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Humans can flexibly extend word usages across different grammatical classes, a phenomenon
known as word class conversion. Noun-to-verb conversion, or denominal verb (e.g., to Google a
cheap flight), is one of the most prevalent forms of word class conversion. However, existing
natural language processing systems are impoverished in interpreting and generating novel
denominal verb usages. Previous work has suggested that novel denominal verb usages are
comprehensible if the listener can compute the intended meaning based on shared knowledge
with the speaker. Here we explore a computational formalism for this proposal couched in frame
semantics. We present a formal framework, Noun2Verb, that simulates the production and
comprehension of novel denominal verb usages by modeling shared knowledge of speaker and
listener in semantic frames. We evaluate an incremental set of probabilistic models that learn
to interpret and generate novel denominal verb usages via paraphrasing. We show that a model
where the speaker and listener cooperatively learn the joint distribution over semantic frame
elements better explains the empirical denominal verb usages than state-of-the-art language
models, evaluated against data from (1) contemporary English in both adult and child speech,
(2) contemporary Mandarin Chinese, and (3) the historical development of English. Our work
grounds word class conversion in probabilistic frame semantics and bridges the gap between
natural language processing systems and humans in lexical creativity.

1. Introduction

Word class conversion refers to the extended use of a word across different grammatical
classes without overt changes in word form. Noun-to-verb conversion, or denominal
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verb, is one of the most commonly observed forms of word class conversion. For
instance, the expression to Google a cheap flight illustrates the innovative verb usage of
Google, which is conventionally a noun denoting the Web search engine or company. The
extended verb use here signifies the action of “searching information online.” Although
denominal verbs have been studied extensively in linguistics as a phenomenon of lexical
semantic innovation in adults and children and across different languages (e.g., Clark
and Clark 1979; Clark 1982; Vogel and Comrie 2011; Jespersen 2013), they have been
largely underexplored in the existing literature of computational linguistics; and their
flexible nature presents key challenges to natural language understanding and genera-
tion of innovative word usages. We present a formal computational account of noun-to-
verb conversion couched in frame semantics. We show how our probabilistic framework
yields sensible interpretation and generation of novel denominal verb usages that go
beyond state-of-the-art language models in natural language processing.

Previous work has offered extensive empirical investigations into when noun-to-
verb conversion occurs from the viewpoints of syntax (Hale and Keyser 1999), semantics
(Dirven 1999), and pragmatics (Clark and Clark 1979). In particular, Clark and Clark
(1979) present one of the most comprehensive studies on this topic and describe “the
innovative denominal verb convention” as a communicative scenario where the listener
can readily comprehend the meaning of a novel denominal verb usage based on Grice’s
cooperative principles (Grice 1975). They suggest that the successful comprehension of a
novel or previously unobserved denominal verb usage relies on the fact that the speaker
denotes the kind of state, event, or process that they believe the listener can readily
and uniquely compute on the basis of their mutual knowledge. They illustrate this idea
with the classic example the boy porched the newspaper (see also Figure 1a). Upon hearing
this utterance that features the novel denominal use of porch, the listener is expected
to identify the scenario of a boy delivering the newspaper onto a porch, based on the
shared world knowledge about the entities invoked by the utterance: the boy, the porch,
and newspaper delivery systems.

In contrast to human language users, existing natural language processing systems
often fail to interpret (or generate) flexible denominal utterances in sensible ways.
Figure 1a illustrates this problem in two established natural language processing sys-
tems. In Figure 1a, a state-of-the-art BERT language model assigned higher probabilities
to two inappropriate paraphrases for the query phrase to porch the newspaper over the
more reasonable paraphrase to drop the newspaper on the porch. In Figure 1b, the Google
Translate system also failed to back-translate the same query denominal utterance from
Mandarin Chinese to English. Specifically, this system misinterpreted the denominal
verb “to porch” with the translation “to confuse” in Mandarin Chinese, which led to the
erroneous back-translation into English. These failed cases demonstrate the challenges
toward natural language processing systems in interpreting flexible denominal verb
usages, and they suggest that a principled computational methodology for support-
ing automated interpretation and generation of novel denominal verb usages may
be warranted.

Work from cognitive linguistics, particularly frame semantics, provides a starting
point for tackling this problem from the view of structured meaning representation.
Specifically, frame semantics theory asserts that humans understand word meaning by
accessing a coherent mental structure of encyclopedic knowledge, or semantic frames,
that store a complex series of events, entities, and scenarios along with a group of
participants (Fillmore 1968). Similar conceptual structures have also been discussed
by researchers in artificial intelligence, cognitive psychology, and linguistics, under the
different terminologies of schema (Minsky 1974; Rumelhart 1975), script (Schank 1972),
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Drop the newspaper on the porch?
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Figure 1

Ilustrations of the problem of noun-to-verb conversion, or denominal verb, in human language
users and natural language processing systems. (a) Given a novel denominal usage of the noun
porch uttered by the speaker, the listener interprets the speaker’s intended meaning correctly
from context by choosing the most probable interpretation among a set of possible construals or
paraphrases (bar length indicates probability of an interpretation). In comparison, the BERT
language model assigns higher probabilities to inappropriate interpretations of the same
denominal utterance. (b) The Google Translate system (evaluated in June 2021) incorrectly
interprets to porch the newspaper as to confuse the newspaper when translating the query denominal
utterance into Mandarin Chinese, which in turn leads to the erroneous back-translation

into English.

idealized cognitive model (Lakoff 2008; Fauconnier 1997), and qualia (Pustejovsky
1991). In the context of noun-to-verb conversion, frame semantics theory provides a
principled foundation for characterizing human interpretation and generation of novel
denominal verb usages. For example, the utterance “the boy porched the newspaper”
may be construed as invoking a NEWSPAPER DELIVERY frame that involves both
explicit frame elements including the DELIVERER (the boy), the DELIVEREE (the news-
paper), and the DESTINATION (the porch), as well as two latent elements that are left
underspecified for the listener to infer: the main verb (also known as LEXICAL UNIT)
that best paraphrases the action of the DELIVERER during the delivery event (e.g.,
drop), and the semantic relation between the DELIVERER and DELIVEREE (in this case
can be described using a preposition “on/onto”). Interpreting novel denominal usages,
therefore, can be considered as a task of implicit semantic constituents inference, which
has been explored in the paraphrasing of other types of compound expressions such as
noun-noun compounds (Shwartz and Dagan 2018; Butnariu et al. 2009), adjective-noun

785



Computational Linguistics Volume 48, Number 4

pairing (Lapata 2001; Boleda et al. 2013), and logical metonymy (Lapata and Lascarides
2003).

The prevalence of denominal verb usages is not constrained to contemporary
English. Apart from being observed in adult and child speech of different European
languages (Clark 1982; Tribout 2012; Mateu 2001), denominal verbs also commonly
appear in more analytic languages (i.e., languages that rely primarily on helper words
instead of morphological inflections to convey word relationships) such as Mandarin
Chinese, where the absence of inflectional morphemes allows highly flexible shift from
one word class to another (Dongmei 2001; Fang and Shenghuan 2000; Si 1996). From
a historical point of view, many denominal verbs have emerged after the established
usages of their parent nouns. For instance, according to the Oxford English Dictionary,
the word advocate had been exclusively used as a noun denoting “a person who rec-
ommends/supports something” before 1500s. However, this word grew a verb sense
of “to act as an advocate for something” which later became popular so quickly that
Benjamin Franklin in 1789 complained to Noah Webster about such an “awkward and
abominable” denominal use (Franklin 1789). It is therefore constructive to consider
and evaluate a general formal framework for noun-to-verb conversion that supports
denominal verb inference and generation across languages and over time.

In this work, we develop and evaluate a probabilistic framework, Noun2Verb, to
model noun-to-verb conversion couched in the tradition of frame semantics. Our work
extends the previous study (Yu, El Sanyoura, and Xu 2020), which offers a probabilistic
generative approach to model the meaning of denominal verb usages as a collection
of frame elements. As illustrated in Figure 2a, we use a probabilistic graphical model
to capture the dependency over denominal utterances and their underlying frame

V = drop, R = LOCATION ON

Interpretation
(partially observed)

D = porch, C = newspaper

Denominal utterance

(observed)
Frame = "NEWSPAPER DELIVERY"
(latent)
(@)
verb: drop
"porch the relation: LOCATION ON denominal verb: porch
newspaper" frame: NEWSPAPER context: newspaper
DELIVERY
Speaker Listener

(b)

Figure 2
(a) The probabilistic graphical model of our Noun2Verb framework. (b) An illustration of the
learning paradigm of Noun2Verb based on the reconstruction process.
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elements, including (1) a partially observed interpretation of the denominal utterance
consisting of a paraphrase verb and a semantic relation, and (2) a set of latent frame
elements that further specify the underlying scenario. As shown in Figure 2b, our
framework maximizes the joint probability of the three types of variables via a commu-
nicative process between a listener module and a speaker module. These modules learn
collaboratively to reconstruct a novel denominal utterance. In particular, the listener
would first observe an utterance with novel denominal usages, and “thinks out loud”
about its appropriate interpretation, which is then taken by the speaker as a clue to
infer the actual denominal utterance. Intuitively, this process can succeed only if the
listener interprets the denominal utterance correctly, and the speaker shares similar se-
mantic frame knowledge with the listener. This learning scheme therefore operational-
izes the mutual-knowledge-based communication proposed in Clark and Clark (1979).
Moreover, the reconstruction process also allows the models to learn from denominal
utterances without explicit interpretation in an unsupervised way. To enable efficient
learning, our framework draws on recent development from deep generative modeling
(Kingma and Welling 2014; Kingma et al. 2014) and utilizes variational inference for
training and learning with a minimal amount of labeled data.

