Tractable Parsing for CCGs of
Bounded Degree

Lena Katharina Schiffer

Leipzig University

Faculty of Mathematics and

Computer Science
schiffer@informatik.uni-leipzig.de

Marco Kuhlmann
Linkoping University
Department of Computer and
Information Science
marco.kuhlmann@liu.se

Giorgio Satta

University of Padua

Department of Information Engineering
satta@dei.unipd.it

Unlike other mildly context-sensitive formalisms, Combinatory Categorial Grammar (CCG)
cannot be parsed in polynomial time when the size of the grammar is taken into account. Refining
this result, we show that the parsing complexity of CCG is exponential only in the maximum
degree of composition. When that degree is fixed, parsing can be carried out in polynomial time.
Our finding is interesting from a linguistic perspective because a bounded degree of composition
has been suggested as a universal constraint on natural language grammar. Moreover, ours is
the first complexity result for a version of CCG that includes substitution rules, which are used
in practical grammars but have been ignored in theoretical work.

1. Introduction

Combinatory Categorial Grammar (CCG; Steedman and Baldridge 2011) is one of
the standard grammar formalisms in computational linguistics and natural language
processing. It is usually counted among the so-called mildly context-sensitive for-
malisms, which were introduced by Joshi (1985). This classification is based on two
celebrated theoretical results: First, in a result about generative power, Weir and Joshi
(1988) and Vijay-Shanker and Weir (1994) proved that CCG generates the same string
languages as three other extensions of context-free grammars: Head Grammars, Linear

Action Editor: Carlos Gémez-Rodriguez. Submission received: 22 December 2021; accepted for publication:
25 February 2022.

https://doi.org/10.1162/coli_a_00441

© 2022 Association for Computational Linguistics
Published under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
(CC BY-NC-ND 4.0) license

mailto:schiffer@informatik.uni-leipzig.de
mailto:marco.kuhlmann@liu.se
mailto:satta@dei.unipd.it
https://doi.org/10.1162/coli_a_00441

Computational Linguistics Volume 48, Number 3

Indexed Grammars, and Tree Adjoining Grammars (TAGs)—the perhaps best-known
mildly context-sensitive formalism. Second, in a result about computational power, Vijay-
Shanker and Weir (1990, 1993) showed that CCG can be parsed in polynomial time with
respect to the length of the input sentence, which is one of the characteristic properties
of mild context-sensitivity. These two results long defined the view of CCG’s place in
the landscape of grammar formalisms. In this article, we contribute to a growing body
of work that refines and partially changes this view. We briefly summarize the main
results of this recent work before stating our own contributions.

1.1 Generative Power

One important insight in recent work on the generative power of CCG concerns the
role of lexicalization. Modern CCG proposes a radically lexicalized theory of grammar in
which all linguistic structure is projected from a language-specific lexicon by a small
set of universal rules (Steedman and Baldridge 2011). We call this formalism pure
CCG. By contrast, the formalism studied in the classical equivalence result of Weir
and Joshi (1988) and Vijay-Shanker and Weir (1994) allows restricting the applicabil-
ity of rules on a per-grammar basis. This makes a significant difference in terms of
expressiveness: Kuhlmann, Koller, and Satta (2010, 2015) show that the class of string
languages generated by pure CCG is not equivalent to but properly included in the
class of languages generated by TAG. More specifically, they show that every language
generated by a pure CCG contains a permutation-equivalent, context-free subset—a
property not shared by the TAG languages. The intuition behind this formal result is
that the universal availability of combinatory rules entails a certain loss of control in the
derivation process. For example, every pure CCG that admits infinitely many strings
of the (non-context-free) form a"b"c" will necessarily also admit permutations of the
context-free form (ab)"c" or a™(bc)". This closure property has concrete implications
in linguistic modeling. For instance, Kuhlmann, Koller, and Satta (2015) show that
any pure CCG that models the canonical, cross-serial word order in Swiss German
subordinate clauses (Shieber 1985) also predicts alternative, non-crossing word orders.
For the more general class of prefix-closed CCGs, Kuhlmann, Koller, and Satta (2015)
prove that it is the availability or unavailability of a specific type of rule restrictions
called target restrictions that separates TAG-equivalent CCGs from CCGs with the
permutation closure property. Related to this, the authors discuss the conditions under
which modern multimodal variants of the CCG formalism—which are able to express
certain but not all rule restrictions—can be weakly equivalent to TAG. We shall return
to multimodal CCG in Section 6.3.

All known results on the weak generative power of CCG concern grammars that
only use functional application and composition. It is generally accepted that substitu-
tion rules, which we will discuss in detail later on, do not change the generated string
languages, although we are not aware of any full proof of this supposition. Steedman
(2000, page 210) sketches how the simulation of CCG by Linear Indexed Grammar in
the proof of Vijay-Shanker and Weir (1994) can be extended to cover substitution rules,
which shows that adding these rules does not increase the generative power of CCG.

The impact of lexicalization on expressive power also extends to notions of strong
generative capacity. In particular, CCG has been studied as a generator of tree languages
via its derivation trees. The standard conception of a derivation tree in CCG, illustrated
in Figure 1, is that of a binary tree whose leaves are labeled with lexical categories and
whose inner nodes are labeled with derived categories produced by combinatory rules

594

Schiffer, Kuhlmann, and Satta Tractable Parsing for CCGs of Bounded Degree

Alice recently divorced Bob

(S\NP)/(S\NP) (S\NP)/NP
(S\NP)/NP NS
NP S\NP

Figure 1

A CCG derivation tree for the sentence Alice recently divorced Bob (from Kuhlmann, Maletti, and
Schiffer 2022). Rules are annotated with their conventional abbreviations (highlighted):

> forward application; < backward application; >g forward harmonic composition.

such as functional application and composition.! An alternative conception that is more
convenient from a formal point of view is to let the derived categories remain implicit
and consider derivation trees where the inner nodes are labeled with the names of the
combinatory rules.? (In Figure 1, abbreviated rule names are highlighted.) Under this
view, the set of derivation trees licensed by a given CCG forms a tree language in
the technical sense of the term. Then, just as in the string case, the generative power
of CCG depends on the availability of rule restrictions. The restricted formalism of
Weir and Joshi (1988) and Vijay-Shanker and Weir (1994) generates the same tree lan-
guages as TAG (Schiffer and Maletti 2021). This holds even when lexical entries for the
empty word—so-called e-entries—are forbidden. That case is particularly interesting
because such entries contradict one of the fundamental linguistic principles of CCG,
the Principle of Adjacency (Steedman 2000, page 54). The same class of tree languages
is generated by simple monadic context-free tree grammar, as proven by Kepser and
Rogers (2011); an equivalent model is the linear top—down push-down tree automaton
(Fujiyoshi and Kasai 2000). On the other hand, pure CCG cannot even generate all
regular tree languages (i.e., the sets of trees generated by context-free grammars), and
CCG that allows application rules and composition rules of degree 1 can generate
exactly the regular tree languages (Kuhlmann, Maletti, and Schiffer 2019, 2022).

Table 1 summarizes several results on the string-generative and tree-generative
power of CCG. Other work has studied the sets of dependencies that can be expressed
by the formalism. Hockenmaier and Young (2008) compare a version of CCG that
includes the type-raising rule with Lexicalized TAG and identify specific cases of scram-
bling that can only be expressed in the former but not in the latter. Another result is that
of Koller and Kuhlmann (2009), who inspect the classes of dependency trees induced by
CCG and TAG and show that these are incomparable. In a similar direction, Stanojevi¢
and Steedman (2021) study cross-linguistic word order variations in two major con-
structions with a “natural order of dominance” of their elements and show that CCG can
characterize exactly the separable permutations of this order. Separable permutations
are those for which one can construct a binary tree where the leaves of each subtree
form a contiguous subset of the original order. By contrast, TAG can characterize even
non-separable permutations. In particular, as Stanojevi¢ and Steedman (2021) point out,
the example of Koller and Kuhlmann (2009, Figure 8b) of a dependency tree that can be

1 Later on, we will consider the input words as nodes of the derivation tree as well.
2 This conception of CCG derivation trees was considered already by Weir and Joshi (1988).

595

Computational Linguistics Volume 48, Number 3

Table 1

Overview of results on the generative power of CCG, relating it to context-free languages (CFL),
regular tree languages (RTL), and tree-adjoining languages (TAL). Unless stated otherwise, rule
restrictions are allowed. References: (a) Bar-Hillel, Gaifman, and Shamir (1960); (b) Buszkowski
(1988); (c) Weir and Joshi (1988); (d) Vijay-Shanker and Weir (1994); (e) Fowler and Penn (2010);
Kuhlmann, Koller, and Satta (2010); (f) Kuhlmann, Koller, and Satta (2015); (g) Steedman (2000,
page 210); (h) Schiffer and Maletti (2021); (i) Kuhlmann, Maletti, and Schiffer (2022). Bar-Hillel,
Gaifman, and Shamir (1960) and Buszkowski (1988) studied the generative capacity of classical
categorial grammar, which is pure, but the results for CCG with rule restrictions easily follow
(see also Kuhlmann, Maletti, and Schiffer 2022). We have omitted further conclusions that can be
drawn by combining the reported results.

CCG variant e-entries 1 string tree
anguages languages

(pure) with application rules only yes/no = CFL® C RTL®)

pure with composition degree d = 1 yes/no = CFL® C RTLO

composition degree d =1 yes/no = CFL® = RTLY

pure with composition degree d > 2 yes/no ¢ TALY C TAL®

prefix-closed without target restrictions yes/no ¢ TAL®

prefix-closed with target restrictions yes =TAL®

composition degree d > 2 no = TAL®M = TAL®

composition degree d > 2 yes =TAL@ = TAL®

composition/substitution degree d > 2 yes = TAL®

generalized composition of unlimited degree yes 2 TALW®

expressed by TAG but not by CCG corresponds to a non-separable permutation. This
marks yet another recent result on generative power that separates CCG from other
mildly context-sensitive grammar formalisms.

1.2 Computational Power

In this article, we are primarily concerned with the computational power of CCG, and
in particular with their parsing complexity. As already mentioned, polynomial-time
parsing is one of the characteristic properties of mildly context-sensitive grammars as
they were originally proposed by Joshi (1985). However, it is important to note that
this property can refer to two different computational problems. The result by Vijay-
Shanker and Weir (1993) mentioned above refers to the membership problem, where
parsing complexity is measured relative to the length of the input string. Under this
conceptualization, CCG and TAG are equal in their computational power.

Looking at the universal recognition problem, however, where runtime is mea-
sured as a function of both the length of the input string and the size of the grammar,
the parsing complexities of CCG and TAG are much different: Whereas the universal
recognition problem of TAG remains polynomial (Schabes 1990), Kuhlmann, Satta, and
Jonsson (2018) show that for CCG, this problem is EXPTIME-complete. This means that,
in the worst case, the runtime of any parsing algorithm for CCG will grow exponentially
with the size of the grammar. However, the exact effect of different grammar-related
features on parsing complexity have been hard to pin down so far. Kuhlmann and Satta
(2014) present an analysis that refers to several rather specialized properties, including
the maximum degree of a composition rule, the maximal arity of an argument in the
lexicon, and the maximum number of arguments. Kuhlmann, Satta, and Jonsson (2018)

596

Schiffer, Kuhlmann, and Satta Tractable Parsing for CCGs of Bounded Degree

discuss additional features and their relevance for their EXPTIME result. As they point
out, the availability of e-entries is crucial: Without this feature, the universal recognition
problem becomes NP-complete. The other features that they discuss are lexical ambigu-
ity (the nondeterministic assignment of categories to input words via the lexicon), the
use of restricted rules that may contain variables, and the absence of a fixed bound on
the maximal degree of composition.> Dropping any of these features would break the
EXPTIME proof, but it remained unclear whether it would also yield a formalism whose
universal recognition problem is solvable in polynomial time.

1.3 Contributions of the Present Article

The present article takes a further step toward a better understanding of the complexity
of CCG parsing. Our first contribution is to radically simplify earlier complexity analy-
ses, and in particular that of Kuhlmann and Satta (2014): As we will show, the universal
recognition problem is exponential only in the maximum rule degree; bounding this
degree by a constant leads to a problem that is polynomial in the grammar size. Such
a bound is interesting both from a theoretical and a practical point of view. From the
equivalence proof of Vijay-Shanker and Weir (1994), it is clear that rule degree d < 2 is
sufficient to obtain the full generative power in terms of string languages. More recently,
Schiffer and Maletti (2021) showed that this result even holds when considering CCGs
as generators of tree languages. In the linguistic work on CCG, a bounded degree of
composition has repeatedly been discussed as a syntactic universal. In particular, for
English, Steedman (2000, page 42) posits the bound d < 3.

Our second contribution is the extension of existing parsing algorithms to the
full class of practically relevant CCGs, by including the substitution rule. This rule is
used to model linguistic phenomena such as parasitic gaps, but was not part of the
formalism considered by Vijay-Shanker and Weir (1994). Figure 2 shows an example
from Steedman (2000, page 51) that requires backward crossed substitution to obtain
a category for the phrase file without reading. Steedman argues that this expression
should be considered a constituent because it can be used in coordinate structures.
The gaps behind without reading and behind file refer to the same resource, expressed
by arguments /NP, which collapse into a single argument /NP through substitution.
Although it is accepted that substitution rules do not affect the weak generative power
of CCG, their effect on the computational complexity of the parsing problem is much
less clear. Therefore, the generalization of the parsing algorithm to substitution rules is
an important contribution. To the best of our knowledge, our result is the first one that
explicitly features substitution. As we will show, the maximum degree of substitution
has a similar impact on the parsing complexity as the maximum degree of composition.

A full complexity analysis of practical CCG would cover not only application, com-
position, and substitution, but also type-raising. However, here we follow Steedman’s
assumption that this rule cannot be used recursively, and can therefore be compiled into
the lexicon of the grammar (Steedman 2011, page 81). Similarly, we assume a purely

3 Each individual CCG defines a maximum degree for its composition rules, since its rule set is finite.
However, the analysis by Kuhlmann, Satta, and Jonsson (2018) assumes that there is no universal bound
on the maximum degree of composition rules across all possible CCGs. As a side remark, if composition
rules are generalized in such a way that their degree is unbounded within an individual CCG, the
resulting formalism becomes more powerful (Weir and Joshi 1988) and is actually Turing-complete when
e-entries are allowed (Kuhlmann, Satta, and Jonsson 2018).

