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The resulting parser, UDapter, can be used for dependency parsing as well as sequence
labeling tasks such as POS tagging, morphological tagging, and NER. In dependency parsing,
it outperforms strong monolingual and multilingual baselines on the majority of both high-
resource and low-resource (zero-shot) languages, showing the success of the proposed adaptation
approach. In sequence labeling tasks, our parser surpasses the baseline on high resource lan-
guages, and performs very competitively in a zero-shot setting. Our in-depth analyses show that
adapter generation via typological features of languages is key to this success.!

1. Introduction

When monolingual resources are limited, training a single model on datasets of multiple
languages results in state-of-the-art performance for many tasks, such as dependency
parsing, part-of-speech tagging, and named entity recognition (Ammar et al. 2016;
de Lhoneux et al. 2018; Rahimi, Li, and Cohn 2019). Besides being faster to train and
easier to maintain than a large set of monolingual models, multilingual models have
the potential to learn better generalizations by sharing parameters across languages,
thereby enabling strong cross-lingual transfer and zero-shot learning.

Following recent advances in massively multilingual pre-training such as multilin-
gual BERT (Devlin et al. 2019) and XLM-RoBERTa (Conneau et al. 2020), recent studies
use a multilingual pre-trained Transformer as the backbone model and fine-tune it on
the concatenation of multiple datasets from different languages (Kondratyuk and Straka
2019; Tran and Bisazza 2019; van der Goot et al. 2021). These approaches achieve further
improvements for languages with little training data. However, scaling a multilingual
model to a high number of languages can face the “transfer-interference trade-off”
(Johnson et al. 2017; Arivazhagan et al. 2019; Conneau et al. 2020), a problem also known
as “the curse of multilinguality.” Due to this trade-off, multilingual models outperform
monolingual baselines on low /zero-resource languages (positive transfer), but perform
worse on high-resource languages due to a lack of language-specific capacity (negative
interference). Moreover, multilingual transfer often gives mixed results when the model
is trained on a diverse set of source languages in terms of script, morphology, and syntax
(Tran and Bisazza 2019; Kondratyuk and Straka 2019).

In this work, we address this problem by striking a better balance between max-
imum sharing and language-specific capacity in multilingual models of dependency
parsing and various sequence labeling tasks. Inspired by recent parameter sharing
techniques (Platanios et al. 2018) and adapter-based tuning approaches (Houlsby et al.
2019; Stickland and Murray 2019), we propose a new multilingual parser, UDapter, that
learns to modify its language-specific parameters, that is, the adapter modules, as a
function of learned language representations. In other words, UDapter learns contextual
language adapters by using the respective language embeddings in the context of the
target task. Thus, our adaptation approach allows the model to share parameters across
languages, ensuring generalization and transfer ability, but also enables language-
specific parameterization in a single multilingual model.

Crucially, we propose not to learn language embeddings from scratch, but to lever-
age a mix of linguistically curated typological features as obtained from the URIEL
language typology database (Littell et al. 2017), which currently supports more than

1 Our code for UDapter is publicly available at https://github.com/ahmetustun/udapter.
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3,000 languages. This allows UDapter to work for languages that do not have any task-
specific training data—i.e. zero-shot setting—as the model can project any vector of
typological features to a language embedding for the adapter generation after fine-
tuning.? Using typological information in this manner leads to substantial performance
gains on languages without training data and no loss on high-resource languages when
compared to language embeddings learned from scratch. Furthermore, because some
typological features are missing from URIEL for many languages, we hypothesize
that learning to predict such missing features jointly with the target task may benefit
downstream performance (Ponti et al. 2019). To achieve that, we propose to mask a
random set of typological features during training and predict those features together
with the target word labels in a multi-task manner. During inference, the model is then
capable of projecting incomplete typological feature vectors to language embeddings,
thereby eliminating the need of an external typology prediction system.

While the importance of typological features for cross-lingual parsing is known
for both non-neural (Naseem, Barzilay, and Globerson 2012; Tédckstrém, McDonald,
and Nivre 2013; Zhang and Barzilay 2015) and neural approaches (Ammar et al. 2016;
Scholivet et al. 2019), we are the first to use them effectively for genuinely low-resource
languages. We use these features as direct input to a neural parser, without manual
selection, over a large number of languages, including the zero-shot setup, without
assuming gold part-of-speech (POS) labels are given at test time. Modeling prediction
of typological features jointly with the target task also fills a significant gap in previous
work, as modeling typological feature predictions directly from textual data enables
one to learn more composite representations of linguistic typology instead of discrete
features (Ponti et al. 2019).

We train UDapter on a set of 13 syntactically diverse high-resource languages
(Kulmizev et al. 2019) for dependency parsing, as our core task, and three sequence
labeling tasks: POS tagging, morphological tagging, and named entity recognition
(NER). Extending UDapter to different tasks allows us to investigate how and when our
adaptation approach is effective. We then evaluate the resulting models on these 13
languages as well as 30 genuinely low-resource languages to assess the generalization
and zero-shot learning abilities of UDapter in different tasks. Finally, to get a better un-
derstanding of what makes typology-based language adaptation successful, we present
a large set of analyses including ablation tests for typological features and contextual
language adapters, visualization of learned language representations, and correlation
of language-specific gains with training data size and number of known typological
features.

This article extends our conference paper on multilingual dependency parsing
(Ustiin et al. 2020) in two significant ways:

1.  We generalize UDapter to sequence labeling tasks, namely: POS tagging,
morphological tagging, and NER.

2. We model learning of missing typological features prediction jointly with
the target task, enabling the use of UDapter without the need for an
external typology prediction system at inference time.

2 Fine-tuning and training are used interchangeably in this paper to denote the task-specific fine-tuning
procedure after the language model pre-training.

557



Computational Linguistics Volume 48, Number 3

The article is structured as follows: We describe the background for our work in
Section 2, and present the proposed model with corresponding sub-components in
Section 3. Multi-task prediction of typological features is introduced in Section 4. After
introducing the experimental setup in Section 5, we present the core results in Section 6.
Finally we provide a comprehensive analysis of our model and results in Section 7.

2. Previous Work
This section presents the background of our approach.
2.1 Multilingual Neural Networks

Early approaches to multilingual neural machine translation (NMT) designed dedi-
cated architectures (Dong et al. 2015; Firat, Cho, and Bengio 2016) whereas subsequent
models, from Johnson et al. (2017) onward, added a simple language identifier to the
models with the same architecture as their monolingual counterparts. More recently,
multilingual NMT models have focused on maximizing transfer accuracy for low-
resource language pairs, while preserving high-resource language accuracy (Platanios
et al. 2018), Neubig and Hu 2018), Aharoni, Johnson, and Firat 2019; Arivazhagan
et al. 2019), known as the (positive) transfer—(negative) interference trade-off. Another
line of work builds massively multilingual pre-trained language models to produce
contextual representation to be used in downstream tasks (Devlin et al. 2019; Conneau
et al. 2020). As the prior model, multilingual BERT (mBERT)® (Devlin et al. 2019),
which is a deep self-attention network, was trained without language-specific signals
on the 104 languages with the largest Wikipedias. It uses a shared vocabulary of 110K
WordPieces (Wu et al. 2016), and has been shown to facilitate cross-lingual transfer in
several applications (Pires, Schlinger, and Garrette 2019; Wu and Dredze 2019). Similar
to our work, Pfeiffer et al. (2020) have proposed to combine language and task adapters,
small bottleneck layers (Rebulffi, Bilen, and Vedaldi 2018; Houlsby et al. 2019), to address
the capacity issue that limits multilingual pre-trained models for cross-lingual transfer.

2.2 Cross-Lingual Dependency Parsing and Sequence Labeling

The availability of uniformly annotated dependency treebanks in many languages
(McDonald et al. 2013; Nivre et al. 2016, 2020; de Marneffe et al. 2021) has provided
an opportunity for the study of cross-lingual parsing. Early studies trained a delexi-
calized parser (Zeman and Resnik 2008; McDonald et al. 2013) on one or more source
languages by using either gold or predicted POS labels (Tiedemann 2015) and applied it
to target languages. Building on this, later work used additional features such as typo-
logical language properties (Naseem, Barzilay, and Globerson 2012), syntactic embed-
dings (Duong et al. 2015), and cross-lingual word clusters (Tdckstrom, McDonald, and
Uszkoreit 2012). Among lexicalized approaches, Vilares, Gomez-Rodriguez, and Alonso
(2016) learn a bilingual parser on training data obtained by merging harmonized
treebanks. Ammar et al. (2016) train a multilingual parser using multilingual word
embeddings, token-level language information, language typology features, and fine-
grained POS tags. More recently, based on mBERT (Devlin et al. 2019), zero-shot transfer
in dependency parsing was investigated (Wu and Dredze 2019; Tran and Bisazza 2019).

3 https://github.com/google-research/bert/blob/master/multilingual .md.
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Finally, Kondratyuk and Straka (2019) trained a multilingual parser on the concatena-
tion of all available UD treebanks.