Our current study extends earlier work showing how this probabilistic generative
model provides automated interpretation and generation of novel denominal verb
usages in modern English (Yu, El Sanyoura, and Xu 2020). We take a frame-semantic
approach and compare three models of incremental complexity that range from a
discriminative transformer-based model to a full generative model. We show that the
transformer-based model, despite its success in many natural language understanding
tasks (Devlin et al. 2018), is insufficient to capture the flexibility of denominal verbs and
fails to productively generate novel denominal usages with relatively sparse training
samples. We go beyond the previous work with a comprehensive evaluation of the
framework with two additional sources of data: historical data of English noun-to-verb
conversions and Mandarin denominal verb usages. Furthermore, we perform an in-
depth analysis to interpret the learning outcomes of the generative model.

The remainder of this article is organized as follows. We first provide an overview of
the relevant literature. We then present our computational framework, Noun2Verb, and
specify the predictive tasks for model evaluation. We next present the datasets that we
have collected and made publicly available for model learning and evaluation. We de-
scribe three case studies where we evaluate our framework rigorously on a wide range
of data in contemporary English, Mandarin Chinese, and the historical development
of English over the past two centuries. We finally provide detailed interpretations and
discussion about the strengths and limitations of our framework and conclude.

2. Related Work
2.1 Computational Studies on Word Class Conversion

Compared to the extensive empirical and theoretical research on word class conver-
sion, very few studies have attempted to explore this problem from a computational
perspective. One of the existing studies leverages recent advances in distributed word
representations and deep contextualized language models to investigate the directional-
ity of word class conversion. In particular, Kisselew et al. (2016) build a computational
model to study the factors that may account for historical ordering between noun-to-
verb conversions and verb-to-noun conversions in English. In that study, they train a
logistic regression model using bag-of-words embeddings of lemmas attested in both
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nominal and verbal contexts to predict which word class (between noun and verb
classes) might have emerged earlier in history. Their results suggest that denominal
verbs usually have lower corpus frequencies than their parent noun counterparts, and
nouns converted from verbs tend to have more semantically specific linguistic contexts.
In a related recent study, Li et al. (2020) perform a computational investigation on word
class flexibility in 37 languages by using the BERT deep contextualized language model
to quantify semantic shift between word classes. They find greater semantic variation
when flexible lemmas (i.e., lemmas that have more than one grammatical class) are
used in their dominant word class, supporting the view that word class flexibility is
a directional process.

Differing from both of these studies, here we focus on modeling the process of noun-
to-verb conversion as opposed to the directionality or typology of word class conversion
across languages.

2.2 Frame Semantics

The computational framework we propose is grounded in frame semantics, which has
a long tradition in linguistics and computational linguistics. According to Fillmore,
Johnson, and Petruck (2003), a semantic frame can potentially be evoked by a set of
associated lexical units, which are often instantiated as the main predicate verbs in natu-
ral utterances. Each frame in the lexicon also enumerates several roles corresponding to
facets of the scenario represented by the frame, where some roles can be omitted or null-
instantiated and left underspecified for the listener to infer (Ruppenhofer and Michaelis
2014). The problem of interpreting denominal verb usages can therefore be considered
as inferring (the concepts evoked by) latent lexical unit(s) of the underlying semantic
frame, which is itself related to the tasks of semantic frame identification (Hermann
et al. 2014) and semantic role labeling (Gildea and Jurafsky 2002). Given the limited
available resources for labeled or fully annotated data, many existing studies have
considered a generative and semi-supervised learning approach to combine annotated
lexical databases such as FrameNet (Baker, Fillmore, and Lowe 1998) and PropBank
(Kingsbury and Palmer 2002) with other unannotated linguistic corpora. For instance,
the SEMAFOR parser presented by Das et al. (2014) is a latent variable model that learns
to maximize the conditional probabilities of labeled semantic roles in FrameNet, and
supports lexical expansion to unseen lexical units via the graph-based semi-supervised
learning technique (Bengio, Delalleau, and Le Roux 2010). In a separate work,
Thompson, Levy, and Manning (2003) learn a generative Hidden Markov Model using
the labeled sentences in FrameNet and show that the resulting model is able to infer
null-instantiated semantic roles in unobserved utterances (e.g., inferring that a “driver”
role is missing given the sentence The ore was boated down the river).

Our framework builds on these existing studies by formulating noun-to-verb con-
version as probabilistic inference of latent semantic frame constituents, and we suggest
how a semi-supervised generative learning approach offers data efficiency and effective
generalizations on the interpretation and generation of novel denominal verb usages
that do not appear in the training data.

2.3 Models of Compound Paraphrasing
Our study also relates to a recent line of research on compound understanding. Many

problems concerning the understanding of compounds require the inference of latent
semantic constituents from linguistic context. For example, Nakov and Hearst (2006)
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suggest that the semantics of a noun-noun compound can be expressed as multiple
prepositional and verbal paraphrases (e.g., apple cake can be interpreted as cake made
of/contains apples). Later work develops both supervised and unsupervised learning
approaches to tackling noun-compound paraphrasing (Van de Cruys, Afantenos, and
Muller 2013; Xavier and de Lima 2014). In particular, Shwartz and Dagan (2018) propose
a semi-supervised learning framework for inferring the latent semantic relations of
noun-noun compounds. They represent compounds and their paraphrases in a dis-
tributed semantic space parameterized by a biLSTM (Graves and Schmidhuber 2005)
encoder. When paraphrases are not available, the missing components are replaced
by the corresponding hidden representations yielded by the encoder. Shwartz and
Dagan (2018) show good generalizability of their model on unobserved examples. We
show that our framework generalizes well on novel denominal utterances due to a
semi-supervised learning approach in a distributed semantic space, and further, the
proposed framework can learn interpretation (listener) and generation (speaker) model
simultaneously via generative modeling.

Previous linguistic studies also suggest that the lexical information in converted
denominal verbs can be inferred from the listeners’ knowledge about the intended
referent of nominal bases (Baeskow 2006). It is therefore natural to connect noun-to-
verb conversion to the linguistic phenomenon of logical metonymy, where language
users need to infer missing predicates from certain syntactic constructions (e.g., an easy
book means a book that is easy to read) (Pustejovsky 1991). Following this line of thought,
Lapata and Lascarides (2003) propose a probabilistic model that can rank interpretations
of given metonymical compounds by searching in a large corpus for their paraphrases,
which are identified by exploiting the consistent correspondences between surface
syntactic cues and meaning. We apply similar methods to extract candidate paraphrases
of denominal utterances to construct our learning or training dataset, and we show that
this frequency-based ranking scheme aligns reliably with human feasibility judgment
of interpretations for denominal verb usages.

2.4 Deep Generative Models for Natural Language Processing

The recent surge of deep generative models has led to the development of several flex-
ible language generation systems, such as variational autoencoders (VAEs) (Bowman
et al. 2016; Bao et al. 2019; Fang et al. 2019) and generative adversarial networks (GAN5)
(Subramanian et al. 2017; Press et al. 2017; Lin et al. 2017). Our Noun2Verb framework
builds on the architecture of semi-supervised VAE proposed by Kingma et al. (2014),
where an interpretation/listener module and a generation/speaker module jointly learn
a probability distribution over all denominal utterances and any of their available para-
phrases. One advantage of VAEs is the ability to encode through their latent variables
certain aspects of semantic information (e.g., writing style, topic, or high-level syntactic
features), and to generate proper samples from the learned hidden semantic space via
ancestral sampling. We show in our model analysis that the learned latent variables in
our framework indeed capture the variation in both syntactic structures and semantic
frame information of target denominal utterances and their paraphrases.

2.5 Deep Contextualized Language Models
For a sequence of natural language tokens, deep contextualized models compute a

sequence of context-sensitive embeddings for each token. Many state-of-the-art nat-
ural language processing models are built upon stacked layers of a neural module
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called the Transformer (Vaswani et al. 2017), such as BERT (Devlin et al. 2018), GPT-
2 (Radford et al. 2019), RoBERTa (Liu et al. 2019), and BART (Lewis et al. 2020). These
large neural network models are often pre-trained on predicting missing tokens given
contextual information within a sentence. The models are then fine-tuned on learning
examples of a series of downstream tasks including language generation tasks such as
summarization, and natural language understanding tasks such as recognizing textual
entailment. A common issue of most current transformer-based models is that many of
their successful applications tend to rely on extensive fine-tuning on adopted bench-
marks with (sometimes hundreds of) thousands of examples. For tasks where large-
scale annotations of learning examples are infeasible, or where the target linguistic data
are severely under-represented in standard pre-training resources, transformer models
often yield much worse performance (Croce, Castellucci, and Basili 2020).

In our work, we consider a BERT-based language generation model as a competitive
baseline, and we demonstrate that this pre-trained language model is insufficient to
capture the flexibility of noun-to-verb conversions, particularly when ground-truth
paraphrases for a denominal utterance are highly uncertain.