597

Computational Linguistics Volume 48, Number 3

which [will file without reading

(VP\VP)/VPing VPing/NP
VP/NP (VP\VP)/NP
S/VP VP/NP
(N\N)/(S/NP) S/NP
N\N

X

>B

Figure 2

A CCG derivation tree (from Steedman 2000, page 51) that uses backward crossed substitution
(<s,) to combine the categories corresponding to file and without reading. Note that I will with
associated category S/ VP is not an actual lexicon entry but is obtained through prior
combination of the individual words (abbreviated here).

lexical treatment of coordination via (appropriately restricted) lexicon entries such as
and := X\ X /X (Steedman 2011, page 91).

1.4 Structure of the Article

The remainder of this article is structured as follows. Section 2 provides an introduction
to the CCG formalism that we use. Section 3 is dedicated to the new parsing algorithm.
After explaining the central idea of the factorization of derivations in an informal way,
we define the basic notions required for our presentation, and then provide a formal
specification of the algorithm and an illustrating example. The section concludes with
a comprehensive runtime analysis. Section 4 contains the correctness proof of the algo-
rithm, divided into the proofs of soundness and completeness. Section 5 describes how
to construct a CCG derivation tree from the parse trees produced by our algorithm.
Section 6 explores several potential extensions and improvements of the algorithm,
including the elimination of spurious ambiguity, support for rule restrictions, support
for multimodal CCG, and an algorithm for the universal recognition problem running
in polynomial runtime if all secondary input categories in the rule set of the grammar
are instantiated. Section 7 concludes the article.

2. Preliminaries

The CCG formalism that we consider in this article is based on that of Vijay-Shanker and
Weir (1994). A grammar in this formalism consists of two parts: a lexicon that specifies
syntactic information in the form of categories, and a set of rules that specify how to
project the lexical information onto longer sentences. In the formalism of Vijay-Shanker
and Weir (1994), these rules included rules of application and composition; here we also
add rules of substitution.

2.1 Categories
Categories are syntactic types that can either be primitive, such as S (“sentence”) or NP

(“noun phrase”), or complex, such as (S\NP) /NP or S\NP. The intended interpretation
of a complex category of the general form X/Y or X\Y is that it takes an argument

598

Schiffer, Kuhlmann, and Satta Tractable Parsing for CCGs of Bounded Degree

of category Y and returns an object of category X. Thus, complex categories constitute
function types. Formally, given an alphabet A of atomic categories and the set of slashes
D = {/,\}, the set of categories is inductively defined as the smallest set C(A) such that
(1)ACC(A)and (2) (X/Y) € C(A)and (X\Y) € C(A) for X,Y € C(A). The slashes are
left-associative by convention, so we can write each category as

c=aljcy - |kck

where k >0,a€ A, and |; € D, ¢; € C(A) for all 1 <i < k. The atomic category a is
called the target of ¢ and denoted by target(c). The slash—category pairs |;c; are called
arguments and their number k is called the arity of ¢ and written as arity(c).

Example 1

The category S\NP /NP is identical to (S\NP) /NP due to left-associativity of slashes. It
has target S and two arguments \NP and /NP, thus its arity is 2. Note that this category
is different from S\ (NP/NP), which has arity 1.

2.2 Rules

Combinatory Rules. Categories can be combined using combinatory rules. We propose
the following compact notation that covers both composition and substitution rules in
a uniform manner. Each combinatory rule has one of the forms

X/Ya Yaf = Xaf (forward rule)

Yap X\Ya = Xap (backward rule)

where « and B are sequences of slash-variable pairs such that |x| <1 and || > 0. The
rules describe how a primary input category (highlighted) can be combined with a
secondary input category to produce an output category. We shall refer to the slash-
category pairs in | Y« as bridging arguments and to the sequence af as the excess. The
primary input category expects the bridging arguments to be provided by the secondary
input category; the leading slash of the argument |Y specifies the direction where the
secondary input category is found. The output category follows the form of the primary
input category with the bridging arguments replaced by the excess. We note that we can
write down combinatory rules more explicitly as

X/Yu YCK|1C1 |be = Xoc|1C1~~~ |be (forward rule)
Ya |1 Cr -+ [, G X\Ya = Xa|1Ci - [, Cp (backward rule)

wherew € {¢, [0Cp}, and fori € {0,...,b}, wehave |; € D,and X, Y, and C; are category
variables that range over all categories in C(A). We can optionally restrict the ranges of
some of the variables as described below.

Let a = |a| and b = |B|. Rules with 4 = 0 are composition rules, and rules with
a = 1 are substitution rules. A special form of composition rules are application rules,
which have a = b = 0. The length d = a + b is called the degree of the rule. This means
that substitution rules have degree at least 1 and application rules are composition rules
of degree 0. Figure 3 lists the (unrestricted) combinatory rules of degree 0 and degree 1.

599

Computational Linguistics Volume 48, Number 3

Application (a =0, b = 0)

XY Y = X (forward application)
Y X\Y = X (backward application)

Composition of degree1 (a =0,b = 1)

XY Y/Z = X/Z (forward harmonic composition)
XY Y\2 = X\Z (forward crossed composition)
Y\Z X\Y = X\Z (backward harmonic composition)
Y/Z X\Y = X/Z (backward crossed composition)

Substitution of degree1 (a =1,b = 0)

X/Y/Z Y/Z = X/Z (forward harmonic substitution)

X/Y\2 Y\Z = X\Z (forward crossed substitution)

Y\Z X\Y\Z = X\Z (backward harmonic substitution)

Y/Z X\Y/Z = X/Z (backward crossed substitution)
Figure 3

Combinatory rules of degree 0 and degree 1.

Rule Restrictions. There are two types of rule restrictions. A target restriction can restrict
the target of the variable X. More specifically, it can restrict X to range over a set of the
form {c € C(A) | target(c) € T} with T C A. A secondary input restriction can restrict
the variable Y and any of the variables C; withi € {0,...,b} to a subset of C(A).

Instantiation of Rules. Before combinatory rules can be applied, they first have to be
instantiated by replacing the variables X, Y, and the variables C; for i € {0,...,b} by
concrete categories from C(A), yielding a ground instance of the combinatory rule. We
use the compact notation of combinatory rules also for ground instances, so that « and
B denote actual argument sequences. It will always be clear from the context whether &
and f are sequences of slash—variable pairs or else sequences of actual arguments.

We would like to point out that for a fixed CCG there is only a finite set of categories
that the variables Y and C; for i € {0,...,b} can be instantiated with. This is because all
arguments of categories occurring in derivations, and therefore all arguments occurring
in the applied ground instances, already appear in the lexicon (Vijay-Shanker and Weir
1994, Lemma 3.1). However, even if each of these variables is restricted to match only a
single category, a combinatory rule can still have infinitely many ground instances due
to X ranging over infinitely many categories.

600

Schiffer, Kuhlmann, and Satta Tractable Parsing for CCGs of Bounded Degree

Example 2

We consider the forward harmonic composition rule X/Y,Y/Z = X/Z, where a =0,
b=1and p=/ Z.* We can either leave it unrestricted, such that X, Y, and Z can be
instantiated with any category, or we can use rule restrictions. For instance, we can
restrict Z to {NP} using a secondary input restriction and we can restrict X to take a
target from {S} using a target restriction. In this scenario, (S\NP)/(S\NP), (S\NP)/
NP = (S\NP)/NP with bridging argument /(S\NP) and excess /NP is a valid ground
instance, whereas NP/NP, NP/NP = NP/NP is not, as it violates the target restriction.

2.3 Grammars

A CCG is defined as a tuple G = (%, 4,:=,R, S). It consists of

the finite vocabulary X, from which the input words are taken,

the atomic categories A,

1
2
3. thelexicon, which is a finite relation := between X U {e} and C(A),
4 a finite set R of combinatory rules, and

5

the distinguished category S € A.

Note that the lexicon can assign categories not only to the possible input words from
2, but also to the empty word e. These lexicon entries are called e-entries. A category X
that occurs in some lexicon entry ¢ := X is called lexical category.

Pure CCG. A CCG that allows all combinatory rules without rule restrictions, up
to a fixed degree, is called pure. Note how “non-pure” is different from “no rule
restrictions”: For example, a CCG that uses only forward rules up to some degree where
the ranges of variables are not restricted is not pure although it has no rule restrictions.
In the present article, we will assume that the CCG we are given is pure. An extension
of our algorithm to CCG that uses only a subset of combinatory rules up to some degree
and specifically allows rule restrictions is discussed in Section 6.2.

Derivation. We start with an informal description of a derivation. Let G = (%,A,:=R, S)
be a CCG and let w = w; - - - w, be an input string, where w; € X for i € {1,...,n}.
First, the lexicon := assigns categories c; to the input words such that w; := c;. This as-
signment is nondeterministic, since several categories might be associated with a single
input word via the lexicon. Optionally, we may use e-entries. In that case we start with
a sequence of lexical categories that is longer than the input string. The combinatory
rules of R successively combine neighboring categories: If two neighboring categories
are the primary and secondary input category, respectively, of a ground instance of
some combinatory rule in R, the associated output category can be derived. If through
iteration of this process the distinguished category S is derived and under the condition
that the complete category sequence corresponding to the input is incorporated, we say
that the input string is generated by G.

4 In running text, combinatory rules are displayed with the input categories separated by a comma.

601

Computational Linguistics Volume 48, Number 3

Derivation Tree. Following most of the CCG literature, we view CCG derivations as trees.
In accordance with standard notation for trees, given some alphabet A, we write a for
the tree consisting of only one (leaf) node with label « € A, and we write o (ty,..., ;)
to denote the tree with root label o € A and subtrees 4, ...,t, as children of the root.
Given a tree t, we write root(t) to access its root label. We define the arity of a node u
as the number of children of u. Finally, we define the size of a tree ¢ as the number of
nodes in .

GivenaCCG G = (%, A4,:=,R, S), a derivation tree is a tree consisting of nodes with
arity at most 2 such that internal nodes are labeled by categories C(A), leaves are labeled
by elements from X U {e}, and the following conditions are fulfilled. First, unary nodes
are labeled by lexical categories that, together with their only child (which is labeled by
an input word or by ¢), constitute a lexicon entry. Second, binary nodes together with
their children constitute valid ground instances of combinatory rules in R. Formally,
the set of derivation trees is the smallest set D(G) such that (1) for all ¢ := X, we have
X(0) € D(G), and (2) for all t1, , € D(G) and ground instances root(t;), root(f;) = X
of combinatory rules in R, we have X(t1,t;) € D(G).

For internal nodes u, we write cat(u) to access the category that labels u. For leaf
nodes u, we write input(u) to access the input word or the symbol ¢ that labels u.

Following standard conventions for CCG, we draw derivation trees with the root
at the bottom. If the word—category mapping specified by the lexicon is indicated, we
visualize it using dotted lines (see Figure 1). However, when drawing derivation trees
we will usually omit lexical entries.

Yield and Generated Language. The yield of a derivation tree is the sequence of input
words associated with its leaves, read from left to right. It is recursively defined
as follows. If t consists of a single node u, let yield(t) = input(u). If t = X(¥'), let
yield(t) = yield(#'). If t = X(t1,t2), let yield(t) = yield(t;) - yield(¢;), where - denotes
string concatenation.

The language generated by G is the set of strings that are the yield of some
derivation tree whose root is labeled by the distinguished category S. Formally,

L(G) = {yield(t) | t € D(G),root(t) = S}.

Example 3

Figure 1 shows a derivation tree using forward application (denoted by >), backward
application (denoted by <), and forward composition (denoted by >g). The compo-
sition rule combines the primary input category (S\NP)/(S\NP), which is associated
with the lexical item recently, and the secondary input category (S\NP)/NP, which is
associated with divorced. We can observe that the bridging argument /(S\NP) of the
primary input category is replaced by the excess /NP, resulting in output category
(S\NP) /NP. This operation is similar to function composition. The subsequent applica-
tion rules incorporate the remaining input words and remove the two arguments from
(S\NP) /NP, resulting in distinguished category S.

3. Parsing Algorithm
In this section we develop a tabular algorithm for parsing based on CCGs. Our algo-
rithm extends the approach of Kuhlmann and Satta (2014) by including substitution

rules. In spite of its extended power, we will see that the new algorithm facilitates a
sharper analysis of its runtime complexity with respect to the grammar size.

602

Schiffer, Kuhlmann, and Satta Tractable Parsing for CCGs of Bounded Degree

3.1 Basic Idea

Before moving on with the technical presentation, we informally discuss here the key
ideas at the core of our result.

Let w be some input string of length |w|. Recall that a CCG consists of a finite
number of lexical categories, and hence a finite number of arguments. However, in a
CCG derivation of w, the arity of produced categories can grow with |w|. This means
that a naive tabular method for CCG parsing, which records in its parsing table each
node of each possible derivation for w, may result in exponential time complexity in
|w|, because of the combinatorial explosion of CCG categories. This has been already
pointed out in the literature, for instance by Kuhlmann and Satta (2014, §3), who
avoid this combinatorial explosion by resorting to factorization techniques for CCG
derivations. Informally, each CCG derivation is broken into pieces such that each piece
uses at most g of the topmost arguments in its categories, where g is a grammar constant
that does not depend on |w|. The arguments that are not used by a derivation piece are
not stored in the parsing table, so that the abovementioned combinatorial explosion of
CCG categories only involves argument sequences of length at most g. This results in
polynomial time (and space) parsing in |w|. In this article we generalize these techniques
in order to factorize CCG derivations that also include substitution rules, which were
not considered by Kuhlmann and Satta (2014).

As a second technical point, consider an instance of the composition rule having
the form X|Y, Ya = Xa, where « is some sequence of arguments. Because of the factor-
ization of CCG derivations that we have mentioned above, the number of arguments
in a is bounded by our constant g. However, the arity of category Y is bounded by
the maximum arity ¢’ of an argument from the lexicon, which is independent of g.
In pathological cases, where ¢’ is much larger than g, we again face the problem of
combinatorial explosion of CCG categories. This problem is not dealt with well in
the parsing algorithm of Kuhlmann and Satta (2014), which exhaustively produces all
possible categories Ya with arity bounded by ¢’ + g. As a solution for this we observe
here that the category Y must match a finite number of possible arguments from the
lexicon of the CCG. Using this restriction, we avoid the additional exponential factor of
¢’ in the running time of our parsing algorithm.

3.2 Definitions and Notation

We start with some auxiliary definitions and notation that we use in the development
of our algorithm.

String. We are given a CCG G and a string w to be parsed. We write w([i, j| to denote the
substring of w from (fencepost) position i to position j, for 0 < i < j < |w|, and assume
w(i, i] = e. We also write w; for w[i — 1, i], the one-element substring containing the i-th
word in w.

