74.17∗∗ 74.35∗∗∗ 68.14 69.57∗∗∗ 69.49∗∗∗ 69.76∗∗∗

Average 77.41 77.93 78.07 78.20 74.34 74.96 75.14 75.30

Models are trained for 50 epochs on the training sets of the selected 20 treebanks
and evaluated on the respective development sets. For each combination of model type
and treebank, we train 5 model instances with different random seeds and report the
average score of the 5 runs. Statistical significance testing is performed using paired
bootstrap permutation tests with 100,000 samples over all the 5 runs of the models under
comparison.

5.3 Experimental Results

Table 3 shows the parsing accuracy of the baseline (Base) and nucleus composition
(NC) parsers, as well as our two comparison composition models (NNC, GC) on 20
languages. It also shows which composition models obtain results that are significantly
better than the baseline according to the bootstrap permutation test, with ∗ = p < 0.05,
∗∗ = p < 0.01, and ∗∗∗ = p < 0.001. Starting with the standard LAS score, we generally
observe small improvements of up to 1 LAS point over the baseline parser when
nucleus composition is used, but these improvements are only significant for 9 out of
20 languages: Arabic, Basque, Chinese, Finnish, Greek, Indonesian, Latvian, Swedish,
and Wolof.13 The greatest improvements are seen for Wolof, Greek, and Swedish.

13 It is worth noting that we use a different significance test than Basirat and Nivre (2021), who used a t-test
for a difference in means based on the overall scores of the 5 runs. We believe that the test used here is
more in line with standard practice in the parsing literature.
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Non-nucleus and generalized composition also generally improve over the baseline
with the exception of Turkish. Here the differences are significant for 14 and 12 out
of 20 languages, respectively. With non-nucleus composition, the largest improvements
are seen for Basque, Chinese, and Vietnamese, while generalized composition produces
the greatest improvements for Vietnamese, Hindi, and Basque.

Given that the focus of our investigation is on nucleus-aware parsing, we consider
the CLAS scores more important, since they report the accuracy with which a parser
predicts dependency structures with nuclei as the elementary syntactic units. Although
the overall trends are quite similar to the LAS results, we see that the average improve-
ment of nucleus composition over the baseline is slightly larger (0.65 vs. 0.52), and that
the improvement is significant for a larger number of languages (11 vs. 9), with Hindi
and Vietnamese as new languages. The improvements are quantitatively larger also for
the generalized and non-nucleus models, but for the latter model the improvement is
no longer significant for Indonesian. When comparing the three composition models,
we see that both generalized and non-nucleus composition on average give slightly
larger improvements over the baseline than nucleus composition. However, there are
a number of languages for which nucleus composition gives better results. Thus, the
improvement of nucleus composition is greater than the improvement of both the
other models for Greek, Indonesian, Irish, and Turkish, and additionally better than
the improvement with non-nucleus composition for Hebrew, Hindi, Italian, and Wolof.
For Arabic, finally, all three models give very similar results.

6. Analysis

The experimental results reported in the previous section corroborates the findings of
Basirat and Nivre (2021) on a larger sample of languages. Nucleus composition gives
small but quite consistent improvements in parsing accuracy for a diverse sample of
languages, although the difference to the baseline is not always large enough to reach
statistical significance. We will now proceed to a deeper analysis of the results and of the
characteristics of nucleus composition. The analysis will address the following research
questions:

1. Why does (nucleus) composition only give modest improvements?

2. How effective is nucleus composition compared to composition in
general?

3. Which linguistic constructions benefit most from nucleus composition?

4. Why is nucleus composition more effective in some languages than
others?

5. What information is captured in the learned composition operation?

6.1 Composition and Contextual Embeddings

The general usefulness of composition functions in neural dependency parsing has
been discussed in several previous papers. While the use of composition functions was
claimed to be crucial for obtaining high accuracy in the Stack-LSTM parser proposed
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by Dyer et al. (2015), later studies have found the positive effect to be marginal at best.
de Lhoneux, Ballesteros, and Nivre (2019) provide an in-depth study of composition
in combination with different LSTM-based encoders and conclude that most of the
information that composition is meant to propagate is already captured by the con-
textual embedding of the head word produced by a BiLSTM encoder. In another study,
de Lhoneux, Stymne, and Nivre (2020) found that, whereas composition generally does
not improve overall parsing accuracy, it may be needed to capture certain properties
of auxiliary-verb constructions, a specific type of syntactic nucleus. Against this back-
ground, it is reasonable to assume that the limited improvement achieved through
nucleus composition is due to the fact that important information about the nuclei is
already contained in the BiLSTM representations of the lexical cores. An indirect test
of this hypothesis can be performed by comparing parsing models where the BiLSTM
encoder has been ablated, so that composition instead applies (recursively) to non-
contextualized word representations.

Table 4 shows experimental results for parsers without the BiLSTM encoder. As
expected, all scores are considerably lower than the corresponding scores in Table 3,
but we also see that the composition models improve substantially over the baseline,
with statistically significant improvements for all languages. While the baseline scores
are about 20 (LAS) and 25 (CLAS) points below the corresponding parser with BiLSTM
representations, the generalized composition model reduces the gap to just under 10
points in both cases. As was the case for the BiLSTM parsers, generalized composition

Table 4
Parsing accuracy (LAS, CLAS) on 20 languages for 4 models without BiLSTM features (Base =
baseline, NC = nucleus composition, NNC = non-nucleus composition, GC = generalized
composition). Statistical significance for comparison of composition models to the baseline:
∗∗∗p < 0.001.