3. Computational Framework

We formalize noun-to-verb conversion as a dual problem of comprehension and pro-
duction and formulate this problem under a frame semantics perspective. We present
three incremental probabilistic models under differing assumptions about the compu-
tational mechanisms of noun-to-verb conversion.

3.1 Noun-to-verb Conversion as Probabilistic Inference

We consider noun-to-verb conversion as communication between a listener and a
speaker over an utterance that includes a novel denominal verb usage. Our framework
focuses on modeling the knowledge and dynamics that enable (1) a listener module to
properly interpret the meaning of a novel denominal verb usage (or zero-shot inference)
by paraphrasing, and (2) a speaker module to produce a novel denominal usage given
an interpretation.

Figure 3 illustrates our framework. Here the speaker generates an utterance U =
(D, C) that consists of an innovative usage of denominal verb D (e.g., porch) and its
context C. As an initial step, we consider the simple case where C is a single word that
serves as the direct object of D (e.g., newspaper as the context for porch).

Given this utterance, the listener interprets its meaning M, which we operationalize
as three key components: (1) a paraphrase verb V (e.g., drop) for the target denominal
verb; (2) a semantic relation R following Clark and Clark (1979) that specifies the relation
between the paraphrase verb and the context (e.g., an on-type location, signifying the
fact that newspaper is dropped onto the porch); and (3) a set of frame elements E
following the frame semantics tradition, which we elaborate below. The paraphrase
verb V is an established verb that best describes the action denoted by the denominal
verb D. It serves as the lexical unit that invokes the underlying semantic frame of D. The
semantic relation R, according to empirical studies in Clark and Clark (1979), reflects
how the novel sense of a denominal verb is extended from its parent noun, and falls
systematically into eight main types (see a summary in Table 1). Within each relation
type, there is a set of words (most of which are prepositions) that signify such a relation,
along with a template paraphrase for denominal usages of this type. For instance,
denominal usages of the form “to <denominal verb> the <context>" (e.g., “to porch
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interpretation (I)

, Listener (comprehension)
M|U

« pM|U) D = porch

EV = drop
:R = LOCATION_ON

v

Speaker (production) C = newspaper

p(U|M)

utterance (U)
porch the newspaper

meaning (M)

Figure 3

An illustration of the Noun2Verb framework. The speaker produces an utterance of a denominal
verb usage from its production likelihood p,. The listener interprets the meaning of the utterance
by paraphrasing via its comprehension likelihood p,. U = (D, C) is the denominal utterance,
where D is the target denominal verb, and C its object context; M is the meaning of U, where V is
the paraphrased verb, R is the semantic relation, and E denotes a set of latent frame elements.

Table 1

Major types of semantic relation described in Clark and Clark (1979) that explain common
denominal verb usages in English. Each semantic relation is specified by a set of relational words
(mostly prepositions), and a syntactic schema that serves as the template for paraphrasing query
denominal verb usages under a relation type.

Relation type Relational words Denominal usage Template paraphrase
LOCATUM ON on, onto, in, carpet the floor put the carpet on
into, to, at the floor
LOCATUM OUT  out (of), from, of shell the peanuts remove the shell
from the peanuts
LOCATION IN on, onto, in, into, porch the newspaper drop the newspaper
to, at on the porch
LOCATION OUT  out (of), from, of mine the gold dig the gold out of
the mine
DURATION during weekend at the cabin stay in the cabin
during the weekend
AGENT as, like referee the game watch the game as
a referee
GOAL become, look like, orphan the children make the children
to be, into become orphans
INSTRUMENT with, by, using, bike to school go to school by bike

via, through
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the newspaper”) where D comes from the relation type LOCATION ON can usually be
paraphrased as “to <paraphrase verb> the <context> onto/into/to the <denominal
verb>" (e.g., “to drop the newspaper onto the porch”). Under a semantic frame invoked
by V, the listener would simultaneously infer frame elements E that may be involved in
the scenario expressed by the target utterance U—such inference captures not only par-
ticipants that are explicitly specified by the denominal utterance, but also the residual
contextual knowledge shared between the speaker and the listener that is not captured
in variables V and R. In particular, porch the newspaper may invoke a DELIVERY frame,
where one can identify that the element of DELIVERY is the newspaper, the destination
is the porch, and infer that a reasonable choice of the DELIVERER role can be the postman
or the paperboy. We denote I = (V, R) as an interpretation for a target utterance U, while
we specify frame elements E as latent variables (i.e., implicit knowledge) to be inferred
by the models.

Our formulation drawing on semantic relations is motivated by existing cross-
linguistic studies of denominal verbs. For example, Clark found that semantic relation
types in Table 1 apply to many innovative denominal usages coined by children speak-
ing English, French, and German (Clark 1982). A more recent comparative study of
denominal verbs in English and Mandarin Chinese also found that these major semantic
relations can explain many Chinese denominal verb usages (Bai 2014). The modeling
framework we present here can automatically learn these semantic relations and latent
frame elements from data, and, importantly, it can generalize to interpret and generate
novel denominal usages across different languages and over time.

With the core components defined, we now formally cast noun-to-verb conversion
as two related probabilistic inference problems. The listener module tackles the com-
prehension problem where given an utterance U, it samples appropriate paraphrases to
interpret its meaning M = (I,E) = (V, R, E) under the comprehension model p,(M|U).
The speaker module tackles the inverse production problem by producing a (novel) de-
nominal usage U given an intended meaning M, under the production model p (U|M).

We postulate that mutually shared knowledge, when modeled as semantic frame
information, should be key to successful communication for innovative denominal
usages. To verify this view, we describe and examine three incremental probabilistic
models under our framework dubbed Noun2Verb.

3.2 Model Classes

We present three probabilistic models (see illustrations in Figure 4) that make dif-
ferent assumptions about the computational mechanisms of noun-to-verb conversion.
First, we describe a discriminative model that assumes neither any interactive dynamics
between the speaker and the listener (i.e., no collaboration) nor any knowledge of
semantic frame elements. We implement this model using a state-of-the-art contex-
tualized language model from natural language processing. To our knowledge, there
exists no specific and scalable model of denominal verbs, and, given the general-
purpose nature of contextual language models, we consider it as a strong competitive
baseline model. Next, we describe a partial generative model that enables listener-speaker
collaboration via knowledge sharing but without any representation of semantic frame
elements. Finally, we describe a full generative model that incorporates both listener-
speaker collaboration and semantic frame elements.

3.2.1 Discriminative Model. The discriminative model consists of two sub-modules
that learn separately without any collaboration or information sharing; hence it is
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L Ak

lor)
@ © @

(a) The discriminative model (b) The partial-generative (c) The full-generative model
model

= J

Figure 4

A graphical illustration of the three probabilistic models under the proposed framework. U, I,
and E stand for the variables of (u)tterance that contains a denominal verb usage, (i)ntended
meaning of the utterance, and (e)lements of the semantic frame invoked by the utterance,
respectively. & and {3 represent the hyperparameters for the prior distributions of the variables.
Shaded, half-shaded, and unshaded circles represent latent variables, semi-latent variables,
and observables.

insensitive to frame elements E in its meaning representation. As illustrated in Figure 4a,
the listener module receives a denominal utterance, and produces a paraphrase of
that utterance by sampling an interpretation from the conditional distribution p,(I =
(V,R)|U = (D, C)). The speaker module reverses the listener module by generating a
denominal utterance from the conditional distribution p (U = (D, C)|I = (V,R)). Dur-
ing learning, we present the model with a supervised set (i.e., fully labeled data) of
denominal utterances X, = {(U®, I (i))}f\i 1- Each such data point is paired with a human-
annotated ground-truth paraphrase verb and semantic relation (i.e., the interpretation
for a query denominal usage). We optimize the speaker-listener modules by minimizing
the standard negative log-likelihood classification loss for both modules independently:

S=8+S, D

S=- Y logp?u®; e 2)
um, 1h)ex,

Ss=— Y logp,UM?;e;) 3)
(u(i),[(i))exS

Here ©; and ©; denote the parameters under the speaker and the listener modules,
respectively. This discriminative learner bears resemblance to compound phrase under-
standing systems, where classification models are trained to predict implicit semantic
relations that hold between phrase constituents (Shwartz and Dagan 2018).

We consider the state-of-the-art language model BERT (Devlin et al. 2018) to param-
eterize the listener and speaker distributions (see Appendix A for a detailed description
of the BERT model architecture). However, as we will demonstrate empirically, despite
the incorporation of such a powerful neural language model with a rich knowledge
base, this discriminative baseline model is insufficient to simulate word class conversion
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in sensible ways, mostly due to its limitations in capturing the flexibility and uncertainty
involved in natural denominal usages. For instance, both “drop the newspaper on
the porch” and “leave the newspaper on the porch” can be considered good inter-
pretations for the query denominal usage porch the newspaper, but systems like BERT,
as shown later, tend to idiosyncratically favor a very restricted set of construals and
cannot account for the fine-grained distribution of human interpretations for denominal
usages. Furthermore, the speaker and listener modules in the discriminative model
do not share mutual knowledge by jointly encoding the same probability distribution
over denominal utterances and their interpretations; that is, p,(I|U) and p,(U[I) do
not necessarily induce the same joint distribution p(U,I). We therefore turn to a more
cognitively viable generative model by incorporating the interaction between the
listener and speaker modules to encourage agreement on the utterance-meaning
distributions—a prerequisite for successful communication with innovative denominal
usages (Clark and Clark 1979).