For sequence labeling tasks, early work on multilingual learning has been applied to
POS and morphological tagging (Gillick et al. 2016; Tsai et al. 2019), and NER (Mulcaire,
Kasai, and Smith 2019; Rahimi, Li, and Cohn 2019). Gillick et al. (2016) showed that a
compact multilingual model operating on bytes could reach similar or better perfor-
mance than their monolingual counterparts in POS and NER tasks. More recently,
Mulcaire, Kasai, and Smith (2019) and Wu and Dredze (2019) showed that multilin-
gual language model pre-training based on ELMo (Peters et al. 2018) and BERT (Devlin
et al. 2019) improves the performance on POS, NER, and UD tasks, including zero-shot
settings.

2.3 Language Embeddings and Typology

Conditioning a multilingual model on the input language has been studied in NMT
(Ha, Niehues, and Waibel 2016; Johnson et al. 2017), syntactic parsing (Ammar et al.
2016), and language modeling (Ostling and Tiedemann 2017). The goal is to embed
language information in real-valued vectors in order to enrich internal representations
with input language for multilingual models. In dependency parsing, several previous
studies (Naseem, Barzilay, and Globerson 2012; Tackstrém, McDonald, and Nivre 2013;
Zhang and Barzilay 2015; Ammar et al. 2016; Scholivet et al. 2019) have suggested that
typological features are useful for the selective sharing of transfer information. Results,
however, are mixed and often limited to a handful of manually selected features (Fisch,
Guo, and Barzilay 2019; Ponti et al. 2019). As the most similar work to ours, Ammar et al.
(2016) use typological features to learn language embeddings as part of training, by aug-
menting each input token and parsing action representation. Unfortunately though, this
technique is found to underperform the simple use of randomly initialized language
embeddings (“language IDs”). Authors also reported that language embeddings hurt
the performance of the parser in zero-shot experiments (Ammar et al. 2016, footnote 30).
Our work instead demonstrates that typological features can be very effective if used
with the right adaptation strategy in both supervised and zero-shot settings. Finally, Lin
etal. (2019) use typological features, along with properties of the training data, to choose
optimal transfer languages for various tasks, including UD parsing, in a hard manner.
By contrast, we focus on a soft parameter sharing approach to maximize generalizations
within a single universal model.

3. Multilingual Adaptation with Contextual Language Adapters and Typology

We address the main limitation of existing multilingual models, the positive transfer—
negative interference trade-off, by proposing a novel multilingual adaptation method
for pre-trained models. Different from the previous cross-lingual methods that fine-
tune all parameters of a multilingual Transformer (Wu and Dredze 2019; Kondratyuk
and Straka 2019), our method creates extra capacity with adapter layers (Rebuffi, Bilen,
and Vedaldi 2018; Houlsby et al. 2019) for each language separately, without restricting
information sharing. Our goal is to adapt the pre-trained model in a multilingual setup
enabling maximum sharing across languages as well as language-specific parameteriza-
tion. The key model component to achieve this is the adapter generator network, which
uses a contextual parameter generator (Platanios et al. 2018), that is, a hypernetwork, to
generate the parameter weights of adapters per language, given a language embedding
as input.
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We then add another component, the typology feature network, to our model so
it can learn to project vectors of typological features to language embeddings. Using
typological features enables the model to run in the zero-shot setup for languages
without training data, as their language embeddings can be computed at inference time
directly from the typological features. We give an overview of our model in Figure 2
and describe different components in the following subsections.

3.1 Multilingual Encoder with Task-Specific Layers

As the base multilingual pre-trained encoder, we use multilingual BERT* (Devlin et al.
2019), which has been shown to facilitate cross-lingual transfer (Pires, Schlinger, and
Garrette 2019; Wu and Dredze 2019). mBERT is a Transformer model (Vaswani et al.
2017) with 12 self-attention layers, each consisting of 12 attention heads. It was pre-
trained on the concatenation of 104 language corpora with the original masked language
modeling method, and no explicit cross-lingual signal, using a shared vocabulary of
110K wordpieces (Wu et al. 2016).

In order to use our model for dependency parsing and sequence labeling tasks,
we use task-specific layers on top of mBERT. For each task separately, we insert a
task-specific top layer, and fine-tune the model on the concatenation of the corpora of
multiple high-resource languages by using our novel adapter generation method (see
Section 3.2). After the training, for low-resource languages, we do not train the model
further, but we only use typological features of those languages and evaluate our model
in zero-shot setup. Figure 1 shows our experimental setup.

To benefit language-aware parameter sharing at a higher degree, we apply contex-
tual parameter generation (CPG; Section 3.3) to generate parameter weights of task-
specific layers together with language adapters. Using CPG for task-specific layers
increases model performance for zero-shot languages in particular (see Section 7.6). The
following paragraphs explain the details of the task-specific layer for the corresponding
target tasks.

Dependency Parsing. We use the graph-based deep biaffine attention layer proposed by
Dozat and Manning (2017). In this layer, intermediate embeddings for arc-head h/*

and arc-dep h}ieﬁ are produced by feedforward layers with Exponential Linear Unit
(ELU) non-linear activation for each word pair i, j in a sentence. Then, a biaffine attention
combines h/** and h?ep to score all possible dependency arcs:

hyeagi = ELU(WE, 1) (1)
hyep, = ELU(W,, 1)) @)
Sure = Hipad Ware ngp (biaffine) (3)
s = softmax(Syc) (4)

ij

where 1; is the output embedding of word i generated by mBERT with contextual
language adapters; Wieq1, Wiep, Wiy are the weights of feedforward layers and biaffine,

4 https://github.com/google-research/bert/blob/master/multilingual.md.
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URIEL URIEL
Language Language
Typology Typology
Database Database
Task-Specific Layer Task-Specific Layer

Lang. Adapter Lang. Adapter
¢ mBERT s mBERT
Lang. Adapter Lang. Adapter
UDapter UDapter

Italian Chinese Turkish Kazakh Belarussian Tamil
(a) Multilingual Fine-tuning on HR (b) Zero-shot Evaluation on LR

Figure 1

Overview of UDapter experimental setup. We start with mBERT, and fine-tune it multilingually
on 13 high-resource (HR) languages (1a). For low-resource (LR) languages, we evaluate
UDapter in a zero-shot setup (1b). For zero-shot evaluation, the only source of information is the
URIEL database (Littell et al. 2017) that provides typological features of the languages.

attention respectively; and sl(‘;.rc) is the probability distribution for the corresponding arc.

Label scores are calculated similarly by using another biaffine classifier over two sepa-
rate feedforward layers. Finally, the Chu-Liu/Edmonds algorithm (Chu 1965; Edmonds
1967) is used to find the highest-scoring valid dependency tree.

POS Tagging, Morphological Tugging, and NER. We use task-specific linear layers followed
by a softmax along output classes to score labels as in a standard neural sequence
labeling architecture:

sglabd) = softmax(W[ ,1;) 5)

where Wy, are the weights of the linear layer for the target task and sflubez) is the
probability distribution for the output labels for word i.

For morphological tagging, we experiment both with predicting morphological
attributes of a word as a separate label, namely, an unfactored tag string (Inoue, Shindo,
and Matsumoto 2017), and jointly predicting the value of each individual morphological
attribute such as aspect, case, tense, and number (Kondratyuk et al. 2018). The first
method predicts one label per word by concatenating all its morphological tags. The

latter method predicts each morphological tag separately with separate softmax layers
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together with the unfactored tag string, as shown below for English word hope. We will
show in Section 6.2 that the second method helps our model to learn infrequent tags
better with higher overall performance.

hope #labels
Unfactored Morph. Tag Sing; 1; Pres 1
+ Separate Attributes Num = Sing, Per =1, Tense = Pres 4

3.2 Contextual Language Adapter

Instead of fine-tuning the whole encoder network on the downstream task, which
would imply updating all base model’s parameters, we use adapter layers (Rebuffi,
Bilen, and Vedaldi 2018; Houlsby et al. 2019), or simply adapters. Adapters are
lightweight modules that are inserted between Transformer layers. When fine-tuning
with adapters, the weights of the base model remain frozen, while the adapter weights
are updated for the downstream task (Stickland and Murray 2019) and/or the target
language (Pfeiffer et al. 2020). Adapters provide a parameter efficient way to perform
fine-tuning, while acting as information modules for the downstream task or target
language, whereas the original network serves as a memory of the generic language
knowledge.

In this work, we propose contextual language adapters that are adapter layers in
which weights of the parameters are generated by a hypernetwork (see Section 3.3)
to capture language-specific information without limiting the generalization across
multiple languages. Because our model is trained for one task at a time, our contextual

Adapter Gen. Network (x2L)

Contextual
Parameter Gen. —>( Context. Lang. ADAPTER ]

2000

[COO000) [ somenion |

Erypo b
Typology Feature Network mBERT Encoder (xN)

Up
Projection
GELU

Down
Projection

Adapter Layer

[ENGLISH] I have a banana in my ear

Figure 2

UDapterX architecture with adapter generation network and typology feature network. The
adapter generation network includes a contextual parameter generator that takes language
embeddings as inputs and generates language-specific adapter parameters for each layer of the
mBERT encoder. The typology feature network consists of an multilayer perceptron (MLP) that
learns to project typological features to language embeddings.
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language adapters enable task-specific as well as language-specific adaptation for the
base multilingual pre-trained model by infusing language-specific knowledge with the
target task.