LAS CLAS
Language Base NC NNC GC Base NC NNC GC
Arabic 64.35 71.00∗∗∗ 69.47∗∗∗ 74.75∗∗∗ 57.81 66.07∗∗∗ 63.93∗∗∗ 70.54∗∗∗
Armenian 52.28 58.37∗∗∗ 59.29∗∗∗ 63.40∗∗∗ 46.47 53.54∗∗∗ 54.31∗∗∗ 59.27∗∗∗
Basque 51.24 57.05∗∗∗ 56.38∗∗∗ 61.10∗∗∗ 46.60 53.28∗∗∗ 52.50∗∗∗ 57.96∗∗∗
Chinese 42.81 47.65∗∗∗ 49.80∗∗∗ 55.14∗∗∗ 39.46 44.77∗∗∗ 47.25∗∗∗ 53.27∗∗∗
Finnish 55.81 63.69∗∗∗ 62.54∗∗∗ 69.29∗∗∗ 53.71 62.37∗∗∗ 61.12∗∗∗ 68.68∗∗∗
Greek 63.82 73.30∗∗∗ 68.38∗∗∗ 76.82∗∗∗ 51.15 65.22∗∗∗ 58.11∗∗∗ 70.97∗∗∗
Hebrew 61.73 73.56∗∗∗ 65.38∗∗∗ 77.10∗∗∗ 46.99 63.80∗∗∗ 52.11∗∗∗ 69.04∗∗∗
Hindi 62.82 74.32∗∗∗ 68.80∗∗∗ 77.34∗∗∗ 50.70 66.48∗∗∗ 58.68∗∗∗ 70.47∗∗∗
Indonesian 58.06 66.57∗∗∗ 65.70∗∗∗ 73.51∗∗∗ 52.51 62.82∗∗∗ 61.70∗∗∗ 71.21∗∗∗
Irish 62.73 70.76∗∗∗ 66.95∗∗∗ 73.95∗∗∗ 51.44 62.53∗∗∗ 57.42∗∗∗ 66.96∗∗∗
Italian 66.68 77.91∗∗∗ 71.39∗∗∗ 82.20∗∗∗ 51.38 68.36∗∗∗ 58.53∗∗∗ 75.10∗∗∗
Japanese 61.38 75.32∗∗∗ 65.93∗∗∗ 78.87∗∗∗ 44.18 64.25∗∗∗ 50.35∗∗∗ 69.29∗∗∗
Korean 53.96 55.42∗∗∗ 65.26∗∗∗ 67.19∗∗∗ 54.10 55.61∗∗∗ 65.11∗∗∗ 67.01∗∗∗
Latvian 57.08 62.76∗∗∗ 64.78∗∗∗ 69.85∗∗∗ 54.83 61.06∗∗∗ 63.23∗∗∗ 68.94∗∗∗
Persian 62.40 75.06∗∗∗ 68.33∗∗∗ 78.24∗∗∗ 54.65 70.55∗∗∗ 61.73∗∗∗ 74.40∗∗∗
Russian 49.02 53.89∗∗∗ 53.85∗∗∗ 58.36∗∗∗ 43.39 48.90∗∗∗ 48.50∗∗∗ 53.63∗∗∗
Swedish 51.75 61.73∗∗∗ 58.78∗∗∗ 67.53∗∗∗ 44.88 56.96∗∗∗ 53.07∗∗∗ 64.10∗∗∗
Turkish 59.94 62.39∗∗∗ 63.85∗∗∗ 66.10∗∗∗ 58.85 61.20∗∗∗ 62.79∗∗∗ 65.10∗∗∗
Vietnamese 44.21 47.81∗∗∗ 48.40∗∗∗ 52.70∗∗∗ 40.86 45.04∗∗∗ 45.80∗∗∗ 50.49∗∗∗
Wolof 53.58 62.34∗∗∗ 59.69∗∗∗ 67.71∗∗∗ 44.40 55.27∗∗∗ 52.26∗∗∗ 62.07∗∗∗

Average 56.78 64.55 62.65 69.56 49.42 59.40 56.43 65.43
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shows the largest average improvement, but this time generalized composition also
performs best for each individual language. However, for the two other models, the
trend is reversed in that nucleus composition gives a larger average improvement
than non-nucleus composition with respect to both CLAS and LAS. Exceptions to
this average trend are Armenian, Chinese, Korean, Latvian, Turkish, and Vietnamese
both in LAS and CLAS, with Korean exhibiting the largest gap, with 9.8 LAS points
and 9.5 CLAS points. Interestingly, Japanese emerges as the language with the largest
overall improvement for both nucleus composition and generalized composition, which
supports our earlier supposition that differences in word segmentation principles lead
to an over-use of nucleus composition in Japanese and a corresponding under-use in
Korean.

The experimental results considered in this section give rise to two observations.
The first is the one already made by de Lhoneux, Ballesteros, and Nivre (2019), namely,
that the use of composition operations to combine information from different substruc-
tures of a construction is almost superfluous in a neural transition-based parser that
uses contextual embeddings, because the representation of the head is very likely to
incorporate information about the dependent. The second observation is that, in the
absence of contextual embeddings, nucleus composition is generally more effective
than non-nucleus composition, which indicates that the need to incorporate information
about the dependent is especially important in the case of nucleus-internal relations.
We now proceed to examine whether this is true also in the presence of contextual
embeddings, even though the improvements are much smaller in this case.

6.2 Nucleus Composition and Non-Nucleus Composition

As we observed in Section 5.3, non-nucleus composition on average gives greater im-
provement than nucleus composition for models with BiLSTM encoders. One possible
explanation is that nuclei as we represent them here do not bring any special benefits
and that we simply see greater improvement the more often we compose a head with its
dependent. If this were true, we would expect the improvement of a composition model
to be proportional to the frequency with which composition is applied when parsing a
given data set. If this proportionality does not hold, on the other hand, it would be an
indication that there is a qualitative difference between nucleus composition and non-
nucleus composition.

To investigate this, we consider the improvement ratio of the two models, defined
as the ratio between absolute improvement and absolute composition frequency where
absolute improvement is the difference in the absolute number of correctly predicted
nucleus-external dependencies between a given model and the baseline, and where
the composition frequency is the absolute frequency of composed relations for a given
model.14 If we assume frequency to be the deciding factor, then we should see a similar
improvement ratio for nucleus composition and non-nucleus composition, or possibly
even a higher ratio in the non-nucleus setting if recursive composition were to give an
additional improvement beyond that of an individual composition operation.

Table 5 shows absolute improvement, composition frequency, and improvement
ratio for the languages in our samples. We observe that, while non-nucleus composition
leads to a larger absolute improvement in nucleus-external relations than nucleus com-
position in 12 of the 20 languages, nucleus composition has a higher improvement ratio

14 Absolute frequencies are in all cases computed as averages over the 5 runs of a given model.
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Table 5
Absolute improvement on nucleus-external relations, composition frequency, and improvement
ratio (in percent) for nucleus composition (NC) and non-nucleus composition (NNC).