3.2.2 Partial Generative Model. The partial generative model, illustrated in Figure 4b,
defines a generative process of how a speaker might produce a novel denominal usage.
We first sample an interpretation by drawing I from a categorical prior distribution
po(I|x) parametrized by «. We then feed this interpretation to the speaker module so as
to sample a novel denominal utterance via p(U|I). This setup enforces a joint utterance-
interpretation distribution p (U, I|x) = p,(I|ct)p,(U|I), which allows us to operationalize
the idea of shared mutual knowledge by encouraging the listener to be consistent with
the speaker when interpreting novel denominal usages.

Formally, we learn the listener’s likelihood p,(I|U) as a good approximation for the
speaker’s distribution p,(I|U) over interpretations:

pI|U) ~ p,(I]U) (4)

We parametrize model distributions p, and p, via feed-forward neural networks (see
Appendix A for a detailed model description). One advantage of this generative
approach is that it supports learning with sparse labeled data. In particular, this
model can learn from a handful of labeled data and an unlabeled, unsupervised set
Xu{(U(i))}fil, where each denominal verb usage has no human annotation (in terms of
its meaning).

To learn this model, we apply an optimization technique known as variational in-
ference, commonly used for generating data with highly complex structures, including
images (Narayanaswamy et al. 2017) and text (Semeniuta, Severyn, and Barth 2017), to
train the two modules simultaneously. Let © again denote the set of all parameters in
the model; we optimize © by minimizing the following evidence lower bound (ELBO)
loss function:

U= " Eppllogp, (U] - Dlpy(I1L)||py(I|)] ()
uvex,

Here E;. (") refers to taking the expectation by sampling interpretation I from the
listener’s conditional likelihood p(I|U), and D(:||-) denotes the Kullback-Leibler (KL)
divergence between two probability distributions. This learning scheme does not re-
quire any labeled interpretation I. Instead, the two modules learn collaboratively by
seeking to reconstruct a denominal verb utterance: The first term E;., [log ps(U|I)] of

794



Yu and Xu Probabilistic Frame Semantics for Word Class Conversion

U describes a scenario where the listener first observes a U and “thinks out loud”
about its interpretation I, which is then taken by the speaker (who is hidden from the
utterance) as a clue to infer the actual utterance. Intuitively, if the listener understands
U reasonably, and provided that the speaker shares a similar utterance-interpretation
mapping with the listener, the reconstruction is more likely to succeed, and existing
theoretical analyses validate this idea (see, for example, Rigollet [2007], for detailed
discussion). It can be shown that minimizing ¢{ is equivalent to maximizing the joint log-
likelihood of all denominal utterances in the unsupervised set, while simultaneously
finding a listener’s likelihood p;(I|U) that best approximates the speaker’s posterior
ps(I|U). We provide the proof of this equivalence in Appendix B for interested readers.

Apart from the above unsupervised learning procedure, we can also train the two
modules separately on the labeled, supervised set X; just as we learn in the discrimina-
tive model. The overall learning objective £, therefore, consists of minimizing jointly a
supervised loss term and an unsupervised one, which can be operationalized through
the paradigm of semi-supervised learning:

L=U+AS 6)

Here S, U are the two losses defined in Equations (1) and (5), and A is a hyperparameter
controlling the relative weighting of the supervised and unsupervised data. Training the
partial generative model (as well as the full generative model described next) is algo-
rithmically equivalent to learning a semi-supervised variational autoencoder proposed
by Kingma et al. (2014).

3.2.3 Full Generative Model. Similar to the partial model, the full generative model il-
lustrated in Figure 4c also defines a generative process from meaning M to utterance
D, except that the semantic frame elements E are incorporated as a latent variable:
P (U I, B) = poI|o)py(E|B)ps(U[I), where o, 3 are hyperparameters that define the
categorical priors of I and E, respectively. In this model, both the interpretation I and
the semantic frame E give rise to a denominal utterance. Intuitively, the introduction of
frame elements helps the model to further distinguish denominal utterances of similar
interpretations but distinct intended referents. For example, both of the denominal ut-
terances (1) carpet the floor and (2) blanket the bed can be paraphrased by the same coarse,
semantic-relation template “to put A on (the top of) some B”, but their actual contexts
are quite different. The frame element E is expected to capture such fine-grained vari-
ation in meaning by learning the residual contextual information underspecified by V
and R. Similar to the partial generative model, we still expect an agreement between the
posteriors of meaning p,(M|U) and p,(M|U), but here we use the full representation of
M = (I,E) by taking frame elements into consideration:

The listener and speaker distributions here are parametrized by neural network en-
coders. During learning, the model can also be trained via a mixture of (1) reconstruction
of unlabeled denominal utterance, and (2) inference and generation of labeled denomi-
nal usages with ground-truth paraphrases. The unsupervised learning stage is also
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conducted through variational inference with an ELBO loss function similar to the
partial model:

U= Y Egrypllogp,(U|LE)] - Dlp,(I,E|U)|[py(I|x)p,(E|B)] (8)
uvex,

whereas the supervised learning loss is identical to L in Equation (1), and the overall
semi-supervised loss shares the same form as specified in Equation (4).

3.3 Specification of Predictive Tasks

We consider our models in two predictive tasks: (1) in the comprehension task, the listener
module of the model takes an utterance containing a novel query denominal usage
U and provides an interpretation of its meaning through sampling from p,(I|U) it
defines; and (2) in the production task, the speaker module conversely generates a novel
denominal usage U from its p (U|I) based on a query meaning specified in I. For the
full generative model, since U depends on both interpretations and frame elements,
we apply a Monte Carlo afproach to approximate ps(U|I) and p;(I|U) by first drawing
a set of frame elements E®) from model priors, and then taking the average over the
production probabilities p,(U|I, E¥)) induced by sampled elements:

pd)~ > pILEP) )
E® ~py (E|ox)

pUN~ > p,UILEY) (10)
E® ~po(E| o)

For evaluation against historical data, we incrementally predict the denominal
usages UHA) of a target noun D emerged at future time t + A, given its established
noun usages up to time t—for instance, we expect the model to infer whether the noun
“phone” can grow out a verb sense given its nominal usage before 1880s. We formalize
this temporal prediction problem by assuming that an appropriate denominal usage
generated by the speaker should be acceptable to the language community in the future.
We thus extend the synchronic production task to make diachronic prediction. In par-
ticular, the speaker module takes the predicate verbs and semantic relations associated
with the target noun D at time t as interpretation I!¥), and sample a denominal usage
U® ~ p,(U|IV) as model prediction for denominal usages into the future times t + A:

Pr(UM10) = p (UO|1D) (11)

The full generative model p,(U®|I")) is again approximated by the Monte Carlo sam-
pling approach in Equation (8).

4. Data
To evaluate our framework comprehensively against natural denominal verb usages,
we collected three datasets: (1) denominal verbs from adults and children speaking con-

temporary English extracted from the literature (DENOM-ENG); (2) denominal verbs
in contemporary Mandarin Chinese extracted from the literature (DENOM-CHN); and
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(3) denominal verbs extracted from historical English corpora (DENOM-HIST). Each
dataset consists of a supervised set X; of denominal usages with interpretations, and
an unsupervised set X,, of unannotated denominal usages. We also collected a set of
synchronic denominal verb usages with ground-truth paraphrases annotated via online
crowdsourcing (DENOM-AMT) for model evaluation.! The experimental protocol of
this work has been approved by the research ethics boards at the University of Toronto
(REB # 00036310). A total amount of 1,304 US dollars were paid to human annotators
for about 13,000 responses. Every annotator received an estimated hourly payment that
is higher than the minimum wage requirement in their registered country.?

4.1 Denominal Verb Usages from English-speaking Adults and Children
(DENOM-ENG)

Clark and Clark (1979) provide a large list of denominal verb utterances (i.e., a denom-
inal verb with its context word) from English adults, and Clark (1982) also reports
a set of novel denominal uses produced by English-speaking children under age 7.
Although all of these denominal utterances are labeled with their ground-truth relation
types R, none of them has ground-truth paraphrase verb(s) V available. To obtain
natural interpretations of denominal meaning (for constructing the supervised set for
model learning), we searched for the top 3 verbs that co-occur most frequently with
each denominal utterance using the paraphrase templates specified in Table 1 (and
we validated these searched results using crowdsourcing described later). We per-
formed these searches in the large-scale comprehensive iWeb 2015 corpus (https://
corpus.byu.edu/iweb/), specifically through the Sketch Engine online corpus tool
(https://wuw.sketchengine.eu) and its built-in regular-expression queries—for ex-
ample, a denominal utterance “to carpet the floor” with a “LOCATUM ON” relation
type would have a paraphrase utterance template “to __ the carpet on/onto the floor”,
where “__" is filled by a verb. We obtained 786 annotated denominal utterances from
adult data, and 32 annotated examples from children.

While a small portion of denominal utterances has explicit human-annotated para-
phrases, a greater proportion does not have such information. We expect our models to
be able to interpret novel denominal verb usages by generalizing from the small set of
annotated data and also learning from the large set of unlabeled data. For example,
if the model is told that “send the resume via email” is the correct paraphrase for
email the resume, then on hearing a similar utterance like mail the package, it should
generalize and infer that utterance has something to do with the transportation frame
(as in the case with mail). To facilitate such “frame borrowing” learning, we obtained a
set of novel denominal usages by replacing the denominal verb D of each U described
previously with a semantically related noun (e.g., mail the letter — email the letter). We
took the taxonomy from WordNet (https://wordnet.princeton.edu/) and extracted
all synonyms of each denominal verb D from the same synset as substitutes. This
yielded 1,129 novel utterances examples for unsupervised learning.