Lexical Arquments. We write Args for the set of all arguments in the lexical categories
of G. As already noted in Section 2.2, successful derivations can only contain cat-
egories consisting of lexical arguments (Vijay-Shanker and Weir 1994, Lemma 3.1).
We write Args* for the set of all sequences of lexical arguments. Further, for d > 0,
we write Args=? for the sequences of at most d lexical arguments. These sequences

603

Computational Linguistics Volume 48, Number 3

may also have length zero. As usual for strings, the empty sequence of arguments is
denoted by e.

Spine. The spine of a derivation tree ¢ is the path that starts at the root node of t and at
each node continues to that node’s primary child (i.e., the child labeled by the primary
input category) until it reaches some unary (pre-leaf) node in t. This node is called
lexical anchor. We use the term spinal node to refer to any node on some (given)
spine. Spinal nodes are clearly labeled by CCG categories, since the definition of spine
excludes leaf nodes, which are labeled by a lexical item or else by the symbol e. The
length of a spine is defined as the number of its spinal nodes.

Node Arity. We extend the notion of arity to nodes labeled by categories. If u is a node of
t, we write arity(u) to denote the arity of the category labeling u.

We can consider a combinatory rule application as consisting of two phases, where
in the first phase the bridging arguments of the primary input category are removed,
and in the second phase the excess is added. Given a node u in t labeled by a primary
input category X, the downstep arity of u is the arity of the category that is obtained
from X by removing the bridging arguments, and is written downarity(u).

Example 4

Consider node u with cat(u) = A/B/C and parent node u’ with cat(u’) = A/C\D,
which is obtained by using an instance of the substitution rule Aa/B/C,B/C\D = Aa/
C\D with a = ¢. Then we have arity(u) = arity(#’) = 2 and downarity(u) = 0.

3.2.1 Context. A derivation context or simply context is obtained from a derivation tree
t with root node r by removing all proper descendants of some given spinal node f # r
under the following restrictions, where u is any node on the spine of t properly between
fandr:

downarity(f) < downarity(u) (1)
arity(r) < arity(u) ()

The node f is called the foot node of the context.

Example 5
Figure 4 shows some examples of spines in order to illustrate the context definition. For
the sake of simplicity, the respective secondary input categories are omitted. According
to our convention, the foot node is drawn at the top and the root node at the bottom.

Figure 4a depicts a valid context. In Figure 4b, the node labeled by A/B\D has
downstep arity 0 due to substitution, but the downstep arity at the foot is 1. Therefore,
the spine violates condition (1) of the context definition. Finally, in Figure 4c the node
labeled by A/C has lower arity than root category A\ E/F. Therefore, the spine violates
condition (2) of the context definition.

In what follows, « and y denote sequences from Args*. Let us write the category
at f in the form X, where arity(X) = downarity(f). This means that 1 < |a| < 2.
Condition (1) implies that the category at each intermediate node u, as well as the
category at node r, can be written as X<y. Note that only the arguments in v may affect
the derivation along the spine of the context. In other words, the arguments in X are
not needed and we can represent the context without any record of X itself. We exploit

604

Schiffer, Kuhlmann, and Satta Tractable Parsing for CCGs of Bounded Degree

A/B A/B/C A/B
| | |
A/C\D A/B\D A/C\D
| ! |
A/C\E/F A\D\E/F A/C
| | |
A/C\E A\D\E A\E/F
(a) valid context (b) violates (c) violates
Equation (1) Equation (2)
Figure 4

Examples of spines complying with or violating the context definition.

this property later, to develop a dynamic programming algorithm where each context
is stored in a compact form, and is shared among several CCG derivations.

Condition (2) is also very important for storing contexts in a compact form, and is
at the basis of the proof of the following lemma, where r and f are defined as above.

Lemma1
Let ¢ be a context and let cat(r) = X with arity(X) = downarity(f). Assume that the
combinatory rules applied along the spine of ¢ have degree at most d. Then || < d.

Proof. Let cat(f) = Xa and let p be the parent node of f, with cat(p) = Xv. Because
cat(p) is obtained by applying a rule of degree at most d on primary input category
Xua, we have |y| < d.If r = p, we immediately have p = 7y and thus || < d. Otherwise,
p is a node properly between f and r, and by condition (2) in the definition of con-
text we have arity(r) < arity(p). Observe that arity(r) = arity(X) + || and arity(p) =
arity(X) + |y|. We can then write || < |y| < d. O

Let a, B be defined as in the above proof. Extending our terminology from rules, we
refer to « as the bridging arguments of the context and we refer to j as the excess of the
context. We observe that, if a composition rule is used at the foot node, we have |a| =1,
and if a substitution rule is used at the foot node, we have |a| = 2.

3.2.2 Root Categories. To limit computational complexity, we introduce the set G of root
categories of derivation trees that can be directly represented by our parsing algorithm.
Derivation trees with root categories not in G will instead be represented in a factorized
form. We define G = G; U G, where G1, G, are two not necessarily disjoint sets of
categories specified as follows.

. G1 contains all categories X« such that X is some prefix (not necessarily
proper) of a lexical category X from G, « € Args=?, and
arity(Xwa) < arity(Xp).

* G, contains all categories Xa such that X is some prefix (not necessarily
proper) of an instantiation X of some secondary input category in a rule
of G, « € Args=?, and arity(Xa) < arity(Xp).

Categories in G; are used by the parser when derivation trees are introduced
from lexical categories of G, and when topmost arguments of these categories are

605

Computational Linguistics Volume 48, Number 3

“consumed” in a CCG derivation. Categories in G, are instead used in the process
of producing derivation trees that will serve as secondary input category in a CCG
derivation. The « component of X« represents the bridging arguments. Later on, in the
completeness proof of our parsing algorithm, it will become clear that this set does
indeed suffice to represent all possible derivations.

3.3 Algorithm Specification

As usual in the natural language parsing literature, we formally specify our algorithm
as a deduction system in the sense of Shieber, Schabes, and Pereira (1995).

3.3.1 Items. We use a logic with two types of items. Derivation trees whose root is labeled
by a category in G can be represented by tree items directly. The additional context items
follow our definition of context and can represent parts of derivation trees where arities
of categories grow too large.

Tree Items. These have the form [X, i, j], where X € G and 0 < i < j < |w|. The intended
interpretation of such an item is: It is possible to build a derivation tree with yield w(i, j]
and root category X. The goal of the algorithm is the construction of an item of the form
[S,0, |w|], which asserts the existence of a derivation tree that spans the entire input
string and whose root node is labeled with S, where S is the distinguished category for
sentences of G.

Context Items. These have the form [«,8,i,',j',j], where a, B € Argsfd with 1 < |a] <
2and 0 <i<i' <j <j<|w|. The intended interpretation of these items is: For any
choice of a category X, if it is possible to build a derivation tree ¢’ with yield w|[i’, j'] and
whose root node is labeled with Xa, then it is also possible to build a derivation tree ¢
with yield w[i, j] and whose root node is labeled with Xp. In line with the usage of these
terms for contexts, we refer to « as bridging arguments and to 3 as excess.

3.3.2 Axioms and Inference Rules. The inference rules and axioms of the algorithm can be
classified along two dimensions, depending on whether the consequent item is a tree
item or else a context item, and depending on whether the consequent item is obtained
as the extension of an existing item of the same type or else it is newly introduced.
Most importantly, in the following deduction system we implicitly assume that the
inference rules are valid only if all of the involved items comply with the conditions
in the definition of items provided above.

Introduce Derivation Tree. These are the axioms of the deduction system. For every word
position 1 <i < |w| and every lexicon entry w; := X, there is an axiom [X,i — 1,i].
For every lexicon entry ¢ := X and every fencepost position 0 <i < n, there is an
axiom [X, 1, 1].

|
>

w; = :
[X,i—1,1] [X,1,1] (rule 0)

606

Schiffer, Kuhlmann, and Satta Tractable Parsing for CCGs of Bounded Degree

wli’, j] wli”, '] wlf’, "]
X
t c
w(j, k] !
wli, '] wlf’,] wli,i"] wlj",j]
Xa XBa’
t
c C2
X/Yua YapB
Xap Xp Xpp'
(a) context ¢ (b) derivation tree ¢ (c) context ¢

Figure 5
Decomposition of derivations. X and Y are categories; a, 3, &/, B’ are (possibly empty) sequences
of arguments satisfying the restrictions specified in the inference rules.

Introduce Context. For all valid items of the following form there are rules

[Yap, j k| [Yap, j k|
[/Ya,apB,i,i,j, k] and \Ya,apB,j,k,1,1] (rule 1)

This rule type converts a tree item into a context item that models the effect of Yap
when applied as a secondary input category. The context has a spine of length 2 and is
depicted in Figure 5a.

Extend Derivation Tree. For all valid items of the following form there is a rule

(Xa, 7, {'e, B,1,7,7,]]
(XB,i,]] (rule 2)

This rule type models the combination of a derivation tree and a context, such that the
derivation tree rooted in X« is inserted at the foot node of the context, resulting in a
derivation tree rooted in XpB. This is depicted in Figure 5b.

Extend Context. For all combinations of valid context items of the following form with
|B'| < |a/|, there is a rule

[“, IB[X’, i//, Z'/I]‘/,]'//] [D(’, ﬁ// i/ i//,j//,j]

[Oé, :Bﬁ// i/ i// j//]] (rule 3)

This rule type models the combination of two contexts ¢ and cy, represented by the left
and right antecedent items, respectively. More precisely, c; is inserted at the foot node of
¢y, resulting in a new context ¢ represented by the consequent item. This is exemplified
in Figure 5c.

607

Computational Linguistics Volume 48, Number 3

The use of restriction || < |a/| in rule 3 deserves some discussion here. This
restriction guarantees that ¢ fulfills condition (2) in the definition of context. Without this
restriction, there might be nodes on the spine that have lower arity than the root. As a
second observation, consider rule 3 as a means of extending context ¢; by “transferring”
to this context the arguments from p’. Under this view, restriction |B'| < |a/| forbids
such transferring whenever this results in an increase in the arity at the root of c, as
compared with the arity at the root of ¢;. One might then wonder whether forbidding
the transferring of extra arguments from context to context might result in the loss
of some valid derivations. As we will see in the completeness proof in Section 4, this
strategy is safe, since we can always transfer extra arguments directly to some tree item
later, by means of rules of type 2, rather than passing them through several intermediate
contexts.

Example 6
As an example we consider a CCG with all composition and substitution rules of degree
at most 2 and the input string w; - - - wy. The lexicon is specified as follows:

wy:=A/E wy :=C/E/F w3 := S\A/B wy := B\C/E
ws:=F we = E/G w7 =G

Figure 6 depicts a derivation of the CCG that shows that the input is generated by the
grammar. We can observe that on the spine between the root and the lexical category
S\ A/B there are two categories that are not in G because they violate the arity restric-
tion. Thus, they cannot be represented using tree items.

Figure 7 shows how the deduction system operates on the input. For each input
symbol and matching lexicon entry, an axiom with the corresponding span is added
by rule 0. These are the leaves of the deduction. Note that their order does not coincide
with the order of the associated lexicon entries in the input string. To simulate the use of
a combinatory rule, a secondary input category first has to be converted into a context
item using deduction rule 1. For instance, in order to use it as a secondary input, tree
item [B\C/E,3,4] is converted into context item [/B,\C/E,2,2,3,4], which describes
its effect on a primary input category. Note that there is some freedom here concerning
the indices, because there might be several choices regarding how this item wraps
around other items. However, the deduction system does not allow the combination of
items [S\A/B,2,3] and [/B,\C/E,?2,2,3,4] because the corresponding output category

S\A/B B\C/E _,
C/E/F ~ S\A\C/E , B

<2
S\A/E/F § F N
A/E S\A/E < E/G G -
S/E S E
5 >

Figure 6
CCG derivation with spine nodes in blue text. Categories in the spine that are not in G are
highlighted with blue background.

608

Schiffer, Kuhlmann, and Satta Tractable Parsing for CCGs of Bounded Degree

[C/E/F,1,2] [F,4,5] [G,6,7]
[B\C/E,3,4] \C/E,/E/F,1,2,4,4] [/F&1,1,4,5] [E/G,5,6] [/G,e,5,5,6,7]
[/B,\C/E,2,2,3,4] [\C/E, /E,1,2,4,5| [A/E,0,1] [E,5,7]
[S\A/B,2,3] [/B,/E,1,2,3,5] \A/E, /E,0,1,5,5] [/E,¢,0,0,5,7]
[S\A/E,1,5] \A/E,¢0,1,5,7)
[5,0,7]

Figure 7
Example deduction.

is not in G. Instead, the excess of the context item is reduced by combining it with
another context item using deduction rule 3 first, resulting in [/ B, /E, 1,2, 3, 5. This item
models the effect that the categories of the three involved axioms have when applied
successively to a category ending in / B. These are exactly the first three secondary input
categories that are applied along the considered spine. The item covers the spans [1, 2]
and [3,5] of the input and has a gap at [2,3], such that [S\A/B,2,3] can be inserted
using deduction rule 2, resulting in [S\A/E, 1,5]. The interpretation of this item is as
follows: There exists a CCG derivation tree with root category S\A/E € G that involves
the input symbols of the span [1,5]. This can be verified in Figure 6. Note that it is
also possible to change the combination order of context items and to first combine
[/B,\C/E,2,2,3,4] with [\C/E, /E/F,1,2,4,4] and then to combine the resulting item
with [F,¢e,1,1,4,5].

The spinal categories that are in G can be represented by tree items, but the cate-
gories in between two of these relatively short categories might have higher arity. In
that case the operations taking place along that part of the spine are handled on the
level of context items and their effect can only be added to the tree items if the excess
is short enough. Not only each lexical category, but also each secondary input category
(and the distinguished category) is represented by some tree item. We can uniquely
decompose each CCG derivation tree into a set of maximal spines, meaning that each
of these is the spine of a subtree and not contained in the spine of any larger subtree
of the original tree. At least the lexical anchor and the root of each of these spines are
represented by tree items. For example, category E as a secondary input category is the
root of a maximal spine consisting of two nodes and accordingly represented by tree
item [E, 5, 6]. Note that for trivial spines consisting of a single node, the lexical anchor
and the root coincide.

3.4 Runtime Analysis

In this section we provide a computational analysis of our parsing algorithm. We
consider the time and space complexity attributed to the execution of each of the
deduction rule types. We also discuss the control flow for the deduction system, along
with possible representations for rules and items.

We write |w| for the length of the input string w. We also write |G| for the size of the
input grammar G, defined as the number of characters that we need to write down the
lexicon and all the rules in some reasonable representation. Finally, we write d to denote
the maximum degree of composition and substitution rules in G.