Absolute Composition Improvement
improvement frequency ratio

Language NC NNC NC NNC NC NNC
Arabic 139.4 140.4 6,791 23,448 2.05 0.60
Armenian 32.0 39.2 1,064 4,295 3.01 0.91
Basque 124.2 206.8 4,492 19,603 2.77 1.06
Chinese 60.0 128.2 2,449 10,214 2.45 1.26
Finnish 78.0 194.2 2,901 15,407 2.69 1.26
Greek 86.8 84.2 3,917 6,526 2.22 1.29
Hebrew 61.4 51.6 3,869 7,543 1.59 0.68
Hindi 196.6 139.8 12,165 23,052 1.62 0.61
Irish 44.2 28.0 3,076 6,924 1.44 0.40
Indonesian 61.2 48.4 2,312 10,162 2.65 0.48
Italian 46.4 39.4 4,528 7,380 1.02 0.53
Japanese 2.6 5.8 4,482 7,805 0.06 0.07
Korean 49.6 92.2 811 11,147 6.12 0.83
Latvian 136.2 242.4 4,409 24,900 3.09 0.97
Persian 26.4 195.6 6,755 18,392 0.39 1.06
Russian 22.0 53.0 1,865 8,231 1.18 0.64
Swedish 64.6 72.0 2,727 7,070 2.37 1.02
Turkish 69.2 −2.6 1,620 15,935 4.27 −0.02
Vietnamese 92.0 152.2 1,773 9,741 5.19 1.56
Wolof 105.8 100.2 2,885 7,409 3.67 1.35
Average 74.9 100.6 3,744.6 12,259.2 2.49 0.83

for all languages but Persian and Japanese. Moreover, the difference is substantial for
many languages. For example, in Korean, just over 800 nucleus compositions result in
an improvement on about 50 dependency relations, while over 11,000 non-nucleus com-
positions give an improvement on less than 100 relations. To test whether the observed
improvement ratios are consistent with our null hypothesis—that the improvement
ratio of non-nucleus composition is equal to that of nucleus composition—we run a
paired t-test. This test is highly significant at p < 0.0001. This suggests that nucleus
composition is more powerful than non-nucleus composition for most languages, and
that the greater absolute improvement observed for non-nucleus composition for a
subset of the languages (six to be exact) is simply due to the much higher frequency of
non-nucleus composition. For the remainder of this section, we will focus our analysis
on the nucleus composition model.

6.3 Nucleus Composition and Linguistic Constructions

Which linguistic constructions benefit most from nucleus composition, and to what
extent does this vary across languages? To address these interrelated questions, we
will begin in this section by breaking down the accuracy improvements by different
dependency relations and groups of relations. In the next section, we will take a com-
plementary perspective and see to what extent the different rates of improvement across
languages can be explained by linguistic factors such as the frequency of different types
of functional relations.
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Figure 4
Absolute difference in labeled F1-score to the baseline for nucleus composition on different sets
of relations.

Figure 4 illustrates the effect of nucleus composition on different relation types in
different languages by breaking down the improvement over the baseline in labeled
F1-score15 for (a) all relations, (b) nucleus-external relations, and (c) nucleus-internal
relations for each of the 20 languages. Just like Basirat and Nivre (2021), we observe
that nucleus-external relation improvement is quite similar to overall relation improve-
ment, indicating that the effect of composition is stronger in nucleus-external relations
than in the internal relations. Exceptions to this generalization are the fairly strong
improvement patterns in nucleus-internal relations for Chinese, Finnish, and Russian.
In contrast to this, some languages like Indonesian, Korean, Turkish, and Vietnamese
show a marked decrease in F1-score on nucleus-internal relations. However, due to
the relatively low frequency of functional relations in these languages, even the more
pronounced differences from the baseline only marginally affect the overall scores.

Zooming in on individual relations, and averaging across all languages, Figure 5
shows the improvement for each of the 37 universal syntactic relations, weighted by
the relative frequency of the relation in order to show how much impact it makes on
the overall improvement. We observe the root relation to be the one that shows the
greatest improvement. This is expected, because it is the final relation that gets attached

15 Because the number of predicted relations of a certain type may be different from the number of true
relations of that type, we have to use F1-score rather than accuracy.
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Figure 5
Difference in labeled F1-score of nucleus composition to the baseline for different UD relations
weighted by the relative frequency of each relation and averaged across all languages.

and all previous correctly attached arcs should affect prediction of the root positively.
In addition, composition of mark relations may help the parser distinguish main and
subordinate clauses. The second largest improvement is found for nmod, which is the
relation holding between a nominal modifier and its head nominal. One hypothesis for
the improvement of nmod, together with other nominal dependents further down the
list, such as obl, obj, and nsubj, is that composition of case relations may help the parser
to better disambiguate different uses of nominals. The third most important relation
is conj, which is the relation linking two coordinated constituents. In this case, it seems
natural to assume that the composition of cc relations has a positive effect, since this may
help the parser correctly choose the conj relation over the dependency relation assigned
to the coordinated phrase as a whole. Among the relations that improve significantly we
also find several relations that apply to clauses, such as acl, advcl, ccomp, and (to a lesser
extent) xcomp, where the composition of mark relations can be hypothesized to have a
positive effect. Finally, as was already visible in the breakdown by language in Figure 4
(c), we see that functional relations themselves tend to have lower relative improvement
on average across all 20 languages.

Table 6 shows labeled F1-scores for the 10 relations improving the most in the
5 languages with the greatest overall improvement in terms of LAS. (Table 11 in
Appendix A lists the top-10 relations for the full set of 20 languages.) We see that there
is considerable variation in the top-10 lists, but also some stable patterns. Thus, both
the root relation and the conj relation are in the lists for all languages except Chinese.
By contrast, the nmod relation is high on the lists of Chinese and Hindi, but absent in
Swedish and Wolof. Wolof is special also by having a very peaked distribution, with
one relation (root) showing a much stronger improvement than all other relations. On
the whole, however, nominal and clausal relations account for about half of the relations
on all lists.

A tentative conclusion from the analysis in this section is that nucleus composition
in general improves the identification of main predicates (root) and coordination rela-
tions (conj), as well as the disambiguation of nominals and subordinate clauses. For each
of these cases, we can formulate specific hypotheses about which functional relations are
involved in the improvement, and in the next section we will test whether properties of
these relations can explain the differential improvement across languages.
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Table 6
Improvement in labeled F1-score, weighted by relative frequency, for the 10 best UD relations in
the 5 languages with greatest LAS improvements over the baseline (nucleus composition).