1 Data and code for our analyses are available at the following repository:
https://github.com/jadeleiyu/noun2verb.

2 The average payment in our task is 33.6 USD per hour, which is above the minimum wage requirements
of the registered countries of all involved participants (from Canada, People’s Republic of China, United
Kingdom, and United States).
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4.2 Denominal Verb Usages in Mandarin Chinese (DENOM-CHN)

Similar to the case of English, noun-to-verb conversion has been extensively investi-
gated in Mandarin Chinese. In particular, Bai (2014) performed a comparative study of
denominal verbs in English and Mandarin Chinese by collecting over 200 examples of
noun-to-verb conversions in contemporary Chinese, and categorizing these denominal
usages under the same relation types described by Clark and Clark (1979). It was found
that the eight major relation types of English denominal verbs can explain most of
their Chinese counterparts, despite some small differences. We therefore extend our
probabilistic framework of English noun-to-verb conversion to model how Chinese
speakers might comprehend and produce denominal verb usages, hence testing the
generality of our proposed framework to represent denominal meaning in two very
different languages.

Similar to DENOM-ENG, we performed an online corpus search on the iWeb-2015-
Chinese corpus via Sketch Engine to determine the top 3 most common paraphrase
verbs for each Chinese denominal utterance. This frequency-based corpus search yields
a supervised set of 230 Chinese denominal utterances. We also augmented DENOM-
CHN by replacing the denominal verb D of each U in Bai (2014) with a set of synonyms
taken from the taxonomy of Chinese Open WordNet database (Wang and Bond 2013).
After excluding cases with morphological or tonic changes during noun-to-verb con-
versions, we obtained an unsupervised set of 235 denominal utterances.

4.3 Denominal Verb Usages in Historical Development of English (DENOM-HIST)

To determine English nouns that had a temporal noun-to-verb conversion in history,
we used the syntactically parsed Google Books Ngram Corpus that contains the fre-
quency of short phrases of text (ngrams) from books written over the past two centuries
(Goldberg and Orwant 2013).

We first extracted time series of yearly counts for words (1-grams) whose numbers of
occurrence as nouns and verbs both exceed a frequency threshold 8¢, and we computed
the proportion of noun counts for each word w as follows:

#(w as a noun at year t)
#(w as a noun at year t) 4+ #(w as a verb at year t)

Qw, t) = (12)

We then applied the change-point detection algorithm introduced by Kulkarni
et al. (2015) to find words with a statistically significant shift in noun-to-verb part-
of-speech (POS) tag ratio. This method works by detecting language change over a
general stochastic drift and accounting for this by normalizing the POS time series.
The method identifies change points via bootstrapping under a null hypothesis that, in
most cases, the expected value of a word’s POS percentage should remain unchanged
(compared to random fluctuations). Therefore, by permuting the normalized POS time
series, the pivot points with the highest shifts in mean percentage would be the sta-
tistically significant change points. Applying this method yielded a set of 57 target
words as denominal verbs for our diachronic analysis. Since the n-gram phrases in
Google Syntactic-Ngrams (GSN) are too short (with maximum length of 5 words) to ex-
tract complete denominal utterances and paraphrases, we considered another historical
English corpus, the Corpus of Historical American English (COHA), which comprises
annotated English sentences from the 1810s to 2000s. We assumed that each denominal
verb w has been exclusively used as a noun prior to t*(w), and we extracted paraphrase
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usages [ ) before t* (w) as conventional usages, and denominal utterances Uu® after t* (w)
as novel usages for prediction. All denominal utterances and paraphrases with aligned
contextual objects and targets are taken as the supervised set, while the denominal
utterances without aligned paraphrases found in the historical corpus are used for
unsupervised learning, yielding an X; of size 1,055 and an X,, of size 8,972.

4.4 Crowd-sourced Annotation of Denominal Verb Usages (DENOM-AMT)

We evaluate our models on a set of denominal utterances with high-quality ground-
truth paraphrases interpreted by human annotators. We collected human interpreta-
tions for a subset of the English and Chinese denominal verb usages in the training set
described above via Amazon Mechanical Turk (AMT) crowdsourcing platform.

For each utterance D, we presented the online participants with the top 3 para-
phrase verbs collected from the iWeb corpora via frequency-based search, and asked
the participants to choose, among the 3 candidates, all verbs that serve as good para-
phrases for the target denominal verb in the denominal utterance. If none of them is
appropriate, then the participants must provide a good alternative paraphrase verb by
themselves. All annotators of English and Mandarin Chinese denominal verb examples
must have passed a qualification test to confirm their proficiency in the respective
languages to participate in the annotation.? This online crowdsourcing procedure yields
744 annotated examples in English and 55 examples in Chinese (24 English utterances
in DENOM-ENG were discarded due to insufficient number of collected responses).*
For each utterance in English, there are on average 14.7 responses and 2.43 unique
types of paraphrase verbs collected, while for Chinese we obtain 12.8 responses and
1.97 paraphrase verb types per utterance. The resulting dataset includes in total 606
unique types of English denominal verbs and 54 unique types of Chinese denominal
verbs. The English annotators reached an agreement score of k = 0.672 measured with
Cohen’s Kappa, and k = 0.713 for Chinese annotators. For English questions, 407 out
of 744 denominal utterances have at least one alternative paraphrase provided in the
annotations; for Chinese questions, 19 out of 55 utterances have at least one alternative
paraphrase.

5. Evaluation and Results

We first describe the experimental details and the procedures for evaluation of our
proposed framework. We then present three case studies that evaluate this framework
against different sources of innovative denominal usages drawn from speakers of dif-
ferent age groups and across languages, as well as data from contemporary and histor-
ical periods.

3 See https://github.com/jadeleiyu/noun2verb/tree/main/data/annotations for questionnaires of
language proficiency test and denominal utterance interpretation.

4 We did not collect human responses for all examples in DENOM-CHN because many denominal uses
have become obsolete in contemporary Mandarin (though they still appear in formal text such as official
documents and therefore can be found via web corpus search). The first author therefore manually
selected 54 Chinese denominal verbs considered to have nominal meanings familiar to modern
Mandarin speakers.
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5.1 Details of Experimentation and Evaluation

We ran the proposed probabilistic models on the 3 training datasets (DENOM-ENG,
DENOM-CHN, and DENOM-HIST) by optimizing over their loss functions specified
in Section 2. The speaker and listener modules in partial and full generative models
are implemented as three-layer feed-forward neural networks using the Pyro deep
probabilistic programming library (Bingham et al. 2019). For the discriminative model
in the contemporary datasets, we initialized both the listener and speaker modules with
12-layer pre-trained BERT neural language models implemented by the HuggingFace
library based on PyTorch, and we fine-tuned the parameters in BERT during training.
The input sequences (I, E for listener modules, and U for speaker modules) were first
encoded via distributed word embeddings, which were then fed into the corresponding
modules for further computation. For synchronic prediction, we applied the GloVe
algorithm (Pennington, Socher, and Manning 2014) on Wikipedia 2014 and Gigaword 5
corpora to learn distributed word embeddings.

To initialize the models and prevent these embeddings from smuggling in infor-
mation about target denominal verb usages for model prediction, we removed all
denominal usages for target denominal verbs during training. For historical prediction,
we replaced GloVe embeddings with the HistWords historical word embeddings used
in Hamilton, Leskovec, and Jurafsky (2016) for each decade from the 1800s to 1990s.
Similar to the synchronic case, we re-trained all historical embeddings by explicitly
removing all denominal usages of each target word D (that we seek to predict) from
the original text corpora.’

We assess each model on the evaluation set of denominal verb usages that have
ground-truth paraphrases, in the two types of predictive tasks described. In the compre-
hension tasks, for each novel denominal utterance U, we sample interpretation from the
listener module’s posterior distribution p;(I|U), and compare these model predictions
against the ground-truth paraphrases provided by human annotators. In the produc-
tion tasks, we conversely group all denominal utterances that share the same verb-
relation pair as ground-truth interpretations of the intended meaning (e.g., “mail my
resume” and “email my number” with common paraphrase verb “send” and relation
“INSTRUMENT”). For every interpretation, we apply the speaker module to generate
novel denominal usages from the posterior distribution ps(U]|I).