In UDapter, as adapter modules, we use a simple feedforward network with a
Gaussian Error Linear Unit (GELU) (Hendrycks and Gimpel 2016) nonlinear activation
function, as shown in Figure 2. More formally, a contextual language adapter layer CLA;
atlayer i consists of a down projection Wy, € R"*? with bottleneck dimension b, a non-
linear function and an up projection Wy, € RY*" combined with a residual connection

with the input z; € R":
CLA{(z;) = W,,GELUW} %) + z (6)

Bias terms are omitted for clarity. Similar to Houlsby et al. (2019), we insert an adapter
layer after each multi-head attention block and feed-forward block of Transformer
layers.®

3.3 Adapter Generator Network

In order to control the amount of sharing and generalization across languages while
being able to adapt to each language separately, we use the adapter generator network.
An adapter generator network consists of a contextual parameter generator (CPG)
(Platanios et al. 2018) and language embeddings that are learned simultaneously. CPG
is a trainable hypernetwork that generates the parameters of adapter layers as a func-
tion of language embeddings for each language. Conceptually, it enables our model
to retain a high degree of multilinguality without losing performance on individual
languages, for better multilingual training. CPG allows this with language-specific
parameterization during multilingual training but those parameters are generated by
a hypernetwork that is trained for all languages, which ensures the soft parameter
sharing.

Formally, a contextual parameter generator CPG; at layer i is defined as a function
of language embedding 1, for a language n:

Bcra, = CPG; (1,) ()

where Ocp4, denote the parameters of the contextual language adapter (CLA) in layer
i. Similar to Platanios et al. (2018), we implement CPG as a simple linear transform of
a language embedding. Thus, the weights of adapter layers are generated by the dot
product between language embeddings 1, and the trainable parameter generator tensor
Wepg;:

CPG; (I,) = Wipg L (8)

where 1, € RY, Wepg, € RdXPCLA, d is the language embedding size, Py 4 is the number
of parameters for a contextual language adapter layer. An important advantage of CPG
is that it can easily be applied to an existing model to generate additional parameters,
without dramatically increasing the number of trainable parameters.

5 For simplicity, we mention only one contextual language adapter (CLA) per layer in Equation (6) and
remaining definitions.
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As a result of using the adapter generator network, we do not train adapter layers
separately for each language, but instead we train CPG and language embeddings for
all languages. As a key part of UDapter, language embeddings are learned together with
the downstream task.

3.4 Typology Feature Network

The adapter generator network enables our model to learn the target task depending on
language embeddings. Although this allows UDapter to perform well for languages
that are included in fine-tuning, learning the task for a language that is unseen in
training—zero-shot—still is a problem as its language embedding is not available. In-
spired by Naseem, Barzilay, and Globerson (2012) and Ammar et al. (2016), we address
this problem by defining language embeddings as a function of a large set of language
typology features.

Assuming a language n can be associated with a vector of typological features, we
compute its language embedding using a 2-layer feedforward network with a ReLU
activation (MLP):

1, = le;ng,ZReLU(WlEng’ltn) 9)

where t, € Z§, Wiang 1, Wiang2 € R¥*K REXd | is the typology feature vector size and
d is the language embedding size. This typology feature network is trained jointly
with the adapter generator network so that, during inference, our model is capable of
computing a language embedding from its typological features, even for unseen—zero-
shot—languages.

For typological feature vectors, we use 103 syntactic, 28 phonological, and 158
phonetic inventory features of languages from URIEL.® The URIEL database is a collec-
tion of binary features extracted from multiple typological and phylogenetic sources,
such as WALS (World Atlas of Language Structures) (Dryer and Haspelmath 2013),
PHOIBLE (Moran and McCloy 2019), Ethnologue (Lewis, Simons, and Fennig 2015),
and Glottolog (Hammarstrom et al. 2020). Since for many languages some feature
values are missing, URIEL also provides feature values that were predicted by a k-nearest
neighbors approach based on average of genetic, geographical and feature (e.g., syntax,
phonology) distances between languages. Our main model (Section 6.1, 6.2) makes use
of these predicted values along with the gold ones.

As an alternative approach, in the following section, we also investigate how to
predict those missing features jointly with the target task in order to inhibit possible
loss caused from an external prediction system. We hypothesize that learning to predict
such missing features jointly with the target task may benefit downstream performance
(Ponti et al. 2019).

4. Joint Typological Feature Prediction
One of the crucial components of UDapter is the language embedding (1,;), because

contextual parameter generation is conditioned on it. Our model learns language
embeddings from typological feature vectors representing a large variety of syntactic

6 We use the lang2vec Python library (Littell et al. 2017) to obtain language typology features:
https://github.com/antonisa/lang2vec.
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and phonological attributes of languages. In practice, however, several human-curated
feature values are missing from the URIEL database in many languages, especially low-
resourced ones. For instance, out of 289 syntactic and phonological typology features,
Kazakh (kk), Belarussian (be), and Tamil (ta) miss 275, 256, and 65 values, respectively.
In our base model (Ustiin et al. 2020), we use feature values that are predicted by
Littell et al. (2017) using a KNN approach based on existing features. However, using
externally predicted values carry potential errors that are propagated from off-the-shelf
systems and limits the interaction between typological features and the target task.

To mitigate error propagation and gain downstream performance, we propose a
novel prediction component and multi-task training for learning typological feature
prediction jointly with the target task. This approach allows us to run our model without
an external prediction system for missing features at inference time.

To implement a joint typological feature prediction component, we use a random
masking strategy. Figure 3 gives an overview of this component: During training (3a),
we randomly mask a portion of typological features that have annotated values in
URIEL (see Section 7.4 for the impact of masking ratio), and extend the typology feature
network to predict those masked features. For that, we use a one-layer feedforward
network that takes a language embedding 1,, and projects it to a new typological feature
vector t,;:

t, = ReLUW[ 1) (10)
ETypo ELang ETypo EL ng
A * A
Predicted Predicted

(OO TI0000000] ([OOCO0ORe8000]

—

\ Typology Feature MLP /

Erypo

r_!

\ Typology Feature MLP /

Etypo

JeJe) 0000000 ] [(OOO0O0 [elele)
Random Mask ’ Missing Typo Features \
[ENGLISH] [ENGLISH]
(a) Training (b) Inference
Figure 3

Typological feature network with the Typology Feature MLP for jointly predicting features. The
last layer takes language embeddings and projects them to typological feature vectors. During
training (3a), we mask features with annotated values for learning to predict. In the inference
time (3b) we mask originally missing features as our model is now capable of computing

language embeddings with masked features.
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where Wy, are the weights of the feedforward network. After that, we compute the
loss between predicted values and original values for the masked features, and add it
to the loss of the target task:

L = Liask + ALgypo (11)

where L is the total loss of the model, and Ly, Ly, are the loss values for the target
task and typological feature prediction, respectively. A is the loss weight (scaling factor)
to control the contribution of the typological prediction to the total loss. In this way, the
model learns language embeddings not only from the feedback of the target task, but
also from the feedback of typological feature prediction. At inference time (3b), we only
provide the available features to the model and mask out the missing features.

5. Experimental Setup

Data and Training Details. Following Kulmizev et al. (2019), we selected 13 high-
resource languages to multilingually fine-tune UDapter. These languages’ are morpho-
syntactically diverse, they belong to different language families, and they have
high-quality training data of different sizes. During training, gold tokenization is pro-
vided and a language identifier is added to each sentence so that the model can dis-
tinguish languages for adapter generation. For the zero-shot experiments, we chose 30
genuinely low-resource languages from Universal Dependency (UD), and evaluate the
models without further fine-tuning.® The detailed language list is provided in Appendix
A. For dependency parsing, POS tagging, and morphological tagging, we used UD 2.3
(Nivre et al. 2018) to compare with previous work, whereas for NER we use WikiANN
(Pan et al. 2017) with the standard split proposed by Rahimi, Li, and Cohn (2019).

For the mBERT model, we use BERT-multilingual-cased with its WordPiece to-
kenizer. Because UDapter predicts a label per word or word-pair, we pass the mBERT
output corresponding to the first wordpiece per word to the task-specific top layers.
We use the same hyperparameter values as Kondratyuk and Straka (2019). As extra
hyperparameters we use 256 and 32 for adapter size and language embedding size,
respectively. For dependency parsing we train UDapter for 80 epochs, and for other
tasks we train each model for 30 epochs. During training, we use a learning rate of 0.001
with an inverse square root learning rate decay and a linear warm-up (Howard and
Ruder 2018) for 1 epoch. Appendix B gives the hyperparameter details for UDapter and
the baseline models. Finally, we evaluate each model in terms of labeled attachment
score (LAS) for parsing, accuracy for POS tagging, and F1 score for morphological
tagging and NER.’

Baseline. For all the tasks, we compare UDapter mainly with UDify (Kondratyuk and
Straka 2019). UDify was designed to fine-tune all mBERT parameters for UD parsing
and was originally trained on the concatenation of all UD treebanks. To enable a direct
comparison, we train UDify (multi-udify) on the same 13 high-resource languages

7 Arabic (ar), English (en), Basque (eu), Finnish (fi), Hebrew (he), Hindi (hi), Italian (it), Japanese
(ja), Korean (ko), Russian (ru), Swedish (sv), Turkish (tr) and Chinese (zh).