Wolof Greek Swedish Hindi Chinese
relation ∆ F1 relation ∆ F1 relation ∆ F1 relation ∆ F1 relation ∆ F1
root 0.20 advcl 0.07 root 0.07 obj 0.06 nmod 0.06
advcl 0.11 nsubj 0.07 conj 0.06 nmod 0.04 acl 0.06
obl 0.11 root 0.05 amod 0.06 nsubj 0.04 advmod 0.06
acl 0.10 acl 0.03 acl 0.06 root 0.02 obj 0.05
ccomp 0.07 nmod 0.03 nsubj 0.03 aux 0.01 advcl 0.04
obj 0.07 obl 0.03 advmod 0.03 mark 0.01 obl 0.04
mark 0.05 conj 0.03 case 0.03 obl 0.01 nsubj 0.03
conj 0.04 appos 0.02 expl 0.02 conj 0.01 appos 0.03
dislocated 0.04 csubj 0.02 appos 0.02 xcomp 0.00 clf 0.02
advmod 0.03 obj 0.02 obj 0.02 amod 0.00 case 0.02

6.4 Nucleus Composition and Cross-Linguistic Variation

Thus far, we have considered general trends for overall LAS and CLAS, the effect
composition has with and without contextual embeddings, the contrast between nu-
cleus composition and non-nucleus composition, and the improvement in individual
relations and groups of relations. In this section, we attempt to separate the language-
specific patterns that affect parser improvement from more universal ones in order to
understand how the individual functional relations affect the parser and its perfor-
mance. Using linear mixed-effects models, we model CLAS16 improvement over the
baseline using different types of effects for each of the seven composed relations. The
kinds of effects we consider are, for each functional relation l:

1. HPOS(l) = entropy of the part-of-speech distribution for heads of l,
abbreviated to l POS entropy in tables and running text

2. HREL(l) = entropy of the dependency label distribution for heads of l,
abbreviated to l rel entropy

3. dl(l) = average dependency length for l, abbreviated to l dep length

4. rf (l) = relative frequency of l, abbreviated to l frequency

We choose these types of effects because they capture different aspects of the usage
of a functional relation in a given language. For example, the two entropy effects
for part of speech and dependency type of the head should give us an idea of how
much uncertainty there is about the types of lexical core that the functional relation
attaches to and the kind of functions the nucleus may fulfil. In cases where there is
high entropy, especially for the head relation type, we would expect composition to be

16 We focus on CLAS, rather than LAS, because we are primarily interested in how nucleus composition
affects nucleus-external relations.
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useful if the function word encodes information about the relation type. For example,
we hypothesized in the previous section that the case relation should be informative
for the disambiguation of nominal functions. Another potentially significant factor is
the (average) length of a functional relation dependency, assuming that contextual
information about the functional relation decreases as the distance from the function
word to its lexical core increases and that composition may compensate for this loss of
information. Finally, the (relative) frequency of a functional relation directly translates
to how often the functional relation is composed, which should correlate with CLAS
improvement if the composition does improve parsing accuracy.

All features are calculated from the predicted trees for each of the five runs for
a given language and mean normalized. We use linear mixed-effects (LME) models
as implemented in the R package lme4 (Bates et al. 2015) with a random effect for
language realized as a random intercept. Starting with a model made up only of the
random effect for language, we gradually add fixed effects and perform likelihood ratio
tests with the previous LME model to select those effects that significantly affect model
likelihood. Because it is difficult to establish a single fixed hierarchy for the full set of 28
potential effects, and because the combination of effects and the order in which they are
added affects which effects contribute significantly, we first identify significant effects
for each of the four feature types individually. As part of this first step, we also train
an additional LME model for both types of entropy effects, since they both express
similar properties of the head. In a second step, we then try to fit a combined LME
model including all the previously significant effects. Effects with missing values—for
example, clf entropy and dependency length, which are not defined for the languages
without clf relations—are omitted and models where we cannot fit the random effects
because of singular fit issues are ignored.

With the individual LME models, we identify frequency of the det relation and POS
entropy for the cc relation as significant effects. In the combined entropy model, both
POS entropy and relation entropy for the cc relation emerge as significant. Combining
these effects in a single model, all three remain significant and retain positive estimates.
In other words, as the respective frequency and entropy increase, so does the improve-
ment in CLAS. The resulting LME model is formulated as follows

∆CLAS = rf (det) + HREL(cc) + HPOS(cc) + (1|Language) (5)

and a summary is displayed Table 7. The intercept here represents the micro-averaged
improvement for all runs. We can see that all estimates are significantly different from
zero and that cc POS entropy has the strongest effect. Seeing entropy of cc heads as
a significant factor for CLAS improvement confirms that nucleus composition is of
use when there is greater uncertainty about the head. Because conj relations are the
most frequent incoming relation to heads of ccs, this should be related to the improved
LAS on conj relations we observed in Section 6.3. Given our hypothesis that composed
representations of dissociated nuclei are beneficial for dependency parsing, we would
intuitively expect to see frequency effects of all functional relations to be significant in
predicting improvement, as there should be a greater potential for parsing improve-
ment, the more dissociated nuclei there are in a language. Instead, we see a significant
effect only for det frequency, which is surprising given that det dependents normally do
not encode information about the relation of a nominal to its head, at least not in the
same obvious way as case dependents. The lack of frequency effects for other functional
relations among the significant features may be an indicator that the information that
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Table 7
LME model for improvement in CLAS due to nucleus composition.
Predictors Estimates CI p
(Intercept) 0.65 0.56 – 0.76 <0.001
det frequency 0.59 0.20 – 0.98 0.003
cc rel entropy 0.77 0.27 – 1.26 0.003
cc POS entropy 0.79 0.30 – 1.28 0.002

Random Effects
σ2 0.17
τ00 language 0.01
ICC 0.07
Nlanguage 20
Observations 100
Marginal R2/Conditional R2 0.266/0.315

Table 8
LME model for functional composition improvement in CLAS in the setting without BiLSTM
features.
Predictors Estimates CI p
(Intercept) 9.99 9.31 – 10.66 <0.001
det frequency 6.06 3.28 – 8.84 <0.001
cop frequency 4.25 1.98 – 6.52 <0.001
aux frequency 3.83 1.49 – 6.17 0.002
case dep length 1.63 −0.34 – 3.60 0.104
case frequency 14.04 11.66 – 16.42 <0.001

Random Effects
σ2 0.27
τ00 language 2.28
ICC 0.89
Nlanguage 20
Observations 100
Marginal R2/Conditional R2 0.900/0.989

could be gained from composing them with a head is already present in the BiLSTM
representations and thus does not contribute to improvement over the baseline. To
investigate this, we apply the same strategy to the improvement of parsers without
BiLSTM features and find that most of the frequency effects—excluding only cc, mark,
and clf 17—are significant here in addition to the length of case relations:

∆CLAS = rf (det) + rf (cop) + rf (aux) + rf (case) + dl(case) + (1|Language) (6)

The model summary can be found in Table 8, which shows that with the exception
of case dependency length, for which the predicted coefficient is not significantly

17 We would not expect clf effects to be significant given that it only occurs in Chinese and very rarely in
Turkish.
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different from zero, all fixed effects are positively associated with improvement. In this
setting, case frequency has the largest estimate. This model thus supports the theory we
have for det being the only significant frequency feature in the model with contextual
embeddings, namely that information about most of the other functional relations
passed on by composition is already represented by the BiLSTM.