We consider two metrics to evaluate model performance: (1) Standard receiver
operating curves (ROCs), which provide a comprehensive evaluation for the model
prediction accuracy based on k=1,2,3,... guesses of interpretation/utterances from
its posteriors. Prediction accuracy (or precision) is the proportion of interpretations/
utterances produced by the model that fall into the set of ground-truths—this metric
automatically accounts for model complexity and penalizes any model that has poor
generalization or predictive ability; we also report the mean accuracy when consid-
ering only the top-k model predictions from k=1 up to k = 5. (2) Kullback-Leibler
divergence Dy, on the other hand, measures the ability of the models to capture fine-
grained human annotations. Because each query denominal verb usage has multiple
ground-truths (i.e., the set of paraphrases provided by human annotators that form a

5 We validated the reliability of the POS tagger by asking human annotators on AMT to manually inspect
100 randomly sampled denominal utterances detected by SpaCy from the iWeb-2015 corpus. We collected
5 responses for each utterance, and found that at least 3 annotators agree with the automatically labeled
POS tags for 94 out of 100 cases.
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ground-truth distribution), we compute the discrepancy between the empirical distribu-
tions pemp (U|I), Pemp (I|U) of paraphrases /utterances collected from AMT workers, and
model-predicted posteriors p;(I|U) and ps(U|I)—a smaller Dy, indicates better align-
ment between the natural distribution of human judgment and model posterior distri-
bution (see Appendix D for details of calculating the KL divergence). Since the value of
KL divergence may be sensitive to the size of the evaluation set, we calculate the Dy
for contemporary English examples by randomly sampling from DENOM-AMT 100
subsets of English denominal utterances with the same size of the Chinese evaluation
set, and taking the mean KL divergence between the sampled sets of utterances and
their ground-truth paraphrases.

For the case of contemporary English, because almost all supervised examples
are human-annotated, we adopt a 12-fold leave-one-out cross-validation procedure:
First, we randomly split the 744 annotated utterances into 12 equally sized subsets;
second, we draw 11 subsets of annotated examples for model training (together with
unsupervised utterances for generative models), and use the left out subset for model
evaluation. We repeat this procedure 12 times and report the mean model performance.
For the case of contemporary Chinese, we train models using all denominal utterances
in DENOM-CHN (i.e., 235 unannotated utterances and 230 annotated examples with
paraphrases determined via corpus search), and evaluate the models using the 55
human-annotated Chinese denominal utterances in DENOM-AMT. For the diachronic
analysis in English, we keep a subset of the supervised learning example X; as test cases
(and remove them from training sets). We also consider two additional baseline models
for evaluating if any of the three proposed probabilistic models can learn above chance,
at all: (1) a frequency-based model that chooses the interpretation and denominal usage
with highest empirical probability pemp(U|I ) OF Pemp(l |U) in the training dataset, and
(2) a random-guess model that samples each linguistic component from a uniform
distribution.

5.2 Case Study 1: Contemporary English

We first evaluate the models in comprehension and production of contemporary En-
glish denominal verb usages. Figures 5a and 5¢ summarize the results on 744 English
denominal utterances in DENOM-AMT using ROCs, while Figures 6a and 6¢ show the
predictive accuracy on the same evaluation dataset when considering the top-k outputs
for each model, with k ranging from 1 to 5.

We found that all non-baseline models achieved good accuracy in predicting se-
mantic relation types (lowest accuracy 96%), so we focused our discussion on model
predictions of interpreting via paraphrased verbs V and generating novel denominal
verbs D. We computed the area-under-the-curve (AUC) statistics to compare the cu-
mulative predictive accuracy of the models, summarized also in Figure 5. Our full
generative model yields the best AUC scores and top-k predictive accuracy for both
tasks, outperforming the partial generative model, which is in turn superior to the
BERT-based discriminative model.

The left two columns of Table 2 show the mean KL-divergence scores between
model posteriors and empirical distributions over both interpretations and denominal
utterances on all 744 English test cases in DENOM-AMT. We observed that both full and
partial generative models offer better flexibility in interpreting and generating novel
denominal verb usages, but the discriminative model, despite its high predictive accu-
racy, yields output distributions that are least similar to human word choices among
non-baseline models. In particular, we found that the generative models outperform
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Figure 5

A summary of model performance in denominal verb comprehension and production. The left
column summarizes the results from the 744 English examples in the DENOM-AMT dataset
based on receiver operating characteristic (ROC) curves, and the right column summarizes
similar results from the 55 Chinese examples in the DENOM-AMT dataset. “Frequency” refers to
the frequency baseline model. Higher area-under-the-curve (AUC) score indicates

better performance.

their discriminative counterparts on both child and adult denominal utterances (see
Appendix C for a detailed breakdown of these results).

To demonstrate the better flexibility of the full generative model, we visualize in the
first row of Figure 7 the listener posterior distributions p;(V|U) over paraphrase verbs
for the query denominal usage U ="porch the newspaper” based on the full generative
and discriminative models (top 20 candidates with non-zero probabilities are shown).
We found that the full generative model assigned the highest posterior probabilities
on the three ground-truth human-annotated verb paraphrases dropped, left, and threw,
and the partial generative model also ranked them as the top 5 candidates (posterior of
which is not shown in the figure). In contrast, the discriminative model only assigned
the highest posterior probability for drop, and failed to distinguish the two alterna-
tive ground-truths between other implausible candidate paraphrase verbs. The second
and third most likely candidates predicted by the discriminative model are saw and
wanted, most possibly because these are commonly associated words in the pre-training
text corpora of BERT. This limitation of not being able to explain the fine-grained
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Figure 6

Model predictive accuracy in denominal verb comprehension and production when taking the
top-k outputs, with k ranging from 1 to 5. The left column summarizes the results from the 744
English examples in the DENOM-AMT dataset, and the right column summarizes similar results
from the 55 Chinese examples in DENOM-AMT. “Frequency” refers to the frequency baseline
model. Vertical bars represent standard errors.

Table 2

Model comparison on predicting human annotated denominal data. Model accuracy is
summarized by Kullback-Leibler (KL) divergence between posterior distributions peom,(V|U),
Pproa(D|I), and fine-grained empirical distributions of human-annotated ground-truth on the
DENOM-AMT dataset. A lower value in KL indicates better alignment between model
distribution and empirical distribution. Standard errors are shown within the parentheses.

KL divergence (x10~%)

Model English Chinese
Comprehension Production Comprehension Production
Full Generative 8.86 (1.1) 21.7 (2.4) 2.93 (0.46) 7.8 (1.1)
Partial Generative 10.01 (0.9) 224 (2.5) 3.08 (0.35) 11.0 (1.1)
Discriminative 13.75 (1.0) 39.0 (1.8) 3.32 (0.33) 29.4 (1.8)
Frequency Baseline 11.41 (0) 57.7 (0) 3.62 (0) 28.5 (0)

distribution of paraphrases and only locking onto a single best solution has appeared to
be a general issue for the discriminative model, as we observed the same phenomenon
in many other test cases.

We also examine whether our generative models outperform the baselines in the
comprehension tasks by simply favoring paraphrase verbs that are more frequently
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Figure 7

Comparison of the full generative model and the discriminative model on the quality of
paraphrasing novel denominal usages. The top 2 rows show model posterior distributions on
the paraphrase verbs (horizontal axis) for the query denominal verbs porch and video in English.
The bottom row shows similar information for the query denominal verb video-chat in Chinese,
with the English translations in parentheses. Model predicted probabilities for the top 3 choices
from human annotation (i.e., ground truth) are shown in solid black bars.

paired with the target denominal verbs in the linguistic corpora. The left two columns
of Table 3 summarize individual model predictive accuracy on interpreting denominal
utterances in DENOM-AMT that have ground-truth paraphrases either completely
generated by corpus search (i.e., no alternative paraphrases collected) or produced as
alternative paraphrases by human annotators. For corpus-generated cases, we calculate
the model comprehension accuracy when considering the top-3 output paraphrase
verbs; for human-generated cases with m alternative interpretations, we calculate the
model comprehension accuracy when considering the top-m output paraphrase verbs.
We found that the full generative model offers most accurate interpretations in both
cases, while the discriminative model, despite its high accuracy in predicting corpus-
generated paraphrases, performs significantly worse on human-generated examples.
These results further demonstrated the inflexibility of discriminative language models
on interpreting denominal utterances, especially when the feasible paraphrase verbs
rarely co-occur with a given target noun in the reference corpora.
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Table 3
Model comparison on predicting human-generated and corpus-generated denominal utterance
paraphrases.

Comprehension accuracy

Model English Chinese

Human Corpus Human Corpus
Full Generative 0.406 0.459 0.279 0.288
Partial Generative 0.373 0.408 0.243 0.257
Discriminative 0.297 0.462 0.222 0.276
Frequency Baseline 0.153 0.307 0.097 0.109

These initial findings on contemporary English data therefore suggest a generative,
frame-based approach to denominal verbs that encodes speaker-listener shared knowl-
edge and latent semantic frames.

5.3 Case Study 2: Contemporary Chinese

We next investigate whether the same framework generalizes to denominal verb usages
in a language that is markedly different from English. Table 4 presents some exem-
plar denominal verbs that are common in contemporary Mandarin Chinese. Although
Chinese does not have morphological markings for word classes, there exist alterna-
tive linguistic features that signify the presence of a verb. For example, a word that
appears after the auxiliary word “#8” or before “13” is typically a verb. If a word
that is commonly used as a noun appears in context of these verbal features, it can
then be considered as a denominal verb. For example, the phrase “J/0#i__” denotes
“to __ happily”, where “__" is filled with a verb. Therefore, when a noun such as “#{
$i” (video) appears in the phrase “JF/UHIFESR” (to video happily), a Chinese speaker
would consider “MI#” as a verb converted from its nominal class. It is worth noting that
for some Chinese nouns, their direct translations into English are still valid denominal
verbs, but their meaning may differ substantially in two languages. For instance, the
denominal utterance “I videoed with my friends” would remind an English speaker
of a scenario of video recording, while for Chinese speakers the correct interpretation
should be “I chat with my friends via online video applications”. We therefore expect
our models to be able to capture such nuanced semantic variation when learning from
the Chinese denominal dataset DENOM-CHN.