8 For this reason, the terms “zero-shot” and “low-resource” are used interchangeably in this article.

9 We use the official CONLL 2018 Shared Task script
(https://universaldependencies.org/conlli8/evaluation.html) for UD tasks and seqeval
(https://github.com/chakki-works/seqeval) for NER.
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separately for each task (just like UDapter). For dependency parsing, in addition
to multi-udify, we also compare UDapter with monolingually trained UDify models
(mono-udify), and the following parsers:'’

1.  UUparser+BERT (Kulmizev et al. 2019), a graph-based BLSTM parser
(de Lhoneux et al. 2017; Smith et al. 2018) using mBERT embeddings as
additional features;

2. UDpipe (Straka 2018), a monolingually trained multi-task parser that
uses pre-trained word embeddings and character representations;'!

3. The original UDify (Kondratyuk and Straka 2019).

Furthermore, we also evaluate a variant of our model on parsing to see the impact
of standard adapter modules. This variant, adapter-only, is a model with only task-
specific adapter layers and no language specific adaptation (i.e., no adapter generation
network). Finally, to understand the importance of language-typology in UDapter, we
evaluate one last model variant, udapter-proxy, trained without typological features (i.e.,
no typology feature network). In this model variant, a separate language embedding is
learned from scratch for each in-training language, and for zero-shot languages we use
one from the same language family, if available, as proxy language embedding.

Note that all baselines are either trained for a single language, or multilingually
without any language-specific adaptation. By comparing UDapter to these baselines,
we highlight its unique character that enables language specific parameterization by
typological features within a multilingual framework for both supervised and zero-shot
learning setup.

6. Main Results

In this section we present results and comparisons between UDapter and baselines for
both high-resource languages and zero-shot experiments. We start with results on de-
pendency parsing as our core task, and continue with the results for POS, morphological
tagging, and NER. At the end of the section, we discuss the impact of jointly predicting
typological features on parsing.

6.1 Dependency Parsing

Labeled Attachment Scores (LAS) for the high-resource languages are given in Table 1.
UDapter consistently outperforms both the monolingual and multilingual baselines in
all languages, showing the success of our proposed adaptation approach. Statistical
significance testing!? applied between UDapter and multi/mono-udify confirms that

10 There are other monolingual dependency parsers (Wang and Tu 2020; Ferndndez-Gonzalez and
Gomez-Rodriguez 2021; Yang and Tu 2021) achieving state-of-the art results in different settings. These
studies focus on parsing algorithms rather than scaling a single parser to multiple languages or zero-shot
parsing. Moreover, their experimental setups do not match ours, which would make it hard to provide a
fair comparison.

11 UDPipe scores are taken from Kondratyuk and Straka (2019).

12 We used paired bootstrap resampling to check whether the difference between two models is significant

(v < 0.05) by using Udapi (Popel, Zabokrtsky, and Vojtek 2017).
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Table 1

Dependency parsing results (LAS) of baselines and UDapter for high-resource languages. The
last column shows average LAS of the 13 high-resource languages (HR-AVG). Results for
previous work are taken from Kulmizev et al. (2019) [1] and Kondratyuk and Straka (2019) [2,3].

ar en eu fi he hi it ja ko ru sv tr zh HR-AVG

Previous work:
uuparser-bert[1] 81.8 87.6 79.8 839 859 908 917 921 842 910 869 649 834 84.9

udpipe [2] 829 870 829 875 869 91.8 915 93.7 842 923 866 676 805 858
udify [3] 829 885 81.0 821 881 915 93.7 921 743 931 89.1 674 83.8 852
Monolingually trained (one model per language):

mono-udify 835 894 813 873 879 91.1 931 925 842 919 880 660 824 86.0
Multilingually trained (one model for all languages):

multi-udify 80.1 885 764 851 844 893 920 90.0 780 89.0 862 629 778  83.0
adapter-only 82.8 883 802 869 862 90.6 931 91.6 813 90.8 884 660 794 850
udapter 844 89.7 83.3 89.0 88.8 92.0 935 928 859 922 903 69.6 83.2 87.3
Table 2

Zero-shot results on a subset of 30 low-resource languages for dependency parsing (LAS).
Udapter-proxy refers to a variant of UDapter without typological features, where a proxy
language embedding is used when available. The asterisk indicates that average is calculated
over all low-resource languages. (Results for all low-resource languages, together with chosen
proxy, are given in Appendix C.)

be br bho fo hsb kk mr olo sa ta te tl  yo LR-AVG*
multi-udify 80.1 60.5 37.2 68.6 53.2 61.9 46.4 42.1 194 46.0 71.2 62.7 412 353
udapter-proxy 69.9 - 359 64.1 444 451 29.6 41.1 151 - - -
udapter 79.3 585 373 69.2 542 60.7 444 433 222 46.1 71.1 695 427 36.5

UDapter’s performance is significantly better than the baselines in 11 out of 13 lan-
guages (all except en and it).

Among directly comparable baselines, multi-udify gives the worst performance in
the typologically diverse high-resource setting. This multilingual model is clearly worse
than its monolingually trained counterparts (mono-udify): 83.0 vs. 86.0. This result
resounds with previous findings in multilingual NMT (Arivazhagan et al. 2019) and
highlights the importance of language adaptation even when using high-quality sen-
tence representations like those produced by mBERT. Furthermore, to understand the
relevance of adapters, we also evaluate a model with standard task-specific adapters.
Interestingly, this adapter-only model considerably outperforms multi-udify (85.0 vs.
83.0), indicating that adapter modules are also effective in multilingual scenarios.
UDapter, however, achieving consistent gains over both multi-udify and adapter-only
in this setup (87.3 vs. 86.0, 85.0), demonstrates the importance of linguistically informed
adaptation for in-training languages.

For the zero-shot experiments, average LAS on the 30 low-resource languages are
shown in Table 2. Overall, UDapter slightly outperforms the multi-udify baseline (36.5
vs. 35.3), which shows the benefits of our approach on both in-training and zero-shot
languages. For a closer look, Table 2 provides individual results for the 13 representative
languages in our low-resource set. Here we find a mixed picture: UDapter outperforms
multi-udify on 8 out of 13 languages.”> Achieving improvements on high-resource

13 LAS scores for all 30 languages are given in Appendix C. By significance testing, UDapter is significantly
better than multi-udify on 16/30 low-resource languages, which is shown in Table C1.
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Table 3

Results of UDapter and UDify (Kondratyuk and Straka 2019) trained separately for POS tagging,
morphological tagging, and NER on 13 high-resource languages. HR-AVG is calculated over all
13 training languages, where ja and kr are removed from morphological tagging.

ar en eu fi  he hi it ja ko ru sv tr zh HR-AVG

POS Tagging (Accuracy)
multi-udify 96.3 96.6 945 96.4 96.5 96.7 983 96.8 953 985 97.6 934 938 96.1
udapter 96.8 97.0 957 97.3 97.1 974 983 97.0 965 989 984 951 951 97.0

Morphological Tagging (F1)

multi-udify 95.7 97.5 92.0 947 949 970 989 - - 976 97.6 909 989 959
udapter 96.8 98.0 954 96.7 96.2 97.7 99.2 - - 983 983 948 992 973
NER (F1)

multi-udify 87.9 84.1 91.3 909 847 86.8 91.3 68.8 87.3 88.6 944 919 788  86.7
udapter 89.4 854 92.7 924 86.7 89.5 924 719 888 89.8 958 93.1 813 884

languages while not degrading zero-shot performance is notoriously very difficult.
Thus, we believe our zero-shot results represent an important step toward overcoming
the problem of positive /negative transfer trade-off.

Finally, the results of udapter-proxy show that choosing a proxy language embed-
ding from the same language family performs clearly worse than UDapter, apart from
not being available for many languages. This indicates the importance of typological
features in our approach (see Section 7.3 for further analysis).

6.2 Sequence Labeling Tasks

Table 3 shows results for UDapter and multi-udify on POS tagging, morphological
tagging, and NER in high-resource languages. As in dependency parsing, UDapter
outperforms multi-udify on all three tasks for all languages, confirming that a language-
aware adaptation via language-typology can be beneficial across sequence labeling
tasks.

However, results in the zero-shot setup are not always positive. Table 4 shows
model performance on 13 low-resource languages for each task.!* In POS tagging,
UDapter outperforms UDify but improvements are rather small compared to high-
resource languages (58.4 vs. 58.0).

In morphological tagging, we observed a very small decrease on average but a large
variation across languages. Here, jointly predicting separate morphological attributes,
together with the unfactored tag string (Inoue, Shindo, and Matsumoto 2017), helps
the model to learn infrequent tags. For high-resource languages this increase is rather
small (+0.3 F1 on average); however, for low-resource languages, jointly predicting
morphological attributes provides a higher increase of +1.3 F1 (Table 5).

In NER, unlike the other three tasks, UDapter has significantly lower performance
overall and it is outperformed by multi-udify on 6 out of 10 low-resource languages.
See Section 7.1 for a further comparison between tasks.