3.4.1 Grammar. We start our analysis by deriving bounds for the size of sets Args=? and

G, to be used later. Recall that Args is the set of all arguments in the lexical categories of
G. Because every argument appears in our string representation of G, we have |Args| €

609

Computational Linguistics Volume 48, Number 3

O(|G|). Using the definition of Args=“ we obtain |Args=‘| < Y4 |G|’. The right-hand
side is the sum of the first d + 1 terms of a geometric series. Using the closed-form
formula for this sum we can write

d . ‘G‘dﬂ -1 |G|d+1 |G\

which holds for |G| > 2 and d > 2. We thus conclude that |Args=?| € O(|G|9).

As for set G, we separately analyze the two subsets G; and Gy, according to the
definition in Section 3.2. Consider a category Xa € G, where X is a prefix of a lexical
category and & € Args=2. Since every lexical category appears in our string represen-
tation of G, each prefix of a lexical category can be associated with some position
within that string, representing the end position of the prefix. (The start position is
uniquely determined, given the end position.) Therefore the number of prefixes of
lexical categories does not exceed |G|. Because |Args=?| € O(|G|?), we conclude that
|Gi] € O(IGP).

Consider now set G, whose definition is based on the notion of instantiation of
secondary input categories in rules of G. Recall that according to our convention, and
ignoring the ordering of the antecedents, the general form of an instantiated rule of
Gis Y|Za',Za'B' = Yo'B', where Za'p’ is the instantiated secondary input category,
|Z € Args, o’ € Args=!, and a’B’ € Args=.

Let Xa € Gy, where X is a prefix, not necessarily proper, of some instantiated
secondary input category Za'p’, and & € Args=?. We distinguish two cases on the basis
of the arity of X.

e arity(X) < arity(Z): In this case X is a prefix, not necessarily proper, of Z.
Every category Y such that |Y € Args must appear in our string
representation of G, and thus each prefix of such category can be associated
with some position of the string. Therefore the number of prefixes of
these categories does not exceed |G|. Because a € Args=?, we conclude
that the number of Xa € G, such that arity(X) < arity(Z) isin O(|G|?).

e arity(X) > arity(Z): In this case prefix X of Za'B’ spans over some of the
arguments in a’f’. We can then write X in the form Z+y for some
non-empty sequence of arguments . Let us associate Za'f’ with a
sequence of arguments |(Z)a’p’; similarly, we associate X with a
sequence of arguments |(Z). Since |Z € Args and &/’ € Args=“, we
have |(Z)&'B’ € Args=4T1. Using the condition arity(Xa) < arity(Za'p’)
in the definition of G,, we also derive |ya| < |a'f/|, and thus
|(Z)ya € Args=?*1. We therefore conclude that the number of Xa € G,
such that arity(X) > arity(Z) is in O(|G|4+1).5

Putting everything together we conclude that, for d > 2, we have |G| € O(|G|*+1).

5 The attentive reader may observe that we are overcounting the number of instantiations of secondary
input categories. For instance, consider rule instantiations D|(A|B), A|B|C = D|C and
D|A, A|B|C = D|B|C, sharing the same secondary input category A|B|C. In the first rule, we associate
A|B|C with sequence |(A|B)|C, while in the second rule we associate the same category with sequence
|(A)|B|C, counting the same secondary input category twice. Of course, this is not a problem for the
construction of an upper bound.

610

Schiffer, Kuhlmann, and Satta Tractable Parsing for CCGs of Bounded Degree

3.4.2 Items. We derive here upper bounds for the total number of items that are produced
in a run of our algorithm on string w. Since each tree item [X, i, j] satisfies X € G, the
total number of tree items must be in O(|G|?! - |w|?). Consider now a context item
[, B,i,i',7,]. Because 1 < |a| < 2 and B € Args=?, the total number of context items is
in O(|G|*2 - Jw]*).

For future use, we also develop bounds on the number of arguments appearing
in tree and context items. We have already observed above that, for a context item
[a,B,i,1,],]], we have |aB| < d + 2. Regarding tree items, we need to introduce some
auxiliary notation. Let £ be the maximum arity of a lexical category in G. Additionally,
let r be the maximum arity of a category Z for all possible |Z € Args. Consider a tree
item [X, 1, j]. According to the definition of G, if X € G, then arity(X) < arity(W) for
some lexical category W.If X € G, then arity(X) < arity(Zap) for some |Z € Args and
aB € Args=?. We thus conclude that, for every tree item [X, i,], arity(X) < max{/,r +
d} =p.

We assume that each element in Args is represented in O(1) space. Since we have
d < p, we can conclude that the space requirement for each item constructed by the
parsing algorithm is in O(p).

3.4.3 Deduction Rules. Using the analyses above, we can now consider a run of the
algorithm on an input string w and provide upper bounds on the number of valid
instantiations of each rule type in our deduction system.

Rule 0 is the simplest rule, producing tree items of the form [X, i — 1,] or of the form
[X,1,1], with X a lexical category. The total number of lexical categories is in O(|G|), and
we have 0 <i < |w|. We then conclude that, in a run of the algorithm on w, the number
of instantiations of rule 0 is in O(|G| - |w]).

Considering rule 1, let us focus on the case of tree items of the form [Yap, j, k| pro-
ducing context items of the form [/Yw, ap, 1,1,], k|; a similar analysis can be carried out
for the symmetrical case. Inspecting the consequent item, we observe that the number of
possible choices is in O(|G|4*! - |w|3), because of the duplicate occurrences of argument
« and index i. Furthermore, the tree item in the premise is completely determined by the
choice of the consequent item. We therefore conclude that in a run of the algorithm on
w, the number of instantiations of rule 1is in O(|G|4*1 - |w?).

Rule 2 has premise items [X«, ', '] and [, B,1,7,}, j], and consequent item [X, i, f].
We have already established that the number of possible consequent items is in
O(|G|4*1 - |w|?). Since |B| < d, category XB can be split into X and B in at most d + 1
ways. Finally, recall that 1 < |a| < 2, thus the number of choices for a is in O(|G|?).
From all of the previous observations, and taking into account the extra indices i’, j/, we
conclude that the number of instantiations of rule 2 is in O(d - |G|?+3 - |w[*).

Finally, consider rule 3 with premise items [«, pa’,i",7,,i"], &', B,1,i",j",]] and
with consequent item (&, BB, 1,i’,]/, j]. We have already established in Section 3.4.2 that
the number of possible consequent items is in O(|G|%+? - |w|*). From the side conditions
of rule 3, we know that the argument sequence B’ in a consequent item must be split
in such a way that |f’| < 2, which amounts to O(1) possible choices. Furthermore, we
have 1 < |#/| < 2 and thus the number of choices for &' is in O(|G|?). Accounting for the
possible range of the indices i”, j”, we then conclude that the number of instantiations
of rule 3 is in O(|G|?** - |w|®).

Putting everything together, and observing that d < |G|, we conclude that in a run
of the parser on input w the total number of valid instantiations of deduction rules is
dominated by rules of type 3 and is in O(|G|¥+4 - |w]®).

611

Computational Linguistics Volume 48, Number 3

3.4.4 Runtime. We have established bounds on the total number of items and valid
instantiations of deduction rules for input w. We now provide an upper bound on the
runtime of our algorithm. While our analysis is one of the main results of this article, it is
based on a rather naive implementation of the algorithm, one that is only of theoretical
significance. Alternative implementations of the algorithm can be developed that are
slightly more involved, but will work more efficiently in practice.

Given as input a grammar G and a string w, we start by constructing a table R with
all instantiations of deduction rules of types 1, 2, and 3, including those instantiations
that are never used by the computation on w. Because there are O(|G|4™* - |w|®) instan-
tiations, and because the size of each item is O(p), the space requirement for R is in
Olp- [GIH+4 - w]).

Furthermore, for each item I we construct a list £(I) of all rules in R where item
I occurs as an antecedent. Note that each rule in R can appear in at most two lists
L(I). Therefore the total space requirement for all lists £(I) is in O(p - |G|4T* - |w]®).
It is not difficult to see that the data structures R and £(I) can be constructed in time
O(p - |G|¥+* - |w|®) as a preprocessing of the grammar.

Our algorithm maintains a chart C where all items constructed by the parser while
processing w are added. The total number of such items is in O(|G|?*2 - |w|*), and thus
the space requirement for C is in O(p - |G|*2 - |w|*). We also use an agenda A where
we store items that have been derived by the parser but have not yet been processed
and added to C.

We start parsing by initializing A with all items that can be produced by rules of
type 0 applied to w. This phase can be executed in time O(p - |G| - |w|). We then iterate
the following steps, until .A becomes empty:

1. popsomeitem] € Aandadd [toC
2. mark as “active’ each occurrence of [appearing in R as an antecedent

3. if somerule R € R gets all of its antecedents marked as active,

(a) let Ig be the consequent item of R
(b) ifIr ¢ AUC,add Igto A

(0) remove R from R.

We start by observing that each item I is processed only once by the algorithm. This
is certainly true in the initialization phase, since rules of type 0 always produce different
items. Furthermore, we observe that in each iteration of the main loop the test condition
in step (b) guarantees that items are never doubled within our agenda A.

To analyze the time complexity of the main loop of the algorithm, we proceed by
considering the execution time of each individual step. We then amortize this amount
of time among the rules in ‘R involved in the step itself in such a way that each rule gets
charged an overall amount of time in O(p).

e We process item I at step 1 in time O(p), that is, in time proportional to the
size of I itself, which we assume to be the time required for insertion into
C. We charge this amount of time to the rule that has added item I to A.

e When processing item I at step 2, we retrieve list £(I) in time O(p). We
then mark as active each occurrence of I in £(I). Furthermore, we collect

612

Schiffer, Kuhlmann, and Satta Tractable Parsing for CCGs of Bounded Degree

rules in £(I) having all of their antecedents marked as active at this time.
The execution of step 2 can be amortized by charging time O(p) to each
processed rule. We assume this is the time required for accessing the
respective rule in R.

* Asfor the inner loop at step 3, we assume that we can test membership of
anitem I in A and in C in time O(p). In the execution of this step, we
charge time O(p) to each rule collected at step 2.

In the above analysis of the main loop of our algorithm, each rule in R is charged
with an amount of time in O(p). Because |R| € O(|G|™* - |w|®), we conclude that the
running time of the main loop is in O(p - |G|?** . |w|®). This is also the dominating
quantity in the execution of the whole algorithm. Note that p is negligibly small in
comparison to the other factors.

4. Correctness

In this section we prove the correctness of the deduction system by first showing its
soundness and then its completeness.

We start with some notation and definitions. Given a derivation tree ¢ (respectively,
context ¢) and a node u, we write cat(t, u) (respectively, cat(c,u)) for the category
labeling u in t (respectively, ¢). This is more precise than writing cat(u) and will help
to clarify in which derivation tree or context a node occurs.

Next, we introduce the notion of signature, which associates some specific pieces of
derivations with items of our deduction system.

Definition 1
A derivation tree t with root r has signature [X, i, j] if

1. theyield of t is w[i, j] and
2. cat(t,r) =XwithX € G.

Definition 2
A derivation context ¢ with root r and foot f has signature [a, 3,1,7,], j] if

1. theyield of cis (w[i,i'], w[j’, j]) and
2. for some X we have cat(c, f) = Xa and cat(c,r) = XB.

4.1 Soundness

We will prove the soundness of our deduction system by induction on the number of
inference steps applied. In particular, we will show that for each item inferred by the
system, there exists a corresponding derivation tree or context. The base case is clear
from the correctness of the axioms. For each input word or the empty string ¢, and
for the corresponding lexicon entry, there is a derivation tree consisting of one unary
node labeled by that lexical category with its child labeled by the corresponding input
word or ¢. For the inductive case, we inspect the inference rules. Assuming that there
exist valid derivation trees or contexts corresponding to the antecedent(s) of a rule, we
establish that this also is the case for the consequent.

613

Computational Linguistics Volume 48, Number 3

Deduction Rule 1. Given a derivation tree with signature [Yap, j, k|, we can construct a
context ¢ with signature [/Ya, apB,i,1i,], k] (respectively, [\Yw,aB,], k,1,1]) by regarding
Yap as a secondary input category for a primary input category X/Ywa, where X is a
placeholder for an arbitrary category (see Figure 5a). Depending on the length of «, the
performed operation is either a composition or substitution rule.

Deduction Rule 2. Given a derivation tree t’ with signature [Xa,i’,j'] and a context ¢
with signature [a, B,1,7,], j|, we can obtain the desired derivation tree t with signature
[XB,1,]] by inserting t at the foot node of ¢ (see Figure 5b).

Deduction Rule 3. Given two contexts ¢; with signature [«, fa’,i",7,j’,j"] and ¢, with sig-
nature [&/, 8,1,i",j",j], we obtain a context ¢ with signature [«, B, 1,i’,], j] by inserting
c1 at the foot node of ¢, (see Figure 5c¢). Let f be the foot node of c, let s be the node where
c1 was inserted (previously the foot node of cy), and let r be the root node of c. Then
we have cat(c, f) = Xa, cat(c,s) = Xpa’, and cat(c,r) = XBB'. To show that c is a valid
context, we have to verify that context conditions (1) downarity(f) < downarity(u)
and (2) arity(r) < arity(u) both hold, where u is an arbitrary node properly between
fandr.

Condition (1) is immediately fulfilled for every node properly between f and
s due to the fact that c; is a context. To see that the condition also applies to s,
note that downarity(f) = arity(X) < arity(Xp) = downarity(s). Since for every node
v properly between s and r we have downarity(s) < downarity(v), it also follows
that downarity(f) < downarity(v), so the condition is fulfilled for each node properly
between f and r.

For condition (2), note that rule 3 is restricted such that |f'| < |a/|. As a result, we
have arity(r) < arity(s). Because c; is a context, each node properly between s and r has
at least the arity of r as well. Further, since c; is a context, each node properly between
f and s has at least the arity of s, which has lower bound arity (7). In summary, for each
node u properly between f and r the condition arity(r) < arity(u) is satisfied.

Complete Derivation Tree. Finally, we can conclude that if the deduction system yields
an item [S,0, |w|], there is a derivation tree rooted in the distinguished category S that
comprises the entire input.

4.2 Completeness

In the following we prove the completeness of our deduction system; namely, we show
that if there exists a CCG derivation rooted in the distinguished category S and gen-
erating the entire input string w, then item [S, 0, |w|] can be inferred by our deduction
system. In order to do this, we prove a stronger statement: We show that, for every
derivation tree or derivation context having signature I, the deduction system can infer
item I. The proof strategy is an induction on the number of nodes in the derivation tree
or derivation context, but in the case of derivation contexts we explicitly exclude the
foot node from this count.