Table 4

Examples of denominal verb usages in contemporary Mandarin Chinese, together with their
literal translations and interpretations in English. The target Chinese denominal verbs and their
English translations are underlined, and their corresponding English paraphrase verbs are
marked in bold font.

Chinese denominal verb usage Literal translation in English Interpretation in English
BIHE paint doors windows to paint doors and windows
M net fish to catch fish with the net

T circle land to enclose land

iyl with friends video to chat with friends via webcam
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The right columns of Figures 5 and 6 show, respectively, the ROC curves (with
AUC scores) and the top-k predictive accuracy of each model on the comprehension and
production tasks in Mandarin Chinese. We observed that, similar to the case of English
denominal verbs, the full generative model yields the best overall predictive accuracy.
Moreover, as shown in the right two columns of Table 2, the generative model aligns bet-
ter with Chinese speakers’ interpretation and production of denominal verbs, because it
yields a lower KL-Divergence score between its posteriors and empirical distributions
of ground-truths in comparison to the discriminative model. Moreover, as shown in
the right two columns of Table 3, the performance of the discriminative still drops
significantly when switching from predicting corpus-generated to human-generated
paraphrases, while its generative counterparts are much less influenced by this change.

As an example of where our framework successfully captures cross-linguistic se-
mantic variation in denominal verbs, the second and third rows of Figure 7 illustrate the
posterior distributions over paraphrase verbs for the discriminative and full generative
models on the exemplar utterance “to video (fi#) with my friends”, in English and Chi-
nese. In both languages, the full generative model assigns the highest probability masses
on the three ground-truth paraphrases chosen by human annotators, thus demonstrat-
ing its ability to flexibly interpret a denominal verb based on its linguistic context under
different languages. The discriminative model not only favors idiosyncratically a single
ground-truth verb (“ZZi% [talk]” for Chinese and “make” for English), but it also yields
less flexible model posteriors when translating from English to Chinese. For instance,
the BERT model fails to realize that “make” should no longer be a good paraphrase in
Chinese, while the full generative model successfully excludes this incorrect interpreta-
tion from the top 10 candidates in the listener’s posterior distribution.

These results further support our generative, frame-based approach to denominal
verbs that explains empirical data in two different languages.

5.4 Case Study 3: Historical English

In our final case study, we examine whether our framework can predict the emergence
of novel denominal verb usages in the history of English.

We first demonstrate the effectiveness of our change point detection algorithm
in determining valid noun-to-verb conversions in history. Figure 8 shows the word
frequency-based Z-score series Z(w) for the noun-to-verb count ratio series Q(w, t) of
some sample words, together with the change points t*(w) detected by our algorithm.
We observed that the algorithm correctly identifies substantial shifts in noun-to-verb
count ratios across time.

We next report the temporal predictive accuracy of our models by dividing the
evaluation set of denominal verbs into groups where change points fall under the same
decade. For each target word D with m novel denominal usages observed after its de-
tected change point t*(w), we take the top m sampled usages with the highest speaker’s
posterior probability ps(U|I) as the set of retrieved model predictions, and we then
calculate the average predictive accuracy of the top m predictions over all denominal
verbs emerged in each decade. We considered two kinds of evaluation criteria when
making predictions for target D in future decade t: taking as ground truth denominal
utterances that contain D (1) specifically in the immediate following decade t + 1, and
(2) in any future decade t' > t up to the terminal decade 2000s.

Figure 9 shows the decade-by-decade precision accuracy for all the three probabilis-
tic models, along with a frequency baseline that always chooses the top m denominal
utterances with the highest frequencies that contain D. The predictive accuracy falls
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Frequency-based z-score time series Z(w) = Z(Q(w, t)) for the nouns “phone” and “garage”
over the past two centuries. The stacked color areas denote percentage of noun/verb usage
frequencies in each year, and the red vertical lines mark the detected historical change point of
noun-to-verb conversion.

systematically in later decades because there are fewer novel denominal verbs to predict
in the data. To ensure that most target nouns have attested denominal uses in future
decades, we only calculate model precision up to 1980s. The full generative model yields
consistently better results in almost every decade, and it is followed by the BERT-based
discriminative model. Note that in later decades, the difference in accuracy of BERT
model and the full model becomes smaller, presumably due to the increasing similarity
between learning data and text corpora on which BERT is pre-trained (i.e., contempo-
rary text corpora). Overall, our generative model yields more accurate prediction on
denominal verb usages than the discriminative model with rich linguistic knowledge.
Taken together, these results provide firm evidence that our probabilistic framework
has the explanatory power over the historical emergence of denominal verb usages.

6. Model Interpretation and Discussion

To interpret the full generative model, we visualize the latent frame representations
learned by this model. We also discuss the strengths and limitations from qualitative
analyses of example denominal verb usages interpreted and generated by the model.
Classic work by Clark and Clark (1979) provided a fine-grained classification of
denominal usages within the relation type INSTRUMENT. We use this information to
gain an intuitive understanding of the full generative model in its ability to capture fine-
grained semantics via the frame element variable E. Figure 10 shows the t-distributed
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Figure 9

Model predictive accuracy on the DENOM-HIST dataset. Top row shows the predictive accuracy
where only emerging denominal verb usages in the immediate next decade are considered.
Bottom row shows predictive accuracy where all future emerging denominal usages are
considered.

Stochastic Neighbor Embeddings (t-SNE) (van der Maaten and Hinton 2008), a
nonlinear dimensionality reduction method that projects high-dimensional data into
low-dimensional space for visualization, of the model-learned latent frame elements for
the example denominal utterances in INSTRUMENT type. All data points are expressed
in markers following their sub-category labels pre-specified in Clark and Clark (1979).
We observe that the learned frame variable E encourages denominal usages within the
same sub-category to be close in semantic space, manifested in the four clusters. As
such, the frame variable helps to capture the fine-grained distinctions of denominal
usages (even within the same broad semantic category).

To gain further insight into the generative model, we show in Tables 5 and 6
example model predictions in the three datasets we analyzed, for denominal verb com-
prehension and production, respectively. In the comprehension task (Table 5), our model
provides reasonable interpretations on novel denominal verbs that did not appear in the
learning phase. For instance, the model inferred that blanket the bed can be paraphrased
as “put/drop/cover the blanket on the bed”, which are close approximations to the top
3 ground-truth paraphrases “put/place/lay the blanket on the bed”. One factor that
facilitated such inference is that there are analogous denominal verbs during model
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t-distributed Stochastic Neighbor Embedding visualization of the model-learned frame elements
(E) for denominal verb usages in the category of INSTRUMENT (DENOM-ENG dataset).
Utterances within each sub-category based on Clark and Clark (1979) are shown with the same
marker. For each sub-category, the most frequent denominal utterances are annotated with its
source text.

Table 5

Example paraphrases of novel denominal usages interpreted by the full generative model.
Denominal Dataset Semantic Human paraphrases Top verb paraphrases
usage relation with model-predicted ranks in () inferred from the model
blanket the bed DENOM-ENG  locatum on put(1), place(3), lay(11) put, drop, cover

paper my hands DENOM-ENG  instrument cut(1), hurt(2) cut, hurt, wound

fox the police DENOM-ENG  agent deceive(4), baffle(2), fool(3) cheat, baffle, fool

[ £ (net the fish) DENOM-CHN  instrument ffi(catch, 1), #(capture, 3) f#i(catch), #2(seize), #M(capture)
garage the car DENOM-HIST  location on stop(1), put(6), park(2) stop, park, move

mine the gold DENOM-ENG location out dig(327), extract(609), get(25) put, bury, find

bee the cereal DENOM-ENG locatum on add(54) get, find, eat

learning (e.g., carpet the floor) that allowed the model to extrapolate to new denominal
cases.

In the production task (Table 6), our model successfully generated both (1) now
conventionalized denominal usages such as stem the flowers, even though stem was
completely missing in the learning data, and (2) truly novel denominal cases such as
chimpanzee my gestures, presumably by generalization from training examples such as
parrot my words.
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Table 6

Examples of novel denominal usages produced by the full generative model.

Paraphrase Dataset Semantic Ground-truth Denominal usages sampled
verb relation denominal verb utterances from model posterior
remove DENOM-ENG  instrument shgll the p eanuts, fin the fish, stem the flowers

skin the rabbit

repeat DENOM-ENG  agent parrot my words chimpanzee my gestures
i#%(choose) =~ DENOM-CHN instrument /i A(sieve the candidates) %1% 1548 (sieve the books)
% #(freeze) DENOM-CHN  instrument #K7K(ice the water) VK& (ice the food)

Similar to the case of English, models trained on Chinese denominal data also ex-
hibit generalizability. However, we also observed poor model generalization, especially
when training instances from a semantic type are extremely sparse. For instance, as
Clark and Clark (1979) point out, very few English denominal verbs fall under the “loca-
tion out” relation type, and our model therefore often misinterpreted denominal usages
under this type (e.g., mine the gold) as cases from “location in” type (e.g., “put/bury/find
the gold in(to) the mine”). These failed cases suggest that richer and perhaps more
explicit ontological knowledge encoded in denominal meaning, such as the fact that
mines are places for excavating minerals, should be incorporated. These failed cases
might also be attributed to the difficulty in distinguishing different types of semantic
relations with word embeddings, such as synonyms from antonyms.