After this look at fixed effects and their estimates, we also consider the random
effects sections of the model output. Here, σ2 represents the residual variance and
τ00 language is the between-group variance, which is the variance between the individual
language intercepts and the average language intercept. ICC is the intra-class corre-
lation coefficient—τ00 language divided by the total variance—and shows how much of
the variance is explained by grouping the data by language. Marginal R2 refers to the
proportion of the total variance explained by the variance in fixed effects, whereas
conditional R2 considers the variance explained by both fixed and random effects. These
two types of R2 are defined as

R2
m =

σ2
f

σ2
f + σ2

α + σ2
ε

(7)

and

R2
c =

σ2
f + σ2

α

σ2
f + σ2

α + σ2
ε

, (8)

with σ2
f referring to the variance of fixed effects, σ2

α to that of random effects, and σ2
ε to

residual variance (Johnson and Schielzeth 2017).
Comparing models with and without BiLSTM features in this respect, we observe

low values for residual variance, between-group variance, and a poor ICC of 0.07 for the
model with BiLSTM features. This could reflect the fact that we predict improvement
over the baseline rather than actual CLAS and the improvement values for the model
with BiLSTM contextualized features are fairly small—specifically in the range of 0.04 to
1.42 CLAS—when the variance in a single language lies in a similar order of magnitude
as that observed on all languages. This means that the language groups are fairly close
to one another in terms of improvement, and individual random intercepts per group
will be close to the average intercept. In contrast, the between-group variance in the
LME model without BiLSTM is much higher, and the residual variance in proportion to
it much lower, which means the ICC is quite strong at 0.89 (the average improvement
of each of the 20 languages is within 1.51 and 20.07 CLAS).

As regards R2, both marginal and conditional values are low in the BiLSTM setting,
which indicates that the model does not explain a large part of the variation seen in the
data and thus is not a very good fit, while the model without BiLSTM shows high R2

values of 0.90 to 0.99 and consequently explains most of the variation observed in the
data. This is in line with the more intuitive predictors of improvement we could identify
for the setting without BiLSTM features.

To summarize the findings of this section, in the standard nucleus composition
approach (with contextualized word embeddings), we identify the frequency of deter-
miners as well as the entropy of coordinating conjunction heads in terms of both POS
and head relation as effects contributing to CLAS improvement. The latter factors are
plausible candidates to explain the improvement in conj dependencies, observed in the
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previous section, and the frequency of determiners could be related to the improved
disambiguation of nominal dependents. However, we do not find any clear correlates
for the improved disambiguation of clausal dependents or for the increase in root
accuracy.

6.5 Analysis of Composition Vectors

In nucleus composition, the composition vectors combine information from a parent
vector, representing the core of the nucleus (either a single content word or a smaller
nucleus in the recursive case), and a child vector, representing a function word. To gain
insight into whether the composition process produces wholly distinct representations,
or whether instead information from parent and/or child vectors is retained in the
composed representations, we conduct a set of experiments using diagnostic classifiers
(Hupkes, Veldhoen, and Zuidema 2018). Such an approach involves extracting interme-
diate representations generated by a neural model trained for a source task, and testing
whether these representations have also encoded information relevant to a secondary
target task. Diagnostic classifiers take the form of simple classifiers, trained indepen-
dently of the source model, used as “probes” to monitor the degree to which secondary
information is encoded as a by-product of training for the primary task. Examples of
secondary tasks include part-of-speech tagging (Hewitt and Liang 2019), and testing
whether verb agreement and transitivity is captured when training a syntactic parser
(de Lhoneux, Stymne, and Nivre 2020).

The insight we aim to gather from these experiments is twofold—we first intend
to measure whether any information from parent and/or child constituents is retained
in their respective composed representations. Should this be the case, we also aim to
measure the degree to which information from each of these constituents is retained,
and whether there is any disparity in this retention. The specific probing task we use is
prediction of the part of speech of the head word of the parent and child, respectively,
and we train classifiers on the respective vectors of parent and child prior to composi-
tion, as well as their combined representation following composition, the composition
vector. Belinkov (2018) previously found that while linear classifiers did not perform
as well as single-layer nonlinear classifiers, trends across results for different kinds of
input were preserved. As the purpose of this task is not to maximize tagging accuracy,
but to measure differences in performance when using different vector representations,
we therefore opt to use a simple linear SVM classifier.

The baselines we use in these probing experiments are the performance of the
part-of-speech tagger on the input word representations learned by the parser during
training, which we refer to as input vectors. These representations, which consist of the
concatenation of a static word embedding and the output of a character-level BiLSTM,
are well suited to this purpose as they provide a unique representation for each word
type in each language, while containing no contextual information from the specific
sentence. As can be seen in Table 9, there is a substantial difference in accuracy between
the parent baseline at 72% and the child baseline at 92%. This difference can probably
to a large extent be explained by a strong imbalance in the number of word types
belonging to each category (that is, all languages have a greater number of content
words than function words), but it is also possible that the learned input representations
reflect grammatical categories to a higher degree for function words than for content
words.

Our first set of probing experiments involves training the classifier to predict
the part of speech of either parent or child, having trained on their respective vector

871



Computational Linguistics Volume 48, Number 4

Table 9
Results of the linear SVM part-of-speech classifier trained on intermediate representations
extracted from the nucleus composition model.

Predict parent part of speech Predict child part of speech
Language Baseline Parent Composition Baseline Child Composition
Arabic 0.73 0.87 0.84 0.98 0.86 0.86
Armenian 0.69 0.69 0.78 0.92 0.65 0.84
Basque 0.73 0.71 0.73 0.94 0.76 0.76
Chinese 0.67 0.64 0.74 0.86 0.54 0.73
Finnish 0.58 0.81 0.78 0.96 0.78 0.78
Greek 0.75 0.79 0.87 0.98 0.83 0.81
Hebrew 0.76 0.80 0.80 0.96 0.77 0.77
Hindi 0.69 0.72 0.70 0.98 0.81 0.81
Indonesian 0.60 0.86 0.72 0.89 0.82 0.69
Irish 0.74 0.86 0.79 0.92 0.79 0.81
Italian 0.77 0.91 0.89 0.97 0.86 0.85
Japanese 0.82 0.85 0.85 0.93 0.92 0.92
Korean 0.76 0.84 0.85 0.82 0.81 0.84
Latvian 0.71 0.81 0.80 0.95 0.74 0.75
Persian 0.76 0.74 0.77 0.98 0.75 0.76
Russian 0.69 0.79 0.78 0.91 0.77 0.70
Swedish 0.74 0.80 0.76 0.91 0.65 0.76
Turkish 0.74 0.77 0.70 0.89 0.77 0.64
Vietnamese 0.69 0.71 0.77 0.84 0.63 0.68
Wolof 0.74 0.79 0.65 0.86 0.62 0.60
Average 0.72 0.79 0.78 0.92 0.76 0.77