Our deduction system has been specified in Section 3.3.2 by regarding the bi-
nary rules as operations that extend derivation trees or contexts using contexts whose
signatures have already been inferred. In this perspective, derivation trees are assem-
bled or composed out of smaller derivation parts. For the completeness proof, we
take the opposite perspective: When starting with a sufficiently complex derivation

614

Schiffer, Kuhlmann, and Satta Tractable Parsing for CCGs of Bounded Degree

tree or context associated with some valid signature, we show that it can be split or
decomposed into two smaller derivation parts associated with valid signatures.

In order to do this, given such a derivation tree or context, we identify a so-called
split node, which always lies on the spine and constitutes the position where we can
decompose the derivation. More precisely, in the case of contexts, the split node is
chosen among all spinal nodes having smallest downstep arity as the one closest to
the foot node. In the case of derivation trees, there are two different scenarios. If there
are spinal nodes with arity lower than the root, the one closest to the root is chosen.
Otherwise, if all spinal nodes have arity larger than or equal to the arity of the root, the
split node is chosen among the nodes having smallest downstep arity as the one closest
to the lexical anchor. In the latter case, the split node can be the lexical anchor itself.

Example 7

Figure 8 illustrates the splitting strategy for derivation trees and contexts. The di-
agram shows the arities and downstep arities along the spine of a derivation tree
with lexical anchor f and root node r. Assume a sequence of spinal nodes denoted
by ug,uy,...,un, where ugp = f and u, =r. Then each application of a combina-
tory rule at a node u; can be viewed as having the following steps: the arity
before the rule application (arity(u;)), the arity after the removal of bridging ar-
guments (downarity(u;)), and the arity after adding the excess (arity(u;41)). In
this way, the progression of arities along the spine is plotted as the sequence
arity (1), downarity(uy), . . ., arity (u,,_1), downarity(u,_1), arity (u,). The vertical lines
of the grid mark arity(u;) fori € {0,..., n}, whereas the respective downstep arities are
placed in between two lines of the grid.

Given a derivation tree with the spine following the depicted pattern, the first split
node is ug. There are spinal nodes s, 14 with arity lower than arity (), thus among these
nodes, u¢ is chosen as the one closer to r. Accordingly, the derivation tree is split into a
smaller derivation tree ¢’ that is rooted in ug and a derivation context with foot node ug.
All spinal nodes in # have arity at least arity (14). Therefore we consider the nodes with
lowest downstep arity, namely uy4, us, and choose as the split node the one closer to f,
namely, 1. As a result, ¢ is split into a derivation tree t’ with a spine from f to u4 and
a derivation context with a spine from 14 to 4. The split node of t” is f, dividing it into
a trivial derivation tree consisting only of the lexical anchor f, and a derivation context
¢ with a spine from f to uy.

L L L L L
f uq U us Uy Us Ug uy us r

Figure 8
Diagram of arities and downstep arities along the spine of a derivation tree with interesting split
nodes highlighted.

615

Computational Linguistics Volume 48, Number 3

Like all other derivation contexts obtained so far, c is split at one of the nodes with
lowest downstep arity, excluding the foot node. From the candidates 1, u3, the node 1
is chosen as the one closer to f. All non-trivial contexts are handled in the same manner,
until there is one context for each combinatory rule application.

4.2.1 Base Case: Derivation Trees Consisting of a Single Spinal Node. Consider a derivation
tree t with spine length 1, root node r, and span [i,], in which cat(t,r) is a lexical
category. We shall write this category as X. The child of r is labeled by an input word w
or by e. We distinguish two cases depending on this label: Either there exists a lexicon
entry w := X and j = i+ 1, or there exists a lexicon entry € := X and j = i. In either case,
the item [X, 7, j] is one of the axioms of our deduction system.

4.2.2 Inductive Case 1: Contexts with Two Spinal Nodes. Consider a context ¢ with spine
length 2 and span [i, ', j/, j]. This context takes one of the following two forms, where X

is some category, |Y is an argument, « € Args=!, and af € Args=‘:

Y Y

X/Ya Yap Yap X\Yu
Xap Xap

We write r for the root node of ¢, and f for the foot node. The category cat(c, f) takes the
form X|Yw; the category cat(c, r) takes the form Xap. We assume that we already have
a derivation for the subtree with root category Ya that ends at the secondary child of
the root node. Then with an application of some rule (forward or backward), we get a
derivation for the complete context. We have |«| = 1 if this rule is a substitution rule and
|a| = 01if it is a composition rule. This operation is performed by rule 1 of the deduction
system.

4.2.3 Inductive Case 2: Splitting Derivation Trees. This case corresponds to rule 2 of the
deduction system. Assume a derivation tree t with root node r and lexical anchor f,
having signature [Xp, i, j|] and containing at least two spinal nodes. We will show how
to identify the split node s at which t can be decomposed into a smaller derivation tree ¢
with signature [Xa, i’, ;'] and a context ¢ with signature [«, B,i,7, ', j]. Recall that Xp € G
by the definition of signature. The derivation tree ' is the subtree of t rooted in s and
the context ¢ is the context that remains when all proper descendents of s are removed
from t. Note that we can also choose f as the split node s. In this case the resulting
tree is trivial and corresponds to an axiom of the deduction system. Also note that after
splitting, there exist two copies of s, namely the foot node of ¢ and the root node of #'.
For the splitting of trees, we distinguish two subcases, depending on whether there is
at least one spinal node with arity smaller than the root. As we will see below, these
two subcases correspond to the two conditions |«| < |B| and |«| > |B|. For each of these
subcases we will show that ' has its root node labeled by some category from G and
that ¢ fulfills the context conditions.

Subcase 1. For this subcase, assume there is at least one spinal node n with arity(n) <
arity(r). We choose as split node s the node closest to r with this property (this can
also be f). We can write cat(t,s) = Xa and cat(t,7) = Xp, where a are the bridging

616

Schiffer, Kuhlmann, and Satta Tractable Parsing for CCGs of Bounded Degree

arguments of the rule applied at s and |a| < |B| by the assumption of this subcase.
Because we chose the node closest to with the given property, the arguments in X
are not modified between s and r.

Because |a| € {1,2} and |a| < |B|, we have |B| > 2. From X € G it follows that X is
a prefix of a lexical category (XS € Gj) or X is a prefix of an instantiation of a secondary
input category (XB € Gp). From |a| < 2 and | Xa| < | XB| it follows that X« € G, where
Xa € G1if XB € Gy and Xa € Gy if XB € Gy. Consequently, [Xu, 7', j'] is a valid tree item.

Furthermore, we need to verify that c is a valid context. Recall that we have to check
the context conditions (1) downarity(s) < downarity(u) and (2) arity(r) < arity(u), for
each node u properly between s and r. For the first condition, we observe that for two
nodes v, w with arity(v) < arity(w), we always have downarity(v) < downarity(w).
Each node u properly between s and r has the property arity(s) < arity(u), and thus
downarity(s) < arity(u). For the second condition, we have arity(r) < arity(u#) because
s is the node closest to r with arity(s) < arity(r). We can conclude that c is a valid
context.

Subcase 2. For this subcase, assume that every spinal node n has arity(n) > arity(r).
Among the spinal nodes with minimal downstep arity, we then choose the split node as
the node s closest to f (this node can also be f itself). In other words, when starting at
the lexical anchor and moving down toward the root node, we choose the last position
where an argument of the lexical category is removed. Again, we can write cat(t,s) =
Xw and cat(t,r) = XB, where « are the bridging arguments of the rule applied at s and
X is the prefix that is not modified between s and r. By the assumption of this subcase,
o] > |B.

By the choice of s, we know that X is a prefix of the lexical category labeling f.
This is because for all nodes u properly between s and f we have downarity(s) <
downarity(u) and additionally downarity(s) < downarity(f). Moreover, since nodes
with lower arities than s have at most the downstep arity of s, if there existed such
nodes closer to f, they would have been preferred as the split node. As a consequence,
we have arity(s) < arity(f). Thus, arity(X«) with « € {1,2} does not exceed the arity
of the lexical category labeling f and it follows that Xa € G; C G.

Next, we will show that c is a context. Let u be any node properly between s and r.
Condition (1) downarity(s) < downarity(u) is fulfilled because split node s was picked
from the nodes with minimal downstep arity, so by this choice the statement is true.
Condition (2) arity(r) < arity(u) is already fulfilled by the assumption of this subcase.
Therefore, c is a valid context item.

4.2.4 Inductive Case 3: Splitting Contexts. This case corresponds to deduction rule 3. Given
a context ¢ with more than two spinal nodes, having root node r, foot node f, and
signature [a, B',1,i’,7,j], we will show that there is a spinal node s such that we can
decompose c into two valid contexts c¢; and cp, where c; has root node s, foot node
f, and signature [a, Ba’,i”,7,j',j"], whereas c; has root node r, foot node s, and signa-
ture [/, B/,1,1",j", j]. We can write cat(c, f) = Xa, cat(c,s) = XBa’, and cat(c,r) = XpB/,
where f might be empty.

We choose as the split node s from the spinal nodes properly between f and r among
those with minimal downstep arity the one closest to f.

To show that c; is a context, let u be any node properly between f and s. Con-
dition (1) downarity(s) < downarity(u) already holds in ¢ and thus also in ¢;. For
condition (2) arity(s) < arity(u), first note that downarity(s) < downarity(u), because s
is the node closest to f with minimal downstep arity. Now it suffices to argue that if there

617

Computational Linguistics Volume 48, Number 3

existed a node v with arity(v) < arity(s) properly between f and s, this node would also
have downarity(v) < downarity(s), a contradiction to the previous observation.

As for ¢y, let u be any node properly between s and r. First, we have condition
(1) downarity(s) < downarity(u) because s was chosen among the nodes with lowest
downstep arity. Second, condition (2) arity(r) < arity(u) is already fulfilled in c.

It remains to show that deduction rule 3 can actually be applied. For this, we only
have to verify that |a’| > |B’| holds. This is easy to see since arity(s) > arity(r) with
cat(c,s) = Xpa' and cat(c,r) = XBB'.

5. Construction of the CCG Derivation Tree

The algorithm presented in Section 3 is a recognition algorithm, that is, the algorithm
decides whether a given input sentence w can be generated by some underlying CCG.
However, in view of downstream natural language processing applications, we want to
provide the syntactic analyses of w, here in the form of CCG derivation trees.

We call parse tree any tree structure whose nodes are labeled by items produced
by our deduction system when processing w, and whose arcs connect each antecedent
item to its consequent item. As in the case of several tabular parsing algorithms based on
context-free grammars (Kallmeyer 2010, Chapter 3), one can easily adapt the algorithm
of Section 3 to construct a compact representation for the forest of all parse trees for w,
as described in what follows.

Whenever an item [is produced by our algorithm by means of some deduction
rule, we create a tuple of so-called backpointers, referencing to the antecedent items
used by the rule itself. Because I can be produced by several deduction rules, each
item I is associated with a list H(I) of backpointer tuples. After a successful run of the
algorithm on w, we can then extract any parse tree from the parsing table through the
following procedure: Start at item [S, 0, |w|], arbitrarily pick up a tuple t in H([S, 0, |w|]),
and recursively apply the procedure to all of the backpointers in ¢.°

As a side remark, we observe that for some item I it might happen that, in the
process of following the backpointers stored in #(I), we end up reaching I itself. In
other words, the constructed parse forest contains some cycles. This happens because
our CCGs assign categories to ¢, resulting in infinite ambiguity for some strings. In these
cases the above procedure for extracting parse trees may never stop, for some specific
choices of backpointers.

Example 8

Assume we parse input ab on the basis of a CCG with the lexicon entries a := S/B,
e := B/B, and b := B. Figure 9 depicts the resulting parse forest. Due to the e-entry, we
can use arbitrarily many copies of lexical category B/ B that lead to cycles in the parse
forest. The list of backpointer tuples is shown above the associated item. For axioms, this
list starts with a nullpointer, drawn as a white circle. The other tuples in the list point
to the antecedent item(s) of the considered item. There are three cycles in this parse
forest. First, tree item [S/B,0,1] can be combined with [/B, /B,0,0,1,1], yielding the
same tree item [S/B, 0, 1] again. Second, context item [/B, /B, 0,0, 1, 1] can be combined
with itself, yielding the same context item again. Third, context item [/B, /B,0,0,1,1]
can also be combined with [/B, ¢,0,0,1, 2], resulting in consequent item [/B, ¢,0,0,1, 2].

6 A backpointer tuple can also be viewed as a hyperedge. In this way the forest of all parse trees for w
becomes a hypergraph; see Klein and Manning (2001).

618

Schiffer, Kuhlmann, and Satta Tractable Parsing for CCGs of Bounded Degree

’jgi [o] [o]
[S/B,0,1] [B/B,1,1] [B,1,2]

E— [/B,/B,0,0,l,l] A E— [/Blelololllz]

Figure 9
Parse forest containing cycles.

In practice, the extraction procedure is driven by a probabilistic model or by the use
of other kinds of scores, in such a way that we can retrieve the most likely parse trees.
While an item is a unique identifier for nodes of a parse forest, due to cycles, it can label
several nodes of a parse tree. In what follows, we focus on the individual parse trees
extracted from the parse forest, and describe how to transform these parse trees into
CCG derivation trees.

5.1 Formal Definition

We present the construction of the CCG derivation tree using recursive functions that
can be applied to a suitable parse tree after its extraction. The parse tree is processed
in a top—down fashion, which enables us to immediately construct the derivation tree
using the correct categories. More specifically, if a parse tree is rooted in a context item,
without further information it is not clear what the prefix of the categories on the spine
of the corresponding derivation context is. From this parse tree we can only reconstruct
the combinatory rules applied along the spine, but not the exact categories labeling it.
Because of this, we pass the intended root category, which should label the root of the
derivation context in the complete derivation tree, as a parameter to the function that
handles such parse trees. This category depends on the ancestor items and possibly on
the sibling item of the regarded parse tree, which is why it can easily be determined by
the top—down algorithm.

We start with some auxiliary notation. We use the standard notation for trees as
introduced in Section 2.3. For simplicity, we use the special symbol O to mark the
foot node of a context instead of writing out its category explicitly. Given a context
c and a tree t, we write c(t) for the tree that results from replacing [J by ¢ in c.
Similarly, when combining contexts ¢ and ¢’ by replacing [J by ¢’ in ¢, we write ¢(c¢’).
We access the category stored in a tree item by category([X«, i, j]) = Xa, and we access
the yield corresponding to an item by itemyield([X«, i, j]) = w(i, j|, where w is the input
string that was passed to the algorithm. Accordingly, the yield corresponding to an
axiom is either an input word or e. To attach the primary and secondary subtrees in
the correct order, we require directionality information regarding the first bridging
argument of each context item, so let direction([|Ya, B,i',1,7,;']) = |. Finally, given a

619

Computational Linguistics Volume 48, Number 3

context item and the intended root category of the corresponding derivation context,
let footcat([a, B,1,],k, 1], Xp) = Xa be the corresponding foot category.