Another issue concerns the semantic representation of more complex denominal
verbs that cannot be simply construed via paraphrasing, but are otherwise compre-
hensible for humans. For example, the denominal usage bee the cereal was observed in
a sub-corpus of the CHILDES dataset, where a child asked the mother to add honey
to his cereal. Interpreting such an innovative utterance requires complex (e.g., a chain
of) reasoning by first associating bees with honey, and then further linking honey and
cereal. Because the paraphrase templates we worked with do not allow explanations
such as “to add the honey (produced by bees) into the cereal”, all models failed to
provide reasonable interpretations for this novel usage.

Our framework is not designed to block novel denominal usages. Previous studies
suggest that certain denominal verbs are not productive due to blocking or statistical
preemption, for example, we rarely say car to work because the denominal use of car
is presumably blocked by the established verb drive (Clark and Clark 1979; Goldberg
2011). We believe that this ability of knowing what not to say cannot be acquired without
extensive knowledge of the linguistic conventions of a language community, although
we do not consider this aspect as an apparent weakness of our modeling framework
(since car to work does have sensible interpretations for English speakers, even though
it is not a conventional expression in English). In contrast, we think it is desirable for
our framework to be able to interpret and generate such preemptive cases, because such
expressions though blocked in one language can be productive and comprehensible in
other languages. Our generative models are able to produce and interpret such poten-
tial overgeneralizations due to their exposure to unsupervised denominal utterances
generated from synonym substitutions as explained in Section 4.1.

7. Conclusion

We have presented a formal computational framework for word class conversion
with a focus on denominal verbs. We formulate noun-to-verb conversion as a dual
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comprehension and production problem between a listener and a speaker, with shared
knowledge represented in latent semantic frames. We show in an incremental set of
probabilistic models that a generative model encoding a full distribution over seman-
tic frames best explained denominal usages in contemporary English (by adults and
children), Mandarin Chinese, and the historical development of English. Our results
confirmed the premise that probabilistic generative models, when combined with struc-
tured frame semantic knowledge, can capture the comprehension and production of
denominal verb usages better than discriminative language models. Future work can
explore the generality of our approach toward characterizing other forms of word class
conversion. Our current study lays the foundation for developing natural language
processing systems toward human-like lexical creativity.

Appendix A. Design Details of the Neural Network Modules

Recall that the listener’s and the speaker’s distributions of three probabilistic models are
parametrized by deep neural networks. For discriminative models, we use the BERT
transformer to compute hidden representations for each token of the input sequence,
and pass them through a fully connected layer (parametrized by a transformation
matrix W and a bias vector b) to obtain proper probability distributions:

p,(I = (V,R)|U) = o(Wyy - feerr(U) + bv) - o(Wir - feert(U) + by ) (A1)
p,(U = (D,C)|I) = o(W; p - faerr(I) + bsp) - (W ¢ - fgerr () + bs c) (A2)

Here o is the softmax function, and we assume that, conditioned on the input sequence,
each component of the output sequence can be generated independently.

Similar to the discriminative model, both modules in the partial generative model
first map input sequence into a hidden semantic space, and then sample each token
of the output sequence independently by computing a categorical distribution for each
component:

pi(I = (V,R)U) = oWy - i) + byy) - (Wi - A(U) + by ) (A3)

p(U = (D,C)1) = 6(Wep - fol]) + byp) - o(Wsc - fol]) + b ) (Ad)

For the full generative model, the listener would also sample frame elements E during

inference, and the speaker would also take frame elements E as input when sampling
denominal utterances during generation:

p(LEIU) = o(Wyv - A(U) + biy) - o(Wir - AU) + biR) - o(Wie - A(U) +bre)  (A5)

Ps(uu/ E) = G(WS,D 'fs(I/ E) + bs,D) : 0<(Vvs,C 'fs(I/ E) + bs,C) (A6)

Appendix B. Mathematical Proofs for Variational Learning

Here we show that the variational learning scheme described can achieve the following
two goals simultaneously: (1) finding a probabilistic model that maximizes likelihood
of all unsupervised denominal utterances, and (2) finding a pair of listener-speaker
modules that induce the same joint distribution Pr(U, I) over denominal utterances and
their interpretations. We shall use the full generative model for the proof, although the
results should also apply to the partial generative model.
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Suppose we have an unsupervised set of denominal utterances without any para-
phrases available. To compute the probability that our generative model would generate
a particular utterance U, we need to consider each possible meaning M that may be
associated with it, and then sum up all joint probabilities p,(U, M) defined by the
model:

p(U) =Y p,(U,M) (B.1)
M

The log-likelihood 7 of all utterances therefore has the form:

T =Y logl)_ pu?Mpo(M)] (B.2)
uvex, M
> 10g[Eptrp, [ps (U M)]] (B.3)
ufex,

where we use Ey.p, to denote the process of taking expectation over all possible
meanings. However, optimizing J directly would be difficult for most cases, and a
common alternative is first finding a lower bound of 7, and then maximizing that
bound—this is where we introduce the listener into the learning process. In particular,
by inserting a listener’s posterior p;(M|U) as an approximation of speaker’s belief in
utterance meanings ps(M|U), we can re-write Equation (18) as:

T = > logly U Mypo(M)] (B4)
utex, M
ps(u \M)Po
gx lo [Z ML) ) ) (B.5)

where we divide the joint probability p,(U, M) with the listener’s meaning likelihood
pi(U|M) and multiply it back. Using Jensen’s Inequality and the concavity of the log
function, we can therefore derive a lower bound for J by replacing the log-of-sum in
Equation (20) with a sum-of-log term:

J = Z lo [Z ACK (%Egm) J(M|U)] (B.6)
s(UD[M)po(M)
> 3 Sptau) ylog P s (B7)
= > ) logp(UM) —lo gp’((z\'@ pr(MIU)] (B.8)
uvex, M
3" Entep,llog ps(UIM)] — Dlpi(MIU)||po(M]o0)] (B.9)
uex,
=U (B.10)
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Therefore, the unsupervised loss defined in Equation (3) is a universal lower bound of
J. Ideally, U and J would converge after training. In this case, the log-of-sum term
in Equation (21) will be equal to the sum-of-log in Equation (22), implying that the

@
fractional term W inside the log becomes constant (i.e., independent of M):

ps (U |M)po(M)
pr(M|U)

=c (B.11)
Moving p;(M|U) to the right-hand side and integrating over M we have:
ps(UY) =c (B.12)

So p; becomes the following:

ps(UD|M)po(M)
C

pM|U) = (B.13)
_ ps(UO[M)po(M)
) (B.14)
= ps(M|U) (B.15)

via Bayes’ rule. Therefore, by optimizing I/, we not only maximize the log-likelihood ] of
all denominal utterances, but also operationalize the idea of shared semantic knowledge
by forcing the listener and speaker module to define the same joint utterance-meaning
distribution.

Appendix C. Prediction of Denominal Verb Usages in English-speaking Adults
and Children

Table C1

Model comparison on predicting human annotated English denominal utterances made by
adults and children. Model accuracy is summarized by Kullback-Leibler (KL) divergence
between posterior distributions pmmp(V| U), Pprod (D|I), and fine-grained empirical distributions
of human-annotated ground-truth on DENOM-AMT dataset. A lower value in KL indicates
better alignment between model distribution and empirical distribution. Standard errors are
shown within the parentheses.

KL divergence (x1072)

Model English adults English children
Comprehension Production Comprehension Production
Full Generative 16.8 (2.4) 53.1 (4.6) 29.7 (3.0) 925 (1.4)
Partial Generative 19.1 (1.7) 56.5 (5.5) 31.1(3.5) 115.7 (1.4)
Discriminative 34.7 (2.2) 103.1 (3.9) 30.6 (2.9) 104.6 (1.3)
Frequency Baseline 44.7 (0) 133.2 (0) 44.7 (0) 133.2 (0)
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Figure C1

A breakdown of model performance in English denominal verb comprehension and production,
based on adults” and children’s usage data. The left column summarizes the results from the 100
denominal utterances made by adults in the DENOM-AMT dataset based on receiver operating
characteristic (ROC) curves, and the right column summarizes similar results from the
denominal utterance in DENOM-AMT made by children. “Frequency” refers to the frequency
baseline model. Higher area-under-the-curve (AUC) score indicates better performance.

Appendix D. Calculation of KL Divergence

The Kullback-Leibler (KL) divergence Dx; measures how one probability distribution
is different from another reference distribution. For two discrete distributions P, Q, their
KL divergence is defined as:

P(x)
Qx)

Dy (PI|Q) = D P(x)log(:-~) (D.1)

In our analysis, we compute the KL divergence between (1) the distribution of
ground-truth responses in DENOM-AMT (P, proportional to the number of votes re-
turned by human annotators), and (2) the model’s output distribution of predicted
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word (Q). For instance, consider the following question of paraphrasing a denominal
utterance:
“I carpet the floor.” — “I___the carpet on the floor.” (D.2)

Suppose that there are 4 candidate paraphrase verbs with non-zero votes by the anno-
tators and non-zero output probabilities returned by the full generative model:

Candidate verb put drop place leave
Vote by annotators 8 2 5 1
Induced empirical probability (P) 0.5 013 031 0.06
Output probability by 041 0.08 0.16 0.01

full generative model (Q)

The KL divergence can therefore be calculated as the following:

Di.(P||Q) —05*log041 +0. 13*1og8(1)§
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