Finally, when looking at the udapter-proxy results, selecting a proxy language from
the same language-family generally makes results worse. In POS and morphological

14 Results for all low-resource languages are given in Appendix C.
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Table 4

Zero-shot results on subset of 30 low-resource languages for sequence labeling tasks.
Udapter-proxy refers to an alternative of UDapter without typological features where a proxy
language embedding is used when it is available. The asterisk indicates that average of all
low-resource languages. (Results for all low-resource languages, together with chosen proxy, are
given in Appendix C.)

be br bho fo hsb kk mr olo sa ta te tl  yo LR-AVG*

POS Tagging (Accuracy)

multi-udify ~ 94.6 70.6 61.8 80.0 76.8 85.0 67.5 745 414 68.6 81.6 733 651 58.0
udapter-proxy 74 - 610 785 673 784 585 752 390 - - - - -
udapter 96.9 722 63.1 79.6 77.8 834 66.5 76.6 42.2 70.3 84.2 78.4 63.7 58.4
Morphological Tagging (F1)

multi-udify ~ 92.3 51.1 68.1 584 60.7 52.2 51.7 60.0 40.7 37.8 - 312 58.7 444
udapter-proxy 67.5 - 66.7 554 56.3 51.0 50.1 599 383 - - - - -
udapter 92.0 59.9 66.4 56.3 37.4 525 51.2 624 206 417 - 333 641 443
NER (F1)

multi-udify ~ 80.1 776 - 782 79.0 727 759 - 540 69.8 622 814 - 67.4
udapter-proxy 703 - - 657 329 607 716 - 410 - - - - -
udapter 803 743 - 803 79.7 659 740 - 470 69.0 624 689 - 65.6
Table 5

Morphological tagging results for high-resource (HR) and low-resource languages (LR) with
different tagging architectures.

HR LR

Unfactored Morph. Tag 97.0 43.0
+ Separate Attributes 973 44.3

tagging this model can compete with multi-udify and udapter for some languages;
however for NER, the difference between udapter and udapter-proxy is higher.

6.3 Typological Feature Prediction

In this section, we present dependency parsing results when jointly predicting typolog-
ical features during training. Table 6 shows the results for both high-resource languages
and zero-shot experiments. The number of missing features is given for each language
(# missing), and LR-AVG* shows the average LAS score over 30 languages. Here, we
evaluate several variants of UDapter to measure the benefits of joint typological feature
prediction:

1.  No-prediction (no-pred): This model uses 289 typological features
(syntax + phonology + inventory) without predictions for missing
typological features. For missing features we use an NA token, the
embedding of which is learned during training.

2. Typological feature prediction (typo-pred): UDapter with joint
typological feature prediction. This model uses 289 typological features.
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Table 6

Dependency parsing (LAS) results for UDapter with and without typological feature prediction.
# missing shows the number of unavailable features in 289 typological features (syntax +
phonology + inventory). Note that the base UDapter uses KNN predictions (Littell et al. 2017) for
missing typological features. Results for all low-resource languages are given in Appendix D.

High-Resource Languages
ar en eu fi he hi it ja ko ru sv tr zh HR-AVG
#missing— 5 3 21 7 41 24 54 13 17 16 51 16 3 -

no-pred 84.4 90.0 83.1 89.2 89.3 919 93.5 925 85.7 923 90.2 694 82.6 87.2
typo-pred 843 89.4 832 89.2 89.4 919 93.7 929 85.8 924 90.0 70.2 83.6 874
KNN 84.4 89.7 83.3 89.0 88.8 92.0 93.5 92.8 859 922 90.3 69.6 83.2 87.3

Low-Resource Languages (Zero-Shot)
be br bho fo hsb kk mr olo sa ta te tI yo LR-AVG*
#missing — 256 41 229 256 289 275 65 289 112 61 47 31 13 -
no-pred 59.8 619 31.0 61.6 42.5 46.5 452 31.0 20.2 44.8 70.5 65.4 42.7 32.0
typo-pred  75.1 60.7 33.6 66.7 48.3 58.6 44.2 36.7 23.0 449 71.0 66.8 42.6  35.0
KNN 79.3 585 37.3 69.2 54.2 60.7 44.4 433 222 46.1 71.1 695 427 36.5

During training, a random subset of features' is masked and predicted

during training. At test time, only missing features are masked and the
model computes language embeddings without the need for external
prediction.

3. KNN-based external prediction (KNN): The base UDapter model that
uses values predicted by Littell et al. (2017) using a K-Nearest Neighbors
method for missing features.

For the high-resource languages, as UDapter learns language embeddings from training
data as well as typological features, differences are overall small. The model without
missing feature prediction (no-pred) slightly underperforms the base model with KNN
predictions (87.2 vs. 87.3 average LAS), whereas the one with joint prediction (typo-
pred) slightly outperforms it (87.4 vs. 87.3 LAS). This shows that the relevant typological
information can indeed be learned directly from task-specific training data, but the
baseline KNN prediction approach remains hard to beat.

In the zero-shot experiments, where typological features are the only source to com-
pute language embeddings, typological feature prediction significantly affects parsing
results: Disabling missing feature prediction clearly hurts parsing accuracy (32.0 vs. 36.5
average LAS by the baseline KNN prediction). As expected, this effect is especially dra-
matic for languages with many missing features like Belarusian (be) and Kazakh (kk).
Jointly predicting typological features (typo-pred) increases overall accuracy (35.0 vs.
32.0 LAS) and substantially recovers the large drop observed in languages with many
missing features. However, contrary to our expectations, joint prediction falls behind the
external KNN-based predictions in zero-shot parsing performance (35.00 vs. 36.5 LAS).
Note that the external KNN-based feature predictor also makes use of geographical
features (geo) from URIEL (Littell et al. 2017). Geographical features represent distances

15 In the best performing model, the masking ratio is 0.2. Please see Section 7.4 for the impact of the
masking ratio.
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from fixed points on the surface of the earth (i.e., geographical locations). When we
also use these geographical features for joint typological prediction in UDapter, average
LAS increases (+1.0) leading to a very competitive model that does not need external
typology prediction. See Section 7.4 for further analysis of the impact of geographical
features and the accuracy of feature prediction.

7. Analysis

In this section, we investigate when and how UDapter is most effective. We start by
comparing the impact of typology-based language adapters on different tasks. After
that, we focus only on dependency parsing and provide in-depth analyses of different
dimensions of our model, namely: improvements on different languages, impact of
modeling typology and joint feature prediction, learned language representations, and
impact of contextual parameter generation.

7.1 Which Tasks Improve Most?

Figures 4 and 5 show the error reduction (%) achieved by UDapter over the UDify
baseline (multi-udify). For high-resource languages, Figure 4 shows individual results
per language (a) and average results per task (b). In this setup, UDapter reduces error
rate in all the four tasks by significant ratios. Although dependency parsing shows the
largest absolute increase (+4.3 LAS), morphological tagging is the task that benefits most
from our approach in terms of error reduction. Especially for languages with complex
morphology such as Turkish and Finnish, UDapter substantially increases morpholog-
ical tagging quality. The smallest error reduction (12%) is that of NER. Overall, these
results confirm that, for languages with enough training data, typology-based language-
specific adaptation is robust among different tasks.

In the zero-shot setup (Figure 5), results differ per task. In dependency parsing,
UDapter outperforms multi-udify with +1.2 LAS and reduce errors by 1.9%. In POS
tagging, the error reduction is very small: 1.0% in favor of UDapter; however, when

@ dep * * E Error reduction over udify
40 - A pos g 40 -
t .
30 - 30 -
] ) x ©® ~ * *
* R 2 A & A o
20-® « 4 ] A 20 -
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4 * & | &
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0 0 -
) ) ) ) ) ) ) ) ) ) ) ) ) . \ \ ; !
ar en eu fi he hi it ja ko ru sv tr zh DEP UPOS MORPH. NER
(@) (b)
Figure 4

Error reduction rate (%) by UDapter over the UDify baseline (multi-udify) on high-resource
languages. Plot (a) and (b) show error reduction rate per language and average for each task,
respectively. A black horizontal line denotes zero error reduction.
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Figure 5

Error reduction rate (%) by UDapter over the UDify baseline (multi-udify) on low-resource
languages. Plot (a) and (b) show error reduction rate per language and average for each task,
respectively. A black horizontal line denotes zero error reduction. Language/task combinations
that are negatively affected by UDapter are marked in yellow in (a). Note that these results refers
to zero-shot experiments where no training data is available for the target language.

looking at the individual language results, 20 out of 30 languages have the same trend
(either positive or negative) as dependency parsing, suggesting these two tasks share
similar characteristics. In morphological tagging, UDapter performs almost the same as
UDify on average, but results vary significantly among languages. We believe this may
be due to the highly language-specific nature of morphological attributes, which makes
it particularly hard to successfully adapt a model without target-language examples.
Finally for NER, UDapter significantly underperforms multi-udify, increasing error rate
by 5.5% on average in the zero-shot setup.

A possible explanation for the zero-shot results is that dependency parsing and POS
tagging benefit more from typological knowledge, whereas NER mostly requires lexical
coverage, which is not affected by adapters. Moreover, the low representation quality of
low-resource languages in mBERT (Wu and Dredze 2020) may have a stronger negative
effect on NER, which can make it more difficult to learn language-specific adapters
rather than multilingual fine-tuning for those languages. However, the reason for the
relatively low performance of typology-based adaptation on zero-shot NER remains an
open question.

7.2 Which Languages Improve Most?

Figure 6 shows the relative gains in dependency parsing accuracy (LAS) for
UDapter over multi-udify. Each bar represents one of the 13 fine-tuning languages along
with the respective treebank size. To summarize, the gains are higher for languages
with less training data. This suggests that in UDapter, useful knowledge is shared
among in-training languages, which benefits low resource languages without hurting
high resource ones.