representations (prior to composition), and predicting parent or child part of speech,
having trained on the corresponding composition vectors. Table 9 contains the results
of these preliminary probing experiments using vectors extracted from the nucleus
composition model. Through these results, it is apparent that the classifier consistently
outperforms the baseline in predicting the part of speech of the parent when trained on
either the parent vectors or the composition vectors (with the exception of Chinese for
both conditions, Persian for parent vectors, and Basque, Irish, and Korean for compo-
sition vectors). The same is not the case, however, for the performance of the classifier
when predicting child part-of-speech tags, for which it uniformly underperforms when
trained on the child and composed vector representations. Thus, while the BiLSTM
encoder appears to facilitate disambiguation of parts of speech for content words, which
is intuitively plausible, it appears to have a detrimental effect on the ability to assign
syntactic categories to function words. At first, this result may seem surprising, but it
is actually in line with some of the experimental results of de Lhoneux, Stymne, and
Nivre (2020), according to which information about morphological agreement features
of auxiliary verbs is better predicted from input word embeddings than from BiLSTM
vectors. Taken together, these results seem to indicate that the contextualized repre-
sentations of function words prioritize information about the sentential context at the
expense of word-specific information.

We further note that training on composition vectors yields an increase over training
on child vectors when predicting child part-of-speech tags, while the opposite is true
when predicting parent part of speech. However, only the improved prediction of child
part of speech is statistically significant according to a two-tailed t-test (p = 0.015). The
question is what we can conclude from this trend. One thing to keep in mind is that the
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Table 10
Average cosine distance for composition-parent vector pairs and composition-child vector pairs
for the nucleus composition model. Results for all functional relations as well as per relation
type.

Composition-Parent Composition-Child
Language All aux case cc cop det mark All aux case cc cop det mark
Arabic 1.08 1.02 1.12 1.04 0.91 0.96 1.05 0.83 0.92 0.89 0.92 0.89 0.91 0.89
Armenian 1.02 1.06 1.05 1.04 1.00 1.01 1.04 0.87 1.01 0.94 0.98 1.01 1.00 1.02
Basque 1.10 1.16 1.06 1.06 1.08 1.04 0.92 0.84 0.94 0.88 0.93 0.9 0.92 0.89
Chinese 1.12 0.99 1.04 1.02 1.07 0.98 1.02 0.88 1.03 0.97 0.96 0.99 0.94 0.99
Finnish 1.08 1.07 1.09 1.08 1.07 1.03 1.10 0.89 1.05 0.98 0.97 1.03 1.01 1.02
Greek 1.07 1.08 1.09 1.05 0.97 0.98 1.11 0.85 1.00 1.02 0.98 0.96 0.95 0.96
Hebrew 1.14 1.05 1.15 1.13 1.02 1.12 1.19 0.89 0.92 1.01 0.99 0.99 0.98 0.97
Hindi 1.11 1.09 1.12 1.09 1.05 1.06 1.12 0.90 0.93 0.89 0.92 0.87 0.96 0.91
Indonesian 1.04 0.00 1.07 1.00 0.98 0.96 1.02 0.89 0.00 0.94 0.94 0.97 0.94 0.91
Irish 1.03 0.00 1.11 1.10 1.07 1.00 1.05 0.88 0.00 0.96 0.95 0.97 0.97 0.98
Italian 1.06 1.06 1.10 1.07 1.04 1.01 1.11 0.91 1.05 1.00 0.97 0.99 0.99 1.01
Japanese 1.02 0.99 1.04 1.08 1.03 1.06 1.00 0.90 0.89 0.86 0.89 0.86 0.96 0.93
Korean 1.01 1.02 1.02 1.01 1.02 1.00 1.10 0.86 0.96 0.96 0.99 0.90 0.95 0.97
Latvian 1.07 1.10 1.10 1.07 1.04 1.03 1.09 0.91 1.03 0.97 0.97 1.01 1.01 1.01
Persian 1.13 1.13 1.13 1.13 1.07 1.03 1.13 0.86 1.01 0.99 0.95 0.94 0.99 0.95
Russian 1.10 1.07 1.16 1.15 0.99 1.00 1.14 0.92 1.00 0.97 0.96 1.00 0.97 0.97
Swedish 1.04 1.16 1.11 1.10 1.05 1.03 1.14 0.86 1.03 0.93 0.95 0.97 0.95 0.99
Turkish 0.97 1.02 1.01 1.02 0.00 1.06 1.06 0.83 0.98 0.95 1.00 0.00 0.98 0.97
Vietnamese 1.01 0.95 1.00 0.98 0.94 0.93 0.93 0.89 0.96 1.02 0.99 0.99 0.99 0.85
Wolof 1.02 0.99 1.01 1.05 0.98 1.00 1.03 0.89 0.98 0.99 0.98 0.96 1.02 0.96
Average 1.05 1.06 1.08 1.06 1.02 1.01 1.07 0.96 0.98 0.96 0.96 0.96 0.97 0.96

vector used in the prediction of parser transitions is the composition vector added to
the parent vector. It is therefore possible that the composition will emphasize informa-
tion from the child vector more. To test this assumption, we take the average cosine
distance between the parent vector and composition vector, and between the child
vector and composition vector, for each functional relation.18 The results can be found
in Table 10, and the trend is clearly that child vectors have a lower cosine distance to the
composition vector than the corresponding parent vector (that is, for a given functional
relation, the child vector will generally be more similar to the composition vector than
the parent vector). This trend holds for all languages and functional relations, with the
exception of the cop relation for Hindi and Russian, and all relations except mark for
Vietnamese. While this shows that composition vectors are generally more similar to
child vectors than to parent vectors, this does not in itself explain why the composition
vector gives (slightly) higher accuracy for predicting the child part of speech.

An additional approach we take to the analysis of composition vectors is to visual-
ize them after dimensionality reduction. Our method involves extracting composition
vectors generated by the model, as well as composition+parent and parent vectors, and
using t-SNE (Van der Maaten and Hinton 2008) to reduce the dimensionality of each
vector to 2 dimensions. These two-dimensional representations are then plotted in order
to give a visually intuitive representation of similarities and differences between vectors
for words occurring in different types of nuclei (as defined by different functional

18 We omit the clf relation, which only occurs in Chinese and marginally in Turkish.
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Figure 6
Visualization of different vector types for Finnish after dimensionality reduction to 2
dimensions, with color coding of different nucleus types.

relations). Such visualizations are especially informative with regard to illustrating the
degree of separability between different types of nuclei, as such separations will be rep-
resented as tight and distinct clusters in the graph. Producing graphs for composition,
composition+parent, and parent vectors allows us to compare how the cores of different
types of nuclei are represented before and after composition.