We define the recursive function dtree, which takes a parse tree rooted in a tree item
and returns a derivation tree. We also define the recursive function dcontext, which
takes a parse tree rooted in a context item as well as the intended root category and
returns a derivation context. Note that in the former case, the root node can be a leaf or
a binary node, and in the latter case, the root node can be a unary or binary node. In
what follows, I is an item, p;, p», and p’ are parse trees, and X is a category.

dtree(I) = category(I)(itemyield(I))
dtree(I(p1, p2)) = dcontext(py, category(I))(dtree(p;))
X(O,dtree(p’)) if direction(I)
(1)

)

/
dcontext(I(p'), X) =
context(I(p’), X) {X(dtree(p/),D) if direction(I) =\

dcontext(I(p1, p2), X) = dcontext(py, X){dcontext(p1, X))
where X' = footcat(root(pz), X)

Whereas [is a generic placeholder, the foot node is actually associated with a
specific label, which we omitted for simplicity. When inserting a derivation context at
the foot node of another context, the correct correspondence of the foot category and
the inserted root category is ensured since the foot category of a context is calculated
and then passed as the root category to the context that gets inserted later at that exact
position. This root category correctly ends in the excess of that context by design of the
deduction rules. Likewise, when a tree is inserted, the root node of the context that is
wrapped around is set appropriately to ensure consistency.

Concerning the order of insertion, in the previous section we have seen that while
splitting a derivation tree or context, the derivation part closer to the foot node is
the one that corresponds to the first antecedent and the one closer to the root node
corresponds to the second antecedent. As a natural consequence, the derivation part
that corresponds to the first antecedent has to be inserted into the derivation part
that corresponds to the second antecedent. Note also that multiple parse trees can
correspond to the same derivation tree. This will be discussed in detail in Section 6.1.

Example 9
Figure 10 depicts a parse tree extracted from the parse forest for some input string
w1 ... we. Figure 11 shows the CCG derivation tree obtained using the recursive proce-
dure of Section 5.1. The derivation trees and contexts resulting from the first two levels
of recursion are highlighted in blue. The corresponding calculation steps are as follows.
For brevity, we omit the indices in the items and indicate the respective parse subtrees
using Gorn tree addresses (Gorn 1965).

We start at the root and find two subtrees: p; rooted in tree item [A/B/E,0, 3] and
p2 rooted in context item [/B/E,¢,0,0,3,6]. At each subtree we invoke a recursive call:

dtree(p) = dtree([A](p1, p2)) = dcontext(pa, A)(dtree(p1))

The call on p; returns a derivation tree that is inserted at the foot node of the derivation
context returned by the call on p;. The latter receives root category A as an additional

620

Schiffer, Kuhlmann, and Satta Tractable Parsing for CCGs of Bounded Degree

[A/B/C,1,2] [C\D,2,3] [D/E,0,1] [B/E\F,4,5| [F,3,4] [E,5,6]

P11 ‘
[\F,e,3,4,5,5]

[/C,\D,1,1,2,3] [\D,/E,0,1,3,3] [B/E,3,5]
[/C,/E,0,1,2,3] [/B/E,/E,0,0,3,5] [/E,,0,0,5,6]
I ‘ P12 P21 | T ‘ P22
[A/B/E,0,3] [/B/E,¢,0,0,3,6]
Pl‘ T | p2
[4,0,6]

Figure 10

Parse tree with the first child of each binary node labeled by the first antecedent of the respective
deduction rule. As in Figure 7, the order of leaves does not reflect the order of input categories,
which can be reconstructed from the indices stored in the leaf items. The blue labels indicate
subtrees referred to in Example 9 and their shade coincides with their corresponding derivation
part in Figure 11.

A/B/C C\D

D/E A/B\D F B/E\F

A/B/E B/E
\/
A/E IE
\/
A
Figure 11

CCG derivation tree produced from parse tree of Figure 10. The subtrees highlighted in light
blue are those resulting from the first level of recursion, and the darker shaded parts result from
the second level of recursion.

parameter. In Figure 11, the derivation tree and context returned by these calls are
highlighted in light blue.

Similarly, the derivation tree corresponding to p; is computed as follows. Category
A/B/E is handed down to the call yielding the context wrapping around the tree
returned from the call on pq;. Subtree pi; consists of a single node [A/B/C,1,2] and
is therefore handled by the base case of the recursive function. For the other call, we
directly indicate the result without showing deeper levels of recursion.

dtree(py1) = dtree([A/B/E](p11, p12)) = dcontext(p1z, A/B/E)(dtree(p11))
= dcontext([/C, /E|(p121, P122), A/ B/E){dtree([A/B/C]))
= A/B/E(D/E(w;), A/B\D(O,C\D(w3)))(A/B/C(w,))

621

Computational Linguistics Volume 48, Number 3

The derivation context corresponding to p, is computed as follows. The subtrees
p21, p22 of [/B/E,¢,0,0,3,6] correspond to derivation contexts cy1, ¢y that are obtained
through recursive calls of dcontext. Note that cop wraps around cp;, which is why root
category A is passed on to the call on py; without modificaton. Regarding the call on
P21, the root category of ¢p; coincides with the foot category of cz; and is calculated by
footcat([/E,¢,0,0,5,6],A) = A/E.

dcontext(py, A) = dcontext([/B/E,¢](p21, p22), A)
= dcontext(pzz, A) (dcontext(py1, A/E))
= dcontext([/E, €](p221), A) (dcontext([/B/E, /E](p211), A/E))
— A} E(ws) }{A/E(D), B/E(F(w1), B/E\F(ws)))

These derivation parts are then finally combined to the derivation tree of Figure 11
by performing the tree substitutions indicated in the equations above. The derivation
parts corresponding to the results of the calls on p11, p12, p21, and pyp are highlighted in
a darker shade of blue, respectively.

6. Parser Extensions and Improvements

In this section we discuss possible extensions and some practical improvements to the
parsing algorithm we have developed.

6.1 Eliminating Spurious Ambiguity

The term spurious ambiguity describes the property of a parsing algorithm to produce
several parse trees for a single derivation tree. This kind of redundancy is undesirable
and ought to be avoided, because it might result in flawed computations of derivation
probabilities when working with generative models based on CCG (Hockenmaier and
Steedman 2002). Note that there exist other notions of spurious ambiguity that aim to
obtain only a single derivation tree per semantic reading by arranging forward (respec-
tively, backward) chains (i.e., sequences of forward rule applications) in a canonical way
(Eisner 1996). In the present work we will only address the former notion of spurious
ambiguity.

We first observe that the algorithm as presented in Section 3 has spurious ambiguity.
This can easily be seen from Figure 12, which shows two different (partial) parse trees
that correspond to the same derivation tree, which is a subtree of the one in Figure 6. On
the other hand, the parse tree shown in Figure 13b corresponds to the derivation tree
shown in Figure 13a, which is different from the one in Figure 12a. So the parse tree is
not redundant with those of Figure 12 and not a case of spurious ambuity, although it
has the same leaf items. However, this derivation tree itself has several other parse trees
that need to be avoided. Another example of spurious ambiguity is shown in Figure 14,
depicting two parse trees corresponding to the same derivation context, where X is a
category variable.

6.1.1 Sources of Spurious Ambiguity. In what follows, we first inspect our deduction rules
to address the questions of whether and in what ways they might introduce spurious
ambiguity. We then propose a reformulation of our deduction rules that eliminates

622

Schiffer, Kuhlmann, and Satta Tractable Parsing for CCGs of Bounded Degree

(G,6,7]
[E/G,5,6] [/G,¢5,5,6,7]
[A/E,0,1] [E,5,7]
A/E S\A/E E/G G [\A/E,/E,0,1,5,5] [/E¢0,0,5,7]
S/E E [S\A/E,1,5] [\A/E,¢0,1,5,7]
B S— 5,0.7]
(a) derivation tree (b) canonical parse tree
[G,6,7]
[A/E,0,1] [E/G,56 [/G,¢5,5,6,7]
[S\A/E,1,5] [\A/E,/E,0,1,5,5] E,5,7]
[S/E,0,5] 4 [/E,¢,0,0,5,7]
[S,0,7]
(c) undesired parse tree
Figure 12
Spurious ambiguity caused by deduction rule 2.
[E/G,5,6] (G,6,7]
AJE S\AJE [A/E,0,1] [/E,/G,0,0,5,6] [/G,¢5,5,6,7]
S/E E/G [\A/E,/E,0,1,5,5] [/E,€0,0,5,7]
S/G G [S\A/E,1,5] [\A/E,¢0,1,5,7
S [S,0,7]
(a) derivation tree (b) canonical parse tree
Figure 13
Other derivation tree with the same lexical categories as in Figure 12.
X/B B\C/E [C/E/F,1,2] [F,4,5]
C/E/FE X\C/E [B\C/E,3,4 [\C/E,/E/F,1,2,4,4] [/F¢1,1,4,5
X/E/F F [/B,\C/E,2,2,3,4] [\C/E, /E,1,2,4,5]
X/E [/B,/E,1,2,3,5]
(a) derivation context (b) canonical parse tree
[B\C/E,3,4] [C/E/F,1,2]
[/B,\C/E,2,2,3,4| [\C/E,/E/F,1,2,4,4] [F, 4,5
[/B,/E/F,1,2,3,4] ¢ [/F,¢1,1,4,5]
[/B,/E,1,2,3,5]

(c) undesired parse tree

Figure 14
Spurious ambiguity caused by deduction rule 3.

spurious ambiguity. Throughout the discussion, we always assume some general but
fixed derivation tree, which we call the reference derivation tree.

Deduction Rule 0. This deduction rule introduces the lexical categories associated with
the input symbols. It is apparent that given a reference derivation tree there is only one
choice for each input symbol, providing the tree item composed of the associated lexical

623

Computational Linguistics Volume 48, Number 3

category in the derivation and the index of the position in the input string. Therefore,
deduction rule 0 is not responsible for any spurious ambiguity.

Deduction Rule 1. The analysis of deduction rule 1 is a bit more involved. First, we
observe that deduction rule 1 is applied to exactly those tree items whose category is
used as a secondary input category in our reference derivation tree. These tree items
need to contain exactly the indices marking the span of the yield belonging to the
subtree that is rooted in this secondary input category. Second, the leading slash of
the bridging arguments and their number depends on the type of combinatory rule
that is applied to that secondary input category and thus determined by the reference
derivation tree as well. Third, the guessed indices of the consequent context item are
the left (respectively, right) fencepost position of the reference derivation subtree that
is rooted in the sibling of the secondary input category, since they mark the span that
needs to be reserved for the foot node of the context. As a consequence, the derivation
tree completely determines the set of items that deduction rule 1 is applied to. Any
change of this set would result in a different derivation tree. This is the case for the
parse trees of Figures 12b and 13b.

Deduction Rules 2 and 3. Given some spine in our reference derivation tree, its lexical
anchor is introduced as a tree item by deduction rule 0, and when the root of the spine
is reached, this is either the goal item or else a secondary input category, requiring
an application of deduction rule 1. On the way from the lexical anchor to the root,
deduction rules 2 and 3 are used to simulate the categories along the spine. Deduction
rule 2 models the splitting of a derivation tree into a smaller tree and a derivation
context at some spinal node, whereas deduction rule 3 models the splitting of a context
into two smaller contexts, also at some spinal node. This causes spurious ambiguity
because there are several points where a derivation tree or context can be split into
two valid pieces of derivation that can be represented using tree or context items,
respectively. Different parses of the spine therefore constitute different ways to group
the combinatory rule applications along the spine into valid contexts without changing
their order.

6.1.2 Approach. One solution for eliminating spurious ambiguity is to enforce that the
parsing algorithm strictly follows the splitting strategy used in the completeness proof.
Because the strategy of the completeness proof is pursued, the resulting modified
algorithm is still complete.

When two items are combined via rule 2 or 3, we also say that the second antecedent
gets added to the first antecedent. An equivalent description of the strategy of the
completeness proof is that contexts are extended to contexts as large as possible before
the respective context items serve as second antecedents by getting added to other
items. By this, we mean that each context item used as a second antecedent, starting
from its respective foot node, has to cover a segment as large as possible of the given
spine and cannot be further extended in the direction of the root by adding other context
items to it. Note that it might be necessary to combine other context items first to obtain
an item that can be added to it. This approach leads to right-branching structures in the
parse tree whenever possible.

To see that this is equivalent to the strategy of the completeness proof, note that
the context whose item serves as a second antecedent is closer to the root and wrapped
around the context or tree of the first antecedent. In the splitting strategy of the com-
pleteness proof, the strategy always aims to split off contexts as large as possible from

624

Schiffer, Kuhlmann, and Satta Tractable Parsing for CCGs of Bounded Degree

a tree or context, beginning at the root node. In one of the cases, this is made explicit by
choosing the node closest to the foot node from a selection of potential split nodes (the
positions with the lowest downstep arity). In the other case, it is not immediately clear
by the wording of the strategy, but each larger piece of derivation contains a node with
arity lower than the root node on the spine and is thus not a valid context.

Implementation. We want to ensure that a context item can never be added to an item if
it could also have been added to the context item that was added to the respective first
antecedent in the step before. For this, each tree and context item stores information
on the last item that was added to it. It suffices to store an additional variable that
can take one of three values, stating if the last added item had an excess of length 0,
1, or 2 and higher. This value is initialized with 0 after the introduction of a tree or
context item via deduction rule 0 or 1 and set accordingly in the consequent item of
deduction rule 2 or 3 depending on the second antecedent. When we want to add a
second antecedent (always a context item) to some item, we first check if its excess is
longer than its bridging arguments. This of course is only possible if the first antecedent
is a tree item and would increase the arity of its stored root category. If this is the case,
we may add it to the tree item regardless of the previously added item, since such a
context can never be added to another context. Otherwise, if the excess length of the
second antecedent is the same or lower than its number of bridging arguments, we
check if the number of bridging arguments is higher than the excess length of the item
that was previously added to the first antecedent. Only then combination is allowed.