For zero-shot languages (Figure 7), the difference between the two models is smaller
than for high-resource languages (+1.2 LAS, as seen in Table 1). While it is harder to find
a trend here among these languages, we notice that UDapter is typically beneficial for
the languages not present in the mBERT training corpus: It significantly outperforms
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Difference in dependency parsing results (LAS) between UDapter and multi-udify for
high-resource languages. Diamonds indicate the number of sentences in the corresponding
treebank.
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Figure 7

Difference in dependency parsing results (LAS) between UDapter and multi-udify for
low-resource languages (zero-shot). *” indicates languages that are involved in mBERT
pretraining.

multi-udify in 13 out of 22 (non-mBERT) languages. This suggests that typological
feature-based adaptation may lead to improved sentence representations when the
pre-trained encoder has not been exposed to a language.

7.3 How Much Gain from Typology?

UDapter learns to represent languages based on their typological features. A natural
alternative to this choice is to learn language embeddings from scratch. To compare
UDapter with this alternative, we train another model for dependency parsing, in
which a separate language embedding (of the same size: 32) is initialized randomly
for each fine-tuning language and learned end-to-end. Because such embeddings are
only available for the high-resource languages, in the zero-shot experiments we use the
average, or centroid, of the 13 learned language embeddings. As shown in Figure 8a,
on the high-resource set, the models with and without typological features achieve very
similar average LAS (87.3 and 87.1, respectively). On zero-shot experiments, however,

574



Ustiin et al. Typology-based Language Adapters for Multilingual Parsing

90 - 60 - 0.58 -
From scratch = Random Init. -
80 - & Centroid =3 Proxy Languages = language-Typology Features
Typological 50 - B Typological Features 0.57
70 - =]
features 0.56 -
60 - 40 -
0.55 -
50 -
40 30 - 0.54 -
0.53 -
30 - 20 -
20 - 0.52 -
10 -
10 - 0.51 -
0= ' ' 0~ i 0.50 5 ' ' '
high-resource low-resource (zero-shot) low-resource (zero-shot) - 13 syntax phonology inventory
(@) (b) ©
Figure 8

(a) Impact of language typology features on parsing performance (LAS). (b) Average zero-shot
parsing results for 13 low-resource languages with a proxy. (c) Average normalized feature
weights obtained from linear projection layer of the language embedding network.

the use of centroid embedding performs very poorly: 9.0 vs. 36.5 average LAS over 30
languages.

As discussed in Section 6, a better alternative is using the embedding of a proxy
language belonging to the same family as the evaluated low-resource language, if
available. In our setup, this is possible for 13 low-resource languages (see Appendix C
for the detailed list). As shown in Figure 8b, UDapter outperforms proxy embeddings
even on this subset of languages.

Taken together, these results show that a model can learn reliable language em-
beddings directly from the data. However, this type of adaptation can only benefit
in-training languages at the expense of zero-shot performance. By contrast, using
typological information to condition language embeddings allows UDapter to achieve
improvements on the high-resource languages while preserving (or even improving)
zero-shot performance. As opposed to our model, UDify (multi-udify) achieves compet-
ing performance in zero-shot languages with a cost in parsing quality for high-resource
languages due to the limited language-specific capacity.

7.4 How and When to Jointly Predict Typological Features?

The main results (Section 6.3) show that predicting typology jointly with dependency
parsing leads to similar parsing accuracy as our base model. Moreover, when compared
to no-prediction models, joint prediction improves zero-shot parsing performance in
terms of LAS. In the main experiments, we used all syntax, phonology, and inventory
features, for a total of 289 binary features, some of which are not annotated for many
languages. However, URIEL (Littell et al. 2017) also provides geographical features
(geo) representing distances to fixed points on the surface of the earth (i.e., geographical
locations). These features are instead available for all languages. Figure 9 shows the
parsing results when geo features are used in the corresponding model. Although the
contribution of geo features for high-resource languages is very limited (9a), for low-
resource languages, geo features considerably improve parsing performance, leading
to a model that is very competitive with udapter-knn with the additional advantage of
not requiring external predictions. By contrast, udapter-knn does not benefit from the
addition of geo features as these were already used for KNN prediction.
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Figure 9
Contribution of geographical features (geo) to the parsing performance for high-resource (9a)
and low-resource languages (9b). Note that second plots refers to zero-shot experiments.
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Figure 10

Performance difference in dependency parsing (+/—LAS) between typology prediction model
and no prediction model. Each data point represents a low-resource language with the
respective number of missing features. Trend lines (in blue) show the correlation between
number of missing features and LAS gains.

For a closer look at the benefits of joint typological prediction, Figure 10 presents the
LAS difference between the typology prediction model and the no-prediction model
for each low-resource language, with and without geographical features (10a, 10b).
Trend lines (in blue) confirm that, when more features are missing, UDapter tends
to outperform the no-prediction model. Comparing 10a and 10b, using geographical
features decreases the benefits of the joint prediction model, especially for languages
with few missing features. However, predicting typology remains beneficial.

We also evaluate different masking ratios for the typological feature prediction
network, and different scaling factors (A) for the prediction loss. While the masking ratio
determines the number of features to mask and predict during training, A determines
the contribution of typology prediction to the target task in our multi-task architecture.

The results, shown in Figure 11, suggest that UDapter with joint typology prediction
performs better with smaller masking ratios, whereas A does not have a consistent effect.
In sum, UDapter works best with 20% masking and 0.8 scaling factor.
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Figure 11
Effect of masking ratio and typology loss scaling factor (A) on zero-shot parsing result.

Table 7

Accuracy of typological feature prediction over 5-fold cross validation for 6 high-resource
languages (in-training) and 6 low-resource languages (zero-shot). Majority refers to the majority
class baseline. Typo-pred and typo-pred+geo refer to our model without and with geographical
features, respectively.

ar en hi it sv  zh be br fo mr sa te
majorlty 611 645 628 723 677 634 510 635 55.1 678 707 701
typo-pred 90.0 919 939 935 85.6 862 833 825 86.0 79.8 80.6 80.7

typo-pred +geo 90.4 932 925 945 872 86.6 883 845 842 81.2 80.7 83.0

Finally, in addition to the impact on parsing performance, we also evaluate the
accuracy of typological feature prediction by UDapter. Although the predicted values for
missing features do not directly affect parsing performance, we expect better predictions
should lead to better language embeddings for adapter generation. Table 7 shows the
feature prediction accuracy of UDapter without and with geographical distances, for a
subset of high- and low-resource languages.'® This accuracy is calculated over 5-fold
cross validation with 20% masking ratio.

As a reference point, we also present the results of a baseline selecting the majority
class for each feature.”” We find that UDapter strongly outperforms the majority base-
line, showing the potential of extracting typology relevant information directly from
(annotated) textual data (Ponti et al. 2019). Clearly, UDapter may also be strongly re-
lying on universal correlations among features (Greenberg 1963) to predict the missing
values. We leave a more in-depth investigation of these two factors and their interplay
to future work.

7.5 How Does UDapter Represent Languages?

We start by analyzing the projection weights assigned to different typological features
by the first layer of the language MLP (see Figure 2). Figure 8c shows the averages

16 Feature prediction accuracies for the full list of languages are given in Appendix D.
17 Although lang2vec provides knn-based predictions for the missing values, the KNN model itself is not
available for evaluation on human-annotated features.
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Figure 12

Vector spaces for (a) language-typology feature vectors taken from URIEL, (b) language
embeddings learned from typological features by UDapter, and (c) language embeddings
learned without typological features. High- and low-resource languages are indicated by red
and blue dots respectively. Highlighted clusters in (a) and (b) denote sets of genetically related
languages.

of normalized syntactic, phonological, and phonetic inventory feature weights when
UDapter is trained for dependency parsing. Although dependency parsing is a syntactic
task, the network does not only utilize syntactic features, as also observed by Lin et al.
(2019), but exploits all available typological features to learn its representations.

Next, we plot the language representations learned in UDapter by using t-SNE
(van der Maaten and Hinton 2008), which is similar to the analysis carried out by Ponti
et al. (2019, Figure 8) using the language vectors learned by Malaviya, Neubig, and
Littell (2017). Figure 12 illustrates 2D vector spaces generated for the typological feature
vectors I; taken from URIEL (12a), as well as the language embeddings 1, learned by
UDapter from scratch and from typological features (12b and 12c, respectively). The
benefits of using typological features can be understood by comparing 12a and 12b:
During training, UDapter learns to project URIEL features to language embeddings in
a way that is optimal for in-training language parsing quality. This leads to a different
placement of the high-resource languages (red points) in the space, where many lin-
guistic similarities are preserved (e.g., Hebrew and Arabic; European languages except
Basque) but others are overruled (Japanese drifting away from Korean). Looking at the
low-resource languages (blue points) we find that typologically similar languages tend
to have similar embeddings to the closest high-resource language in both 12a and 12b.
In fact, most groupings of genetically or geographically related languages, such as the
Indian languages (hi-cluster) or the Uralic ones (fi-cluster) are largely preserved across
these two spaces.

Comparing 12c to 12b where language embeddings are learned from scratch, the
absence of typological features leads to a seemingly random space with no linguistic
similarities (Arabic far away from Hebrew, Korean closer to English than to Japanese,
etc.) and, therefore, no principled way to represent additional languages.