Figure 6 contains the graphs for these three types of vectors for Finnish, with color
coding of different nucleus types. The most striking pattern is that the composition
vectors form clearly defined clusters, predominantly grouped by nucleus type, with one
cluster each dominated by aux, case, cc, cop, and det nuclei, and with two smaller clusters
dominated by mark nuclei. For the corresponding parent vectors, no distinct clusters
are visible, although there is still a tendency that cores belonging to the same nucleus
type group together. The effect of adding the composition vectors to the parent vectors,
visible in the third graph, is thus to shift parent vectors to enhance discrimination
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between nucleus types, which in turn appears to be beneficial for predicting further
parsing transitions.

The tendency for composition vectors to form distinct clusters is visible for all
languages, as can be seen in Appendix B, although the degree of separation of dif-
ferent nucleus types varies. To confirm this effect without having to rely solely on
visual inspection, we carry out a linear discriminant analysis, which shows that the
accuracy with which nucleus type can be distinguished increases from 76 to 79 percent
when composition vectors are added to parent vectors. This difference is statistically
significant according to a paired t-test (p = 0.00016).

To sum up the analysis in this section, it appears that composition vectors in general
encode more information about the function word than about the lexical core of a
nucleus, and that adding such vectors to the lexical core representations increases the
similarity of representations belonging to the same nucleus type.

7. Discussion

Our main experimental results corroborate the findings of Basirat and Nivre (2021) and
show that composed representations of syntactic nuclei, defined in terms of functional
relations in UD, give small but consistent improvements in dependency parsing accu-
racy over a wide range of typologically diverse languages. In the subsequent analysis,
we have tried to shed light on how nucleus composition interacts with other com-
ponents of the parser, how improvements in parsing accuracy are related to different
linguistic constructions, and what information is captured by the composition vectors.
We will now discuss what broader conclusions can be drawn from the analysis.

The idea of using recursive composition to build representations of complex syn-
tactic structures in dependency parsing was first proposed by Stenetorp (2013) and
later developed by Dyer et al. (2015), who showed that it can be a powerful technique
for improving the accuracy of a parser where input words are represented by static
word embeddings. In this setup, recursive composition can be understood as the neural
counterpart of the hierarchical feature templates that were important to achieve high
parsing accuracy in non-neural transition-based dependency parsers (Nivre, Hall, and
Nilsson 2006; Zhang and Nivre 2011). However, later studies have shown that the need
for recursive composition greatly diminishes when parsers are equipped with BiLSTM
or Transformer encoders, which compute contextualized representations of the input
words (Shi, Huang, and Lee 2017; de Lhoneux, Ballesteros, and Nivre 2019; Falenska
and Kuhn 2019; de Lhoneux, Stymne, and Nivre 2020). Even though these encoders
only have access to the sequential structure of the input sentence, they seem to be
capturing enough contextual information to compensate for the lack of recursion or
hierarchical structure.

When composition is only applied to nuclei, the degree of recursion is limited and
the words involved are often close to each other in the input sequence. Therefore, it
is hardly surprising that composition is almost redundant given the contextualized
word representations. However, because we do see significant improvements for many
languages, it seems that the learned composition function for nucleus elements never-
theless captures some additional information that helps the parser. This hypothesis is
further strengthened by the observation that nucleus composition has a significantly
higher improvement ratio than non-nucleus composition, a result that holds for all
languages except Japanese and Persian, which show little improvement overall.

If it is true that composition is most effective (in relation to frequency) when applied
to nucleus-internal relations; it is also true that most of the improvement in parsing
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accuracy results from better prediction of nucleus-external relations. Moreover, the re-
lations that improve the most, both on average and for most languages, are central de-
pendency relations involving nominal and clausal dependents, as well as coordination
and identification of main clause predicates. This is consistent with Tesnière’s original
conception of syntactic structure as consisting of dependency relations holding between
syntactic nuclei, and thus gives some support to the idea that nucleus representations
can be beneficial for the analysis of this structure. The main difference between our im-
plementation of this idea and Tesnière’s own theory lies in the analysis of coordinating
conjunctions as markers of coordination, which we have subsumed under the notion of
nucleus, whereas Tesnière treats it as a category of its own.

Although the positive effect of nucleus composition is relatively consistent across
languages, there is considerable variation both in the magnitude of the improvement
and in the detailed analysis of which linguistic constructions benefit most from nu-
cleus composition. Fully explaining this variation is a task well beyond the scope of
this article, but by factoring out language-specific effects using a linear mixed-effects
model, we have begun to identify some factors that appear to be stable and signifi-
cant predictors of how much nucleus prediction will improve parsing accuracy for a
given language.

Two of these factors are related to coordination and the cc relation, namely, the part-
of-speech tag entropy and the relation entropy of the head of the cc relation, which both
show a positive correlation with accuracy improvement. In other words, the harder it
is to predict the tag and relation of the head, the more it helps to compose the head
and the coordination marker. The third factor is the frequency of det relations, which
also correlates positively with increased accuracy, suggesting that information encoded
by determiners is useful for disambiguating the syntactic role of nominals. All of these
factors make intuitive sense, but it is slightly surprising that these are the only nucleus-
related factors that come out as significant. In particular, we had hypothesized that
factors related to the case relation, and perhaps to a lesser extent the mark relation, would
be important, given that case markers and subordinators do encode information about
the syntactic role of the nominals or clauses they belong to.

Whether this lack of significance is due to a genuine lack of effect, or rather to the
combination of a small numerical improvement and a large inter-language variation,
is impossible to say with certainty. However, the results obtained for the model with
no BiLSTM encoder suggests that it may be the latter. For that model, not only det
frequency but also case, aux, and cop frequency are highly significant factors, which
together explain over 90% of the variance. Interestingly, however, no factor related
to the cc relation (nor to the mark relation) is significant in this case. To fully understand
the mechanisms at play here, it seems we have to go into even more depth and analyze
the patterns for individual languages, maybe even down to the sentence level, an
investigation that we have to leave for future research. It is also worth remembering
that the heterogeneity with respect to text genres in the different treebanks may play a
role here (cf. Section 5.1).