Example 10

In Figure 12¢, context item C; = [\A/E, /E,0,1,5,5] with excess length 1 is added to
tree item [S\ A/E, 1,5]. Subsequently, context item C, = [/E, ¢,0,0,5, 7] with one bridg-
ing argument is added to the consequent item T = [S/E, 0, 5]. Because excess length 1
is stored in T, context item C; could also have been added to Cy, so this application of
deduction rule 2 is not allowed (marked by ¢). Similarly, in Figure 14c, after adding
Ci = [\C/E,/E/F,1,2,4,4] with excess length 2 to C = [/B,\C/E,2,2,3,4], another
context item Cé =[/F,¢1,1,4,5] with one bridging argument is added to the conse-
quent item. Again, this is forbidden because the two second antecedents C;, C} could
have been combined first and then added to C in one step. Consequently, the canonical
parse trees of Figures 12b and 14b are enforced.

Explanation. We claim that this approach suffices to remove all spurious ambiguity from
the parsing algorithm. For this, we have the following argument.

We first focus on the splitting of trees and therefore on deduction rule 2. Given a
spine, the applications of this deduction rule constitute its segmentation into contexts.
The split nodes of the splitting strategy are positions where splitting has to take place
necessarily, either because they have a low arity and there are no lower arities closer
to the root, or because they have a low downstep arity with no lower downstep arity
closer to the lexical anchor. No context on the given spine can contain these positions
as nodes properly between the foot node and the root node. Thus, beyond these nodes,
contexts cannot be further extended in either direction, so their context items can be
used neither as first nor as second antecedent of deduction rule 3. The splitting strategy
chooses exactly those nodes, showing that it yields maximally extended contexts.

Now assume there was a splitting into smaller contexts that respects the unavoid-
able split nodes, but additionally splits those maximal contexts into smaller ones that
cannot be combined with each other to attain the desired maximal contexts.

625

Computational Linguistics Volume 48, Number 3

lexical anchor root node
| |/B\C/E| |\C/E\E/E| [/E¢] | \A/E, /E| [/E]
Figure 15

Grouping of combinatory rule applications along the spine of the derivation tree of Figure 6 into
maximally extended contexts.

However, the extension of a context item (by adding another context item as a
second antecedent) does not inhibit its ability to be added to other context or tree
items. This is because the bridging arguments are unaffected and only the two top-
most arguments of the excess may be exchanged or removed. In other words, extending
a context further in the direction of the root node does not inhibit its ability to combine
with other context or tree items in the direction of the foot node.

Additionally, when a context item is added to a tree or context item, its ability to
have other context items added to it carries over to the consequent item. In other words,
the consequent item can be extended further in the direction of the root node in at least
the same (and possibly more) ways as the added context item can.

This shows that no combination of context items (in accordance with the given
spine) prevents an extension to the maximally extended context. If the maximal context
is not attained yet, its smaller parts can still be combined.

This is visualized in Figure 15. It shows the items (without indices) corresponding
to the combinatory rule applications along the spine of the derivation tree of Figure 6
and how these items are grouped into maximally extended contexts. The order of these
items is fixed by the reference derivation tree, so each item can only be combined
with the neighboring items or their respective consequents. We can observe that after
combining [\C/E, \E/F] with [/F,¢], we can still combine the consequent with [/B, \C/
E], since the bridging arguments \C/E of the first antecedent are preserved. In the same
manner, when combining [\C/E, \E/F| with [/B, \C/E] first, the consequent can still
be extended in the direction of the root by adding [/F, €] to it, since the excess \E/F of
the second antecedent is transferred to the consequent.

With the aid of Figure 16, we will explain what happens when we add smaller
contexts than the intended maximal context to some tree item. Assume that [/B, /C/ D]
is added to [A/B]. Provided that the resulting category is in G, this is allowed because
the context item increases the arity of the tree item. Next, we add [/D,/E/ F] to the
consequent. This is allowed as well since the two context items cannot be combined
directly. However, it is forbidden to add [/F,¢] afterward. This item reduces the arity
and cannot be added to the combined item [A/C/E/F], which stores the value 2 to
indicate that an item with an excess of length 2 or higher was added in the previous
step. So we may add several non-maximal contexts in a row that increase the arity (as

lexical anchor root node
A/B | |/B,/C/D| |/D,/E/F| |/Fe| |/Ee]
Figure 16

Group starting with two combinatory rule applications that increase the arity.

626

Schiffer, Kuhlmann, and Satta Tractable Parsing for CCGs of Bounded Degree

long as the result is a category in G), but at some point we need to preserve or reduce
the arity to return to the arity of the root of the maximally extended context, requiring
a combination that is forbidden. Due to the context definition, this root has at most the
arity of the category that is obtained by adding the first arity-increasing context.

Now we turn to the splitting of contexts and to deduction rule 3. First, we observe
that the context that is split off clearly cannot be extended further in the direction of the
foot node due to its low downstep arity. Then we use the same argumentation as for
trees and argue that, if the context is not maximally extended yet, its parts can still be
combined with each other.

Together, these properties indicate that there are no two competing splittings with
non-extendable second antecedents. However, a more in-depth analysis is necessary
to formally prove that spurious ambiguity is ruled out completely. This should be
addressed in future work.

Separation of Splitting Strategies. A nice property of the described strategy is that by
following it, the two cases of the tree splitting in the completeness proof (see 4.2.3) are
strictly separated in the sense that on one side of the spine one case is used consistently.
These cases not only correspond to two variants of deduction rule 2, but also correspond
to guaranteed membership in the sets G; or Gy, respectively. More precisely, closer
to the root, which is labeled by an instantiation of a secondary input category or the
distinguished category, the categories stored in the first antecedent and the consequent
item of deduction rule 2 are in G, and the rule has |a| < |B] (case 1). On the other hand,
closer to the lexical anchor, the first antecedent and the consequent item are in G; and
deduction rule 2 has |a| > |B| (case 2). There is a specific position on the spine where the
strategies are switched, which is among the spinal nodes of lowest arity the one closest
to the root. At this position, the spinal category is in G; N Go.

To demonstrate why this is the case, examine the condition for case 2. After this
condition (no lower downstep arity closer to the lexical anchor) is true for the first time,
it is true at each split node that is chosen in the remaining part of the spine. Therefore,
we can use this case for every split node closer to lexical anchor as well. Accordingly,
deduction rule 2 is used along the spine as follows: Starting at the lexical anchor, the
arity of the category is reduced until the position of lowest arity closest to the root is
reached. Then, the arity is increased to construct the secondary input category labeling
the root. Of course, depending on the spine, it can also be the case that only one of the
two cases is required at all.

6.2 Support for Rule Restrictions

A support for non-pure CCG and for rule restrictions in particular is quite easy to
implement. We use the same approach that was proposed by Kuhlmann and Satta
(2014), who pointed out that it boils down to the same solution that was already used
for the classical polynomial time parsing algorihm by Vijay-Shanker and Weir (1990,
1993).

There are two types of rule restrictions: target restrictions, which restrict the target
of the primary input category, and secondary input restrictions. When a category is used
as a secondary input category, a rule of type 1 is used to convert the corresponding tree
item into a context item. This rule should be restricted such that it can only be applied
if the category in the antecedent tree item matches an instantiation of a secondary input
category of some combinatory rule and only in accordance with the type of rule (com-
position or substitution and forward or backward), which determines the length and

627

Computational Linguistics Volume 48, Number 3

leading slash of the bridging arguments. This approach implements secondary input
restrictions as well as the support for non-pure CCG. Additionally, if target restrictions
are also used by the grammar, each context item needs to store the target along the
spine of the corresponding derivation context. For this, when a rule of type 1 is used
to introduce a context item, the target of the primary input category of the matching
combinatory rule is stored in the consequent context item. Note that there can be several
choices if that instantiation is admissible for several targets of primary input categories.
For two context items to be combined via a rule of type 3, their stored targets have to
match. Further, rules of type 2 only allow combination of tree items and context items if
their respective targets coincide. Because a target is stored in each context item, the total
number of context items increases (at most) with a multiplicative factor of |A|, where
A is the set of atomic categories of G. As the targets of the items combined via rules of
type 3 need to match, this leads to an overall increase of the runtime of the parser by a
multiplicative factor |A| as well.

6.3 Support for Multimodal CCG

While rule restrictions provide derivational control by allowing specific rules only for
a subset of categories, there is a shift toward multimodal variants of CCG, which have
a grammar-independent universal set of rules, but use lexically assigned slash types to
provide additional control over the applicability of rules, leading to a fully lexicalized
formalism (Baldridge 2002; Baldridge and Kruijff 2003; Steedman and Baldridge 2011;
Stanojevi¢ and Steedman 2021). For example, /, makes a category accessible to a for-
ward harmonic rule; thus the combinatory rule X/.Y,Y /oZ = X/.Z is allowed, but
X /oY, Y\oZ = X\oZ is not. Both the primary and secondary input category need to
be equipped with a slash type that permits the respective rule. Note that the formal
properties of multimodal CCG depend on the precise specification of operators; the
generative capacity can be lower than that of CCG with rule restrictions (Kuhlmann,
Koller, and Satta 2010, 2015).

Our parsing algorithm can easily be adapted to multimodal variants of CCG by
enriching the slashes occurring in items with the respective slash types and filtering the
deduction rules accordingly. The implementation details clearly depend on the specific
variant of multimodal CCG, so we will sketch the idea exemplarily. Rules of type 1 need
to ensure that tree items are only transformed into context items representing combina-
tory rules that are permitted with the category stored in the tree item as a secondary
input category. For instance, from items of the form [Y/.Z,], k|, we may infer /.Y,
/oZ,1,1,7,k], but not [\«Y, /oZ,j,k,1,1], where \ « indicates a backward crossed rule.
Here, we already set the leading slash type of the bridging arguments in accordance
with the applied combinatory rule. Rules of type 2 and 3 may only be applied if the
slash types at the end of the category or excess stored in the first antecedent and of the
bridging arguments stored in the second antecedent are consistent.

Alternatively, some versions of multimodal CCG can be converted into an equiva-
lent CCG with rule restrictions using the construction by Baldridge and Kruijff (2003),
before using the extension described in the previous section.

6.4 Instantiated Secondary Input Categories
We have seen that the runtime complexity of the algorithm is exponential in the max-

imum degree of the grammar. This holds true for a CCG whose combinatory rules
may contain variables in their secondary input categories, which thus require proper

628

Schiffer, Kuhlmann, and Satta Tractable Parsing for CCGs of Bounded Degree

instantiation with all possible lexical arguments. However, when considering a gram-
mar where the secondary input categories in the combinatory rules do not contain any
variables, we can modify the deduction system such that runtime becomes polynomial
in the size of the grammar. To see this, we have to examine the items of the deduction
system.

First, there exist tree items for all categories in G (in combination with all spans
of the input, but we are only concerned with the grammar size here). G; has size
polynomial in |G| already when secondary input categories may contain variables. The
size of G, becomes also polynomial if all instantiated secondary input categories are
part of G, since in the same manner as for Gj, the relevant prefix of each category in the
set is already present in the grammar.

The crucial point are the context items. Instead of allowing an arbitrary argument
sequence of length d or smaller in the excess, they have to be restricted such that
the bridging arguments together with the excess follow the same pattern as G, when
the leading slash is omitted. If there is only one bridging argument, that argument
concatenated with the excess has to follow the pattern of G,, whereas if there are
two bridging arguments, only the first argument is concatenated with the excess. To
understand that this suffices, consider how context items arise and develop throughout
the deduction. A context item is introduced via a tree item, and this conversion means
that the category in the tree item gets applied as a secondary input category. Thus, at that
point, if a composition rule is simulated, the bridging arguments without the leading
slash concatenated with the excess have the form of this secondary input category. If
a substitution rule is simulated, one of the arguments of the secondary input category
occurs twice—as the last bridging argument and as the first argument of the excess.
Afterward, the context item can only be modified by a deduction rule of type 3. Each use
of such a deduction rule leads to a modification of at most the two topmost arguments
of the excess, either by exchanging or by removing them. Consequently, we start with
a (segmented) category in G, when the context item is introduced, and if the first
antecedent of deduction rule 3 contained a category in G, before the application, the
consequent context item does as well. The argument that we omitted before concatenat-
ing bridging arguments and excess is a lexical argument, and their number is bounded
by |G|. We can conclude that the number of context items is polynomial in |G|. As the
number of items is polynomial in the grammar size, the same holds for the number of
instantiations of deduction rules.

7. Final Remarks and Conclusion

In this article we have contributed two technical results to the literature on CCG. First,
we have offered a treatment of the substitution operator, extending existing parsers
which only focus on composition/application rules. Substitution rules are used in
several syntactic accounts of natural language, but have been ignored so far in the
development of parsing algorithms. Second, we have shown that, when the grammar
G is taken into account as an input to the problem, CCG parsing can be carried out
in time exponential only in the maximum degree of G’s rules. Previously, the best
known complexity analysis of CCG parsing accounting for grammar size reported an
exponential function of a combination of three parameters: the maximum rule degree,
the maximum arity of categories in G’s lexicon, and the maximum arity of arguments
appearing in these categories. We now know that CCGs of bounded degree can be
parsed in polynomial time in the size of both the string and the grammar. This result

629

Computational Linguistics Volume 48, Number 3

Table 2
Computational complexity of the universal recognition problem for several variants of CCG
with rule restrictions.

CCG variant Complexity
without e-entries NP (Kuhlmann, Satta, and Jonsson 2018)
with e-entries EXPTIME (Kuhlmann, Satta, and Jonsson 2018)

bounded rule degree PTIME (this article)

is especially relevant in view of the fact that it has been observed that CCGs of bounded
degree are linguistically motivated.

Table 2 summarizes known results on the computational complexity of the uni-
versal recognition problem for several variants of CCG, all with rule restrictions. The
first two entries represent completeness results already discussed in the Introduction.
Kuhlmann, Satta, and Jonsson (2018) studied CCG with composition rules, but all of
their results hold regardless of whether substitution rules are included or not. The last
entry in the table refers to the result in this article, attesting membership in PTIME for
the universal recognition problem for CCG of bounded rule degree. For completeness,
we remark here that PTIME-hardness for this problem easily follows from the fact
that the universal recognition problem for context-free grammar is PTIME-hard. This
problem can be reduced in logarithmic space to the universal recognition problem for
CCG of bounded rule degree. We also remark that, on a par with CCG of bounded
rule degree, the universal recognition problem for TAG can be solved in PTIME
(Schabes 1990).

Our parsing algorithm achieves a runtime of O(p - |G|*** - |w|®), where w is the
input string, G is the input grammar with rules of degree bounded by d, and O(p) is the
space required for the representation of each item. When target restrictions are allowed,
the number | A| of atomic categories needs to be included as a multiplicative factor. For
comparison, TAG is known to be parsable in O(|G|? - |w|®) when the grammar size is
taken into account (Schabes 1990).