Taken together with the parsing results in Section 6.1, these plots suggest that
UDapter embeddings strike a good balance between a linguistically motivated repre-
sentation space and one solely optimized for in-training language accuracy.
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Figure 13

Impact of different UDapterX components on parsing performance (LAS): (a) adapters and
adapter layer size, (b) application of contextual parameter generation to different portions of the
network. In (b), the model named cpg (adap.+biaf.)* indicates the full UDapter.

7.6 Is Contextual Parameter Generation Really Essential?

In Section 6 we observed that adapter tuning alone (that is, without CPG) improved
the multilingual baseline in the high-resource languages, but worsened it considerably
in the zero-shot setup. By contrast, the addition of CPG with typological features led to
the best results over all languages. But could we have obtained similar results by simply
increasing the adapter size? For instance, in multilingual MT, increasing overall model
capacity of an already very large and deep architecture can be a powerful alternative to
more sophisticated parameter sharing approaches (Arivazhagan et al. 2019). To answer
this question we train another adapter-only model with doubled size (2,048 instead of
the 1,024 used in the main experiments) for dependency parsing.

As seen in Figure 13a, increasing model size brings a slight gain to the high-resource
languages, but actually leads to a small loss in the zero-shot setup. This shows that stan-
dard, non language-adaptive adapters enlarge the per-language capacity for in-training
languages, but at the same time they hurt generalization and zero-shot transfer. By con-
trast, UDapter including CPG, which increases the model size by language embeddings
(see Appendix B for details), outperforms both adapter-only models, confirming once
more the importance of this component.

For our last analysis (Figure 13b), we study soft parameter sharing via CPG on dif-
ferent portions of the network, namely: (1) Only on the adapter modules cpg (adapters)
versus (2) on both adapters and biaffine attention cpg (adap.+biaf.), corresponding to
the full UDapter. Results show that most of the gain in the high-resource languages is
obtained by only applying CPG on the multilingual encoder. On the other hand, for the
low-resource languages, typological feature-based parameter sharing is most important
in the biaffine attention layer.

8. Conclusion

We have presented UDapter, a multilingual model for dependency parsing and se-
quence labeling tasks such as POS, morphological tagging, and NER. It learns to adapt
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language-specific parameters via contextual language adapters on the basis of adapter
modules (Rebuffi, Bilen, and Vedaldi 2018; Houlsby et al. 2019) and the contextual
parameter generation (CPG) method (Platanios et al. 2018). While adapters provide a
more general task-level adaptation, CPG enables language-specific adaptation, defined
as a function of language embeddings projected from linguistically curated typological
features. In this way, the model retains high per-language performance in the training
data and achieves better zero-shot transfer. Because not all typological features are
available for every language, we further include typological feature prediction in our
model in a multi-task manner that achieves very competitive parsing performance
without the need of an external prediction system for missing features.

For dependency parsing, UDapter trained on a concatenation of typologically di-
verse languages outperforms strong monolingual and multilingual baselines on the
majority of both high-resource (HR) and low-resource languages (LR)—zero-shot—
which reflects its strong balance between per-language capacity and maximum sharing.
Our in-depth analyses show that typological features are crucial to this success. For
sequence labeling tasks, UDapter surpasses the multilingual baseline on HR languages
and performs better or comparably to it on LR languages, except for a performance
decrease in NER (see Section 7.1).

The main limitation in our approach remains the low representation quality for
languages with zero or little data in the pre-trained encoder (multilingual pre-training).
Sentences in such languages typically get tokenized very aggressively, leading to rep-
resentations that are not very informative for the task-specific layers, regardless of any
downstream language adaptation strategy. This could explain why our reported gains
are overall more modest in LR languages than in HR ones. Considering this, promising
research directions include improving the quality of the multilingual encoder represen-
tations for low-resource languages, for instance, by continued training on monolingual
data (Pfeiffer et al. 2020) or learning a new vocabulary (Artetxe, Ruder, and Yogatama
2020) for the target language(s) of interest. More work also remains to be done to
assess the quality of our joint typology prediction model, especially regarding the true
contribution of the parsing loss to the reported prediction accuracy.

Appendix A: Language Details

Details of training and zero-shot languages such as language code, data size (number
of sentences), and family are given in Table Al and Table A2.

Appendix B: Experimental Details

Implementation. UDapter’s implementation is based on UDify (Kondratyuk and Straka
2019). We use the same hyperparameters setting optimized in UDify without applying
a new hyperparameter search. Together with the additional adapter size and language
embedding size that are picked manually by parsing accuracy, hyperparameters are given
in Table B1. To give a fair chance to the adapter-only baseline, we used 1,024 as adapter
size, unlike that of the final UDapter (256). For fair comparison, mono-udify and multi-
udify are re-trained on the concatenation of 13 high-resource languages. Additionally,
we did not use a layer attention for either our model or the baselines.

Training Time and Model Size. Compared to UDify, UDapter has a similar training time.

An epoch over the full training set takes approximately 27 and 30 minutes in UDify
and UDapter, respectively, on a Tesla V100 GPU when they are trained for dependency
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Table A1

Training languages that are from UD 2.3 (Nivre et al. 2018) with the details including treebank
name, family, word order, and data size of training and test sets.

Language Code Treebank Family Word Order  Train Test
Arabic ar PADT Afro-Asiatic, Semitic VSO 6.1k 680
Basque eu BDT Basque SOV 54k 1,799
Chinese zh GSD Sino-Tibetan SVO 4.0k 500
English en EWT IE, Germanic SVO 125k 2,077
Finnish fi TDT Uralic, Finnic SVO 122k 1,555
Hebrew he HTB Afro-Asiatic, Semitic SVO 5.2k 491
Hindi hi HDTB IE, Indic SOV 133k 1,684
Italian it ISDT IE, Romance SVO 13.1k 482
Japanese ja GSD Japanese SOV 7.1k 551
Korean ko GSD Korean SOV 4.4k 989
Russian ru SynTagRus IE, Slavic SVO 15k* 6,491
Swedish 4 Talbanken  IE, Germanic SVO 4.3k 1,219
Turkish tr IMST Turkic, Southwestern SOV 3.7k 975
Table A2

Zero-shot languages are selected from UD 2.5 to increase the number of languages in the
experiments. Language details include treebank name, family, and test size for zero-shot

experiments.

Language Code Treebank(s) Family Test
Akkadian akk PISANDUB Afro-Asiatic, Semitic 1,074
Ambharic am ATT Afro-Asiatic, Semitic 101
Assyrian aii AS Afro-Asiatic, Semitic 57
Bambara bm CRB Mande 1,026
Belarusian be HSE IE, Slavic 253
Bhojpuri bho BHTB IE, Indic 254
Breton br KEB IE, Celtic 888
Buryat bxr  BDT Mongolic 908
Cantonese yue HK Sino-Tibetan 1,004
Erzya myv JR Uralic, Mordvin 1,550
Faroese fo OFT IE, Germanic 1,207
Karelian krl KKPP Uralic, Finnic 228
Kazakh kk KTB Turkic, Northwestern 1,047
Komi Permyak  koi UH Uralic, Permic 49
Komi Zyrian kpv  LATTICE, IKDP  Uralic, Permic 210
Kurmanji kmr MG IE, Iranian 734
Livvi olo KKPP Uralic, Finnic 106
Marathi mr UFAL IE, Indic 47
Mbya Guarani  gun THOMAS Tupian 98
Moksha mdf JR Uralic, Mordvin 21
Naija pem  NSC Creole 948
Sanskrit sa UFAL IE, Indic 230
Swiss G. gsw UZH IE, Germanic 100
Tagalog tl TRG Austronesian, Central Philippine 55
Tamil ta TTB Dravidian, Southern 120
Telugu te MTG Dravidian, South Central 146
Upper Sorbian  hsb ~ UFAL IE, Slavic 623
Warlpiri wbp UFAL Pama-Nyungan 54
Welsh cy CCG IE, Celtic 956
Yoruba yo YTB Niger-Congo, Defoid 100
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Table Bl
Hyperparameter setting. Note that typo. pred. mask and loss scaling factor only used in joint
typology prediction model 4.

Hyperparameter Value Hyperparameter Value
Dependency tag dimension 256 Typo. pred. mask ratio 0.2
Dependency arc dimension 768 Typo. pred. loss scaling factor (A) 0.8
POS layer dimension 768 Optimizer Adam
Morph. tagging layer dimension 768 B1, B2 0.9,0.99
NER layer dimension 768 Weight decay 0.01
Batch size 32 Label smoothing 0.03
Dependency parsing epochs 80 Dropout 0.5
POS tagging epochs 30 BERT dropout 0.2
Morphological tagging epochs 30 Mask probability 0.2
NER epochs 30 Base learning rate 1e~?
LR warm up ratio 0.125 | BERT learning rate 5e >
Language embedding size 32 Adapter size 256

parsing. In terms of number of trainable parameters, UDify has 191M total number
of parameters whereas UDapter uses 550M parameters in total, 302M for adapters
(32x9.4M) and 248M for biaffine attention (32x7.8M), since the parameter generator
network (CPG) multiplies the tensors with language embedding size (32). Note that
for multilingual training, UDapter’s parameter cost depends only on language em-
bedding size regardless of number of languages, therefore it is highly scalable with
an increasing number of languages for larger experiments. Finally, monolingual UDify
models are trained separately so the total number of parameters for 13 languages is 2.5B
(13x191M).