Finally, when analyzing the effect of nucleus composition on the vector representa-
tions of nuclei and their components, we find that the learned composition operation
tends to produce vectors that emphasize the function word part of a nucleus over its
lexical core and creates distinct clusters that correlate with nucleus type. Adding these
vectors to the lexical core representations in turn produces nucleus representations that
cluster by type to a higher degree than the lexical core representations themselves.
The capacity to capture nucleus types in this way is presumably what benefits parsing
accuracy.
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8. Conclusion

We have explored how Tesnière’s concept of syntactic nucleus can be used to enrich
the representations of a transition-based dependency parser, relying on UD treebanks
for supervision and evaluation in experiments on a wide range of languages. We have
corroborated previous experimental results showing that the use of composition op-
erations for building internal representations of syntactic nuclei can lead to small but
significant improvements in parsing accuracy for nucleus-external relations, notably
in the analysis of coordination, nominal dependents, clausal dependents, and main
predicates. We have presented evidence that nucleus composition is more effective than
composition of other syntactic constituents, and we have shown that cross-linguistic
variation can to some extent be explained by factors relating to entropy and frequency of
function words. Finally, we have shown that the concrete effect of nucleus composition
is to enhance the similarity of nucleus representations belonging to the same type.

Several lines of inquiry suggest themselves for future research. In order to gain
a deeper understanding of the mechanisms by which nucleus composition improves
parsing, it may first of all be worthwhile to study individual languages in more depth.
Another idea would be to study the dynamics when processing individual sentences,
for example, using causal analysis along the lines of Finlayson et al. (2021). Going
beyond the parsing approach pursued in this article, it is an open question how nucleus
representations can be integrated into parsing paradigms other than transition-based
parsing. While traditional graph-based algorithms for dependency parsing assumes
that the elementary syntactic units (normally words) are known prior to parsing, an
assumption without which parsing would be computationally hard, recent neural incar-
nations of the graph-based paradigm do not rely on traditional dynamic programming
or spanning tree algorithms and may therefore allow the integration of nucleus repre-
sentations in the scoring model of the parser. Whether this would lead to improvements
in parsing accuracy is of course a different question.

877



Computational Linguistics Volume 48, Number 4

Appendix A: Top-10 Improved Relations in 20 Languages

Table 11
Improvement (or degradation) in labeled F1-score, weighted by relative frequency, for the 10
best UD relations for all 20 languages ordered by overall LAS improvement.

Wolof Greek Swedish Hindi Chinese
relation ∆ F1 relation ∆ F1 relation ∆ F1 relation ∆ F1 relation ∆ F1
root 0.20 advcl 0.07 root 0.07 obj 0.06 nmod 0.06
advcl 0.11 nsubj 0.07 conj 0.06 nmod 0.04 acl 0.06
obl 0.11 root 0.05 amod 0.06 nsubj 0.04 advmod 0.06
acl 0.10 acl 0.03 acl 0.06 root 0.02 obj 0.05
ccomp 0.07 nmod 0.03 nsubj 0.03 aux 0.01 advcl 0.04
obj 0.07 obl 0.03 advmod 0.03 mark 0.01 obl 0.04
mark 0.05 conj 0.03 case 0.03 obl 0.01 nsubj 0.03
conj 0.04 appos 0.02 expl 0.02 conj 0.01 appos 0.03
dislocated 0.04 csubj 0.02 appos 0.02 xcomp 0.00 clf 0.02
advmod 0.03 obj 0.02 obj 0.02 amod 0.00 case 0.02

Basque Vietnamese Armenian Latvian Arabic
relation ∆ F1 relation ∆ F1 relation ∆ F1 relation ∆ F1 relation ∆ F1
conj 0.07 xcomp 0.09 root 0.08 nmod 0.06 nmod 0.05
advcl 0.04 root 0.08 cc 0.04 root 0.04 obj 0.05
root 0.03 obj 0.04 nmod 0.04 obl 0.04 obl 0.03
xcomp 0.02 ccomp 0.04 xcomp 0.03 conj 0.03 conj 0.02
ccomp 0.02 amod 0.03 compound 0.03 nsubj 0.03 nsubj 0.02
nmod 0.02 parataxis 0.03 nsubj 0.03 obj 0.02 advmod 0.01
iobj 0.02 cc 0.02 discourse 0.02 xcomp 0.01 nummod 0.01
acl 0.02 nmod 0.01 csubj 0.02 amod 0.01 amod 0.01
advmod 0.01 advcl 0.01 amod 0.02 advmod 0.01 dep 0.01
obl 0.01 compound 0.01 aux 0.02 det 0.01 advcl 0.01

Finnish Hebrew Indonesian Irish Turkish
relation ∆ F1 relation ∆ F1 relation ∆ F1 relation ∆ F1 relation ∆ F1
obl 0.07 nmod 0.02 ccomp 0.07 nmod 0.13 amod 0.05
conj 0.07 det 0.02 parataxis 0.05 obl 0.09 nsubj 0.04
acl 0.03 conj 0.02 advcl 0.05 root 0.03 csubj 0.03
obj 0.03 appos 0.02 nmod 0.04 nsubj 0.02 conj 0.03
amod 0.02 flat 0.01 xcomp 0.04 cc 0.02 advmod 0.02
ccomp 0.02 acl 0.01 compound 0.04 flat 0.01 case 0.02
root 0.02 ccomp 0.01 flat 0.03 list 0.01 obj 0.01
nsubj 0.01 root 0.01 obl 0.02 case 0.01 parataxis 0.01
cop 0.01 mark 0.01 det 0.02 advcl 0.01 discourse 0.01
nummod 0.01 amod 0.01 root 0.02 det 0.01 det 0.01

Italian Korean Russian Persian Japanese
relation ∆ F1 relation ∆ F1 relation ∆ F1 relation ∆ F1 relation ∆ F1
conj 0.03 obj 0.07 amod 0.06 compound 0.02 nmod 0.02
ccomp 0.02 advmod 0.06 mark 0.04 nmod 0.02 nsubj 0.02
advcl 0.01 root 0.04 parataxis 0.04 obj 0.01 fixed 0.00
csubj 0.01 acl 0.03 flat 0.03 ccomp 0.01 csubj 0.00
appos 0.01 dep 0.02 iobj 0.02 acl 0.01 compound 0.00
xcomp 0.01 flat 0.02 case 0.02 advmod 0.01 dislocated 0.00
expl 0.01 appos 0.02 aux 0.02 conj 0.01 mark 0.00
iobj 0.01 amod 0.01 acl 0.01 mark 0.00 advmod 0.00
amod 0.01 nummod 0.01 discourse 0.01 det 0.00 nummod 0.00
acl 0.00 advcl 0.01 det 0.01 nsubj 0.00 obj 0.00
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Appendix B: Vector Visualization after Dimensionality Reduction (t-SNE) for
20 Languages

Arabic Armenian

Basque Chinese

Finnish Greek
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Hebrew Hindi

Indonesian Irish

Italian Japanese
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Korean Latvian

Persian Russian

Swedish Turkish
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Vietnamese Wolof
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