Additionally, we have proposed a modification of our parsing algorithm for a
variant of CCG that contains all admissible instantiations of secondary input categories
as part of the rule system, leading to an algorithm that is polynomial in the size of the
input grammar even if there is no bound on the maximum degree of combinatorial
rules. This shows that the possibility to use variables in secondary input categories is
crucial for the complexity results reported by Kuhlmann, Satta, and Jonsson (2018) and
already discussed in the introduction.

Another worthwhile problem that the present work might facilitate is the removal
of e-entries. The currently available construction leads to an exponential blowup of the
grammar size (Schiffer and Maletti 2021). As Kuhlmann, Satta, and Jonsson (2018) point
out, due to the different computational complexity of the universal recognition problem
for CCG with and without e-entries, avoiding exponential runtime for e-removal is not
possible unless EXPTIME = NP, which is highly unlikely. However, our findings suggest
that a variant of CCG where either the rule degree is bounded or where all rules have
fully instantiated secondary input categories allows for e-removal with only polynomial
increase of the grammar size. More precisely, the techniques presented in this article
can be used to improve the transformation from CCG to simple monadic context-free
tree grammar (Kuhlmann, Maletti, and Schiffer 2022, Definition 23) for these variants.

630

Schiffer, Kuhlmann, and Satta Tractable Parsing for CCGs of Bounded Degree

This construction is the step of the e-removal involving the exponential blowup and is
structurally closely related to our parsing algorithm.

Finally, we would like to point out that a formal treatment of CCG is not only
of theoretical interest, but can have practical benefits in parsing applications. This is
because both directions of research rely on the same or very similar techniques, like tree
rotation or compact encoding of derivation trees. These play an important role in work
on the generative power of CCG (Kuhlmann, Koller, and Satta 2010, 2015; Kuhlmann,
Maletti, and Schiffer 2019, 2022) and also in classical (Eisner 1996; Vijay-Shanker and
Weir 1990) as well as recent practical CCG parsers (Stanojevi¢ and Steedman 2019; Kato
and Matsubara 2021).

We conclude with an open problem. The already mentioned complexity results for
CCG parsing reported by Kuhlmann, Satta, and Jonsson (2018) make crucial use of a
combination of unbounded maximum rule degree and rule restrictions. Our novel result
shows that, if we drop unbounded maximum rule degree, we can achieve polynomial
time parsing both in the input string length and in the grammar size. It still remains
to be assessed whether parsing can be carried out in polynomial time for pure CCGs—
that is, CCGs that have all possible (unrestricted) rules up to some fixed but unbounded

degree.

Acknowledgments

We would like to thank Jannis Harder, Peter
Jonsson, Andreas Maletti, and Andrea
Pietracaprina for discussion and valuable
advice on a draft version of this article, or
parts of it. We are also grateful to the three
anonymous reviewers for their insightful
comments and suggestions, which helped
improve this article. Schiffer’s work was
supported by the German Research
Foundation (DFG) Research Training Group
GRK 1763 'Quantitative Logics and
Automata’. Kuhlmann’s work was partially
supported by the Wallenberg Al,
Autonomous Systems and Software Program
(WASP) funded by the Knut and Alice
Wallenberg Foundation.

References

Baldridge, Jason. 2002. Lexically Specified
Derivational Control in Combinatory
Categorial Grammar. Ph.D. thesis,
University of Edinburgh, Edinburgh, UK.

Baldridge, Jason and Geert-Jan M. Kruijftf.
2003. Multi-modal combinatory categorial
grammar. In Tenth Conference of the
European Chapter of the Association for
Computational Linguistics (EACL),
pages 211-218. https://doi.org
/10.3115/1067807.1067836

Bar-Hillel, Yehoshua, Haim Gaifman, and
Eli Shamir. 1960. On categorial and
phrase-structure grammars. Bulletin of the
Research Council of Israel, 9F(1):1-16.

Buszkowski, Wojciech. 1988. Generative
power of categorial grammars. In Richard
T. Oehrle, E. Bach, and Deirdre Wheeler,
editors, Categorial Grammars and Natural
Language Structures, volume 32 of Studies in
Linguistics and Philosophy. Springer,
chapter 4, pages 69-94. https://doi.org
/10.1007/978-94-015-6878-4_4

Eisner, Jason. 1996. Efficient normal-form
parsing for Combinatory Categorial
Grammar. In 34th Annual Meeting of the
Association for Computational Linguistics,
pages 79-86. https://doi.org/10.3115
/981863.981874

Fowler, Timothy A. D. and Gerald Penn.
2010. Accurate context-free parsing with
combinatory categorial grammar. In
Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics,
pages 335-344.

Fujiyoshi, Akio and Takumi Kasai. 2000.
Spinal-formed context-free tree grammars.
Theory of Computing Systems, 33(1):59-83.
https://doi.org/10.1007
/5002249910004

Gorn, Saul. 1965. Explicit definitions and
linguistic dominoes. In Systems and
Computer Science, Proceedings of the
Conference held at Univ. of Western Ontario,
pages 77-115. https://doi.org/10.3138
/9781487592769-008

Hockenmaier, Julia and Mark Steedman.
2002. Generative models for statistical
parsing with Combinatory Categorial
Grammar. In Proceedings of the 40th Annual
Meeting of the Association for Computational

631

https://doi.org/10.3115/1067807.1067836
https://doi.org/10.3115/1067807.1067836
https://doi.org/10.1007/978-94-015-6878-4_4
https://doi.org/10.1007/978-94-015-6878-4_4
https://doi.org/10.3115/981863.981874
https://doi.org/10.3115/981863.981874
https://doi.org/10.1007/s002249910004
https://doi.org/10.1007/s002249910004
https://doi.org/10.3138/9781487592769-008
https://doi.org/10.3138/9781487592769-008

Computational Linguistics

Linguistics, pages 335-342. https://doi
.org/10.3115/1073083.1073139

Hockenmaier, Julia and Peter Young. 2008.
Non-local scrambling: The equivalence of
TAG and CCG revisited. In Proceedings of
the 9th International Workshop Tree Adjoining
Grammar and Related Formalisms,
pages 41-48.

Joshi, Aravind K. 1985. Tree Adjoining
Grammars: How much context-sensitivity
is required to provide reasonable
structural descriptions? In David R.
Dowty, Lauri Karttunen, and Arnold M.
Zwicky, editors, Natural Language Parsing.
Cambridge University Press,
pages 206-250. https://doi.org
/10.1017/CB09780511597855.007

Kallmeyer, Laura. 2010. Parsing Beyond
Context-Free Grammars. Cognitive
Technologies, Springer. https://doi.org
/10.1007/978-3-642-14846-0

Kato, Yoshihide and Shigeki Matsubara.
2021. A new representation for span-based
CCG parsing. In Proceedings of the 2021
Conference on Empirical Methods in Natural
Language Processing, pages 10579-10584.
https://doi.org/10.18653/v1
/2021.emnlp-main. 826

Kepser, Stephan and Jim Rogers. 2011. The
equivalence of tree adjoining grammars
and monadic linear context-free
tree grammars. Journal of Logic, Language
and Information, 20(3):361-384.
https://doi.org/10.1007/s10849
-011-9134-0

Klein, Dan and Christopher D. Manning.
2001. Parsing and hypergraphs. In
Proceedings of the Seventh International
Workshop on Parsing Technologies
(IWPT-2001), pages 123-134.

Koller, Alexander and Marco Kuhlmann.
2009. Dependency trees and the strong
generative capacity of CCG. In Proceedings
of the 12th EACL, pages 460—468.
https://doi.org/10.3115
/1609067.1609118

Kuhlmann, Marco, Alexander Koller, and
Giorgio Satta. 2010. The importance of rule
restrictions in CCG. In Proceedings of the
48th Annual Meeting of the Association for
Computational Linguistics, pages 534-543.
https://www.aclweb.org/anthology
/P10-1055

Kuhlmann, Marco, Alexander Koller,
and Giorgio Satta. 2015. Lexicalization
and generative power in CCG.
Computational Linguistics, 41(2):187-219.
https://doi.org/10.1162
/COLI_a_00219

632

Volume 48, Number 3

Kuhlmann, Marco, Andreas Maletti, and
Lena K. Schiffer. 2019. The tree-generative
capacity of combinatory categorial
grammars. In Proceedings of the 39th
FSTTCS, volume 150 of LIPIcs,
pages 44:1-44:14.

Kuhlmann, Marco, Andreas Maletti, and
Lena K. Schiffer. 2022. The tree-generative
capacity of combinatory categorial
grammars. Journal of Computer and System
Sciences, 124:214-233. https://doi.org
/10.1016/j.jcss.2021.10.005

Kuhlmann, Marco and Giorgio Satta. 2014.
A new parsing algorithm for Combinatory
Categorial Grammar. Transactions of the
Association for Computational Linguistics,
2(Oct):405-418. https://doi.org/10
.1162/tacl_a_00192

Kuhlmann, Marco, Giorgio Satta, and Peter
Jonsson. 2018. On the complexity of CCG
parsing. Computational Linguistics,
44(3):447-482. https://doi.org
/10.1162/coli _a 00324

Schabes, Yves. 1990. Mathematical and
Computational Aspects of Lexicalized
Grammars. Ph.D. thesis, University of
Pennsylvania.

Schiffer, Lena K. and Andreas Maletti. 2021.
Strong equivalence of TAG and CCG.
Transactions of the Association for
Computational Linguistics, 9:707-720.
https://doi.org/10.1162/tacl_a_00393

Shieber, Stuart M. 1985. Evidence against the
context-freeness of natural language.
Linguistics and Philosophy, 8(3):333-343.
https://doi.org/10.1007/BF00630917

Shieber, Stuart M., Yves Schabes, and
Fernando Pereira. 1995. Principles and
implementation of deductive parsing.
Journal of Logic Programming, 24(1-2):3-36.
https://doi.org/10.1016/0743
-1066 (95)00035-1I

Stanojevi¢, Milo$ and Mark Steedman. 2019.
CCG parsing algorithm with incremental
tree rotation. In Proceedings of the 2019
Conference of the North American Chapter
of the Association for Computational
Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers),
pages 228-239. https://aclanthology

.org/N19-1020

Stanojevi¢, Milo§ and Mark Steedman. 2021.
Formal basis of a language universal.
Computational Linguistics, 47(1):9-42.
https://doi.org/10.1162
/coli_a_00394

Steedman, Mark. 2000. The Syntactic Process.
MIT Press. https://doi.org/10.7551
/mitpress/6591.001.0001

https://doi.org/10.3115/1073083.1073139
https://doi.org/10.3115/1073083.1073139
https://doi.org/10.1017/CBO9780511597855.007
https://doi.org/10.1017/CBO9780511597855.007
https://doi.org/10.1007/978-3-642-14846-0
https://doi.org/10.1007/978-3-642-14846-0
https://doi.org/10.18653/v1/2021.emnlp-main.826
https://doi.org/10.18653/v1/2021.emnlp-main.826
https://doi.org/10.1007/s10849-011-9134-0
https://doi.org/10.1007/s10849-011-9134-0
https://doi.org/10.3115/1609067.1609118
https://doi.org/10.3115/1609067.1609118
https://www.aclweb.org/anthology/P10-1055
https://www.aclweb.org/anthology/P10-1055
https://doi.org/10.1162/COLI_a_00219
https://doi.org/10.1162/COLI_a_00219
https://doi.org/10.1016/j.jcss.2021.10.005
https://doi.org/10.1016/j.jcss.2021.10.005
https://doi.org/10.1162/tacl_a_00192
https://doi.org/10.1162/tacl_a_00192
https://doi.org/10.1162/coli_a_00324
https://doi.org/10.1162/coli_a_00324
https://doi.org/10.1162/tacl_a_00393
https://doi.org/10.1007/BF00630917
https://doi.org/10.1016/0743-1066(95)00035-I
https://doi.org/10.1016/0743-1066(95)00035-I
https://aclanthology.org/N19-1020
https://aclanthology.org/N19-1020
https://doi.org/10.1162/coli_a_00394
https://doi.org/10.1162/coli_a_00394
https://doi.org/10.7551/mitpress/6591.001.0001
https://doi.org/10.7551/mitpress/6591.001.0001

Schiffer, Kuhlmann, and Satta

Steedman, Mark. 2011. Taking Scope. MIT
Press. https://doi.org/10.7551/
mitpress/9780262017077.001.0001

Steedman, Mark and Jason Baldridge. 2011.
Combinatory Categorial Grammar. In
Robert D. Borsley and Kersti Borjars,
editors, Non-Transformational Syntax:
Formal and Explicit Models of Grammar,
Blackwell, chapter 5, pages 181-224.
https://doi.org/10.1002
/9781444395037 . chb

Vijay-Shanker, Krishnamurti and David J.
Weir. 1990. Polynomial time parsing of
combinatory categorial grammars. In 28th
Annual Meeting of the Association for
Computational Linguistics, pages 1-8.
https://doi.org/10.3115
/981823.981824

Tractable Parsing for CCGs of Bounded Degree

Vijay-Shanker, Krishnamurti and David J.
Weir. 1993. Parsing some constrained
grammar formalisms. Computational
Linguistics, 19(4):591-636.

Vijay-Shanker, Krishnamurti and David J.
Weir. 1994. The equivalence of four
extensions of context-free grammars.
Mathematical Systems Theory, 27(6):511-546.
https://doi.org/10.1007/BF01191624

Weir, David J. and Aravind K. Joshi.

1988. Combinatory categorial grammars:
Generative power and relationship to
linear context-free rewriting systems.

In Proceedings of the 26th Annual

Meeting of the Association for Computational
Linguistics (ACL), pages 278-285.
https://doi.org/10.3115
/982023.982057

633

https://doi.org/10.7551/mitpress/9780262017077.001.0001
https://doi.org/10.7551/mitpress/9780262017077.001.0001
https://doi.org/10.1002/9781444395037.ch5
https://doi.org/10.1002/9781444395037.ch5
https://doi.org/10.3115/981823.981824
https://doi.org/10.3115/981823.981824
https://doi.org/10.1007/BF01191624
https://doi.org/10.3115/982023.982057
https://doi.org/10.3115/982023.982057

	Introduction
	Generative Power
	Computational Power
	Contributions of the Present Article
	Structure of the Article

	Preliminaries
	Categories
	Rules
	Grammars

	Parsing Algorithm
	Basic Idea
	Definitions and Notation
	Algorithm Specification
	Runtime Analysis

	Correctness
	Soundness
	Completeness

	Construction of the CCG Derivation Tree
	Formal Definition

	Parser Extensions and Improvements
	Eliminating Spurious Ambiguity
	Support for Rule Restrictions
	Support for Multimodal CCG
	Instantiated Secondary Input Categories

	Final Remarks and Conclusion