Appendix C: Zero-Shot Results

Table C1 shows LAS scores on all 30 low-resource languages for UDapter, original UDify
(Kondratyuk and Straka 2019), and re-trained multi-udify. Languages with **’ are not
included in mBERT training data. Note that original UDify is trained on all available UD
treebanks from 75 languages. Moreover, Table C2 shows POS tagging (accuracy), mor-
phological tagging (F1), and NER (F1) results for low-resource languages for UDapter
and multi-udify.

Appendix D: Typological Feature Prediction

Tables D1 and D2 show accuracies for the typological feature prediction (Section 4) for
each high-resource and low-resource languages, respectively. Note that for low-resource
languages, we only evaluate the languages with at least 30 available typological features
(except geo features). Finally, Table D3 shows the dependency parsing results (LAS)
for UDapter with and without joint typological feature prediction for 30 low-resource
languages (zero-shot). Note that our base model (UDapter) uses KNN-based predictions
(Littell et al. 2017) for missing typological features, whereas typo-pred models use joint
prediction model.
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Table C1

LAS results of UDapter and UDify models (Kondratyuk and Straka 2019) for all low-resource
languages. * shows languages not present in mBERT training data. Additionally, (f) indicates

languages where no significant difference between UDapter and multi-udify by significance
testing. For udapter-proxy, chosen proxy language is given between brackets. CTR means

centroid language embedding.

orig. udify ~multi-udify udapter | udapter-proxy
aii* 9.1 8.4 14.3 8.2 (ar)
akk* 44 45 8.2 9.1 (ar)
am* 2.6 2.8 5.9 1.1 (ar)
be 81.8 80.1 79.3 69.9 (ru)
bho*(T) 35.9 37.2 37.3 35.9 (hi)
bm* 7.9 8.9 8.1 3.1 (CTR)
br* 39.0 60.5 58.5 14.3 (CTR)
bxr* 26.7 26.1 28.9 9.1 (CTR)
cy 42.7 53.6 54.4 9.8 (CTR)
fo* 59.0 68.6 69.2 64.1 (sv)
gsw* 39.7 43.6 45.5 23.7 (en)
gun*(f) 6.0 8.5 8.4 2.1 (CTR)
hsb* 62.7 53.2 54.2 44.4 (ru)
kk 63.6 61.9 60.7 45.1 (tr)
kmr*(t) 20.2 11.2 12.1 4.7 (CTR)
koi* 22.6 20.8 23.1 6.5 (CTR)
kpv*(t) 12.9 12.4 12.5 4.7 (CTR)
krl* 41.7 49.2 48.4 45.6 (fi)
mdf* 194 24.7 26.6 8.7 (CTR)
mr 67.0 46.4 444 29.6 (hi)
myv*(}) 16.6 19.1 19.2 6.3 (CTR)
olo* 33.9 421 43.3 41.1 (fi)
pem*(t) 31.5 36.1 36.7 5.6 (CTR)
sa* 19.4 19.4 22.2 15.1 (hi)
ta (1) 71.4 46.0 46.1 12.3 (CTR)
te (1) 83.4 71.2 71.1 23.1 (CTR)
tl 414 62.7 69.5 14.1 (CTR)
wbp* 6.7 9.6 12.1 4.8 (CTR)
yo 22.0 41.2 42.7 10.5 (CTR)
yue* 31.0 30.5 32.8 24.5 (zh)
Ir-avg 341 35.3 36.5 20.4
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Table C2

POS tagging (Accuracy), morphological tagging (F1), and NER (F1) results of UDapter and
multi-UDify models (Kondratyuk and Straka 2019) for all low-resource languages. Missing
values in morphological tagging refers to languages with no morphology and missing values in
NER refers to no dataset for the corresponding language.

POS (Acc) Morphological Tagging (F1) NER (F1)
multi-udify udapter multi-udify udapter multi-udify udapter
aii 14.6 14.8 31.5 31.5 - -
akk 20.9 20.4 - - - -
am 10.9 10.9 63.4 63.4 2.5 2.9
be 94.6 96.9 92.3 92.0 80.1 80.3
bho 61.8 63.1 68.1 66.4 - -
bm 36.5 35.8 28.5 54.8 - -
br 70.6 72.2 51.1 59.9 77.6 74.3
bxr 65.1 65.6 34.7 38.4 - -
cy 70.8 69.7 429 43.8 65.9 73.4
fo 80.0 79.6 58.4 56.3 78.2 80.3
gsw 65.0 65.9 - - - -
gun 34.5 36.3 28.8 48.2 68.1 65.5
hsb 76.8 78.8 60.7 37.4 79.0 79.7
kk 85.0 83.4 52.2 52.5 72.7 65.9
kmr 48.5 48.8 29.3 13.3 - -
koi 45.6 489 33.0 22.5 - -
kpv 36.2 36.7 27.9 22.8 - -
krl 78.9 78.3 67.2 70.3 - -
mdf 53.5 54.7 21.8 25.7 - -
mr 67.5 66.5 51.7 51.2 75.9 74.1
myv 50.7 52.8 20.0 19.1 - -
olo 74.5 76.6 59.9 62.4 - -
pcm 62.8 54.7 - - - -
sa 414 42.2 40.7 20.6 54.0 47.0
ta 68.6 70.3 37.8 41.7 69.8 69.0
te 81.6 84.2 - - 62.2 62.4
tl 73.3 78.4 31.2 33.3 81.4 68.9
wbp 37.6 34.1 17.8 15.8 - -
yo 65.1 63.7 58.7 64.1 - -
yue 68.1 66.3 - - 76.4 75.2
Ir-avg 58.0 58.4 444 443 67.4 65.6
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Table D1

Accuracy of typological feature prediction over 5-fold cross validation for high-resource
languages (in-training). Majority refers to the majority class baseline. Typo-pred and
typo-pred+geo refer to our model without and with geographical features, respectively.

ar en eu fi he hi it ja ko ru sv tr zh HR-AVG
majority 61.1 64.5 67.8 69.9 714 62.8 72.3 73.5 709 71.1 67.7 69.2 63.4 68.1

typo-pred 90.0 91.9 86.1 93.2 88.2 93.9 93.5 90.8 86.5 95.5 85.6 86.2 86.2 89.8
typo-pred +geo 90.4 93.2 86.4 95.3 88.4 92.5 94.5 91.2 86.3 95.5 87.2 84.7 86.5 90.2

Table D2

Results (accuracy) for typological feature predictions over 5-fold cross validation for
low-resource languages (zero-shot). Only the languages with at least 30 available typological
features (except geo features) are evaluated. Majority refers to the majority class baseline.

am be bho bm br bxr cy fo gsw gun kmr koi
majority 679 51.0 643 69.6 63.5 649 62.0 55.1 389 81.1 674 57.0

typo-pred 78.6 833 91.0 83.7 825 81.1 78.6 86.0 87.1 799 795 89.7
typo-pred +geo 78.3 88.3 84.5 80.9 84.5 80.3 78.6 84.2 933 773 782 89.3

kpv mr myv pom sa ta te tl wbp yo yue LR-AVG
majority 720 67.8 62.1 75.8 70.7 705 70.1 69.5 50.3 743 752 65.3

typo-pred 864 79.8 785 888 80.6 78.3 807 788 664 772 813 816
typo-pred +geo 86.4 812 844 89.9 80.7 782 83.0 80.0 60.7 751 833 818
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Table D3

Dependency parsing (LAS) results for UDapter with and without typological feature prediction.
# missing shows the number of unavailable features in 289 typological features (syntax +
phonology + inventory). Note that the base UDapter uses KNN-based predictions (Littell et al.
2017) for missing typological features.

#missing no typo udapter no typo udapter

features pred pred knn pred pred knn

+geo +geo +geo

aii 289 18 35 143 99 117 137
akk 289 36 52 8.2 62 7.0 6.5
am 24 14 35 5.9 29 15 6.9
be 256 59.8 751 793 785 789 797
bho 229 31.0 336 373 316 344 367
bm 53 79 107 8.1 81 10.0 8.7
br 41 619 607 585 60.8 59.8 56.7
bxr 229 263 259 289 264 273 277
cy 208 439 543 544 515 550 548
fo 256 61.6 66.7  69.2 66.7 68.4 67.1
gsw 261 474 495 455 472 498 489
gun 119 80 88 84 91 67 9.6
hsb 289 425 483 542 53.6 531 535
kk 275 46.5 58.6  60.7 602 613 59.7
kmr 46 127 123 121 124 132 136
koi 258 18.6 233 231 236 248 235
kpv 59 126 121 125 128 121 124
krl 289 342 404 484 440 465 469
mdf 289 209 242 26.6 253 271 264
mr 65 452 442 444 430 447 449
myv 245 179 198 192 194 207 194
olo 289 31.0 367 433 409 407 435
pcm 131 338 370 367 351 348 339
sa 112 202 230 222 20.7 220 224
ta 61 448 449 461 424 470 4438
te 47 705 710 711 692 691 684
tl 31 654 668 695 60.3 620 702
wbp 234 99 108 121 115 166 158
yo 13 427 426 427 415 408 422
yue 28 355 349 328 352 323 365
Ir-avg - 320 349 365 350 36.0 365